
SemiPersistent_Env.ppt Page 1 of 17

®

IBM Software Group

© 2006 IBM Corporation

Updated October 9, 2006

WebSphere® Message Broker V6

Semi-persistent Environment and Shared
Variables

This presentation discusses Semi-persistent Environment and Shared Variables.

SemiPersistent_Env.ppt Page 2 of 17

IBM Software Group

2

Semi-persistent Environment and Shared Variables © 2006 IBM Corporation

Agenda

� Semi-persistent environment and shared

variables

� Summary and references

This topic will discuss the new Version 6 Semi-persistent Environment and Shared Variables
enhancements.

SemiPersistent_Env.ppt Page 3 of 17

IBM Software Group

3

Semi-persistent Environment and Shared Variables © 2006 IBM Corporation

SemiSemi--persistent environment and shared persistent environment and shared
variablesvariables

Section

This section provides technical detail about the Version 6 Semi-persistent Environment and
Shared Variables.

SemiPersistent_Env.ppt Page 4 of 17

IBM Software Group

4

Semi-persistent Environment and Shared Variables © 2006 IBM Corporation

Semi-persistent environment

�ESQL provides data types with lifetimes longer
than current message

�Lifetime qualifier extension to current ESQL data types

� Improved performance in many scenarios

�Static routing tables

�Counting messages

�Assigning sequence numbers

In previous releases, data types had a lifetime that lasted generally for the period of time that the
current message was being processed in one particular node. If you wanted data types to
persist longer, you were required to create your own process to do that, which might involve
writing the information to a database, reducing efficiency because writing and reading a
database is generally a slow process. In Version 6, a semi-persistent environment or “cache” is
provided so that data types can now persist across more than one node and longer than the
lifetime of the current message. This results in improved performance in many scenarios,
especially since database access is not required to retrieve the values for the data types.

SemiPersistent_Env.ppt Page 5 of 17

IBM Software Group

5

Semi-persistent Environment and Shared Variables © 2006 IBM Corporation

ESQL variables types

The DECLARE statement can define three types of
variables:

�External

�Lifetime of the message flow

�Normal

�Lifetime of a single message, visible to that message only

�Shared

�Long lifetime

You can use the DECLARE statement to define three types of variables:

External

External variables, defined with the EXTERNAL keyword, are also known as user-defined

properties, or UDPs. They exist for the entire lifetime of a message flow and are visible to
all messages passing through the flow. Their initial values, optionally set by the
DECLARE statement, can be modified at design time by the Message Flow editor, or at
deployment time by the BAR editor. Their values cannot be modified by ESQL.

Normal

"Normal" variables have a lifetime of just one message passing through a node. They are
visible to that message only. To define a "normal" variable, omit both the EXTERNAL and
SHARED keywords.

Shared

Shared variables can be used to implement an in-memory cache in the message flow.
Shared variables have a long lifetime and are visible to multiple messages passing
through a flow. They exist for the lifetime of the execution group process, the lifetime of
the flow or node, or the lifetime of the node’s ESQL that declares the variable, whichever
is shortest. They are initialized when the first message passes through the flow or node

after each broker starts up.

SemiPersistent_Env.ppt Page 6 of 17

IBM Software Group

6

Semi-persistent Environment and Shared Variables © 2006 IBM Corporation

Variable, scope, lifetime and sharing

�SHARED variable is new for V6

>-DECLARE-+-Name--+--+----------+-------------

+-<-,-<-+ +-SHARED---+

The Version 6 SHARED variable uses the semi-persistent environment for storage and access
of shared variable data. In the bottom portion of the diagram, you see a summary of the scope,
lifetime, and thread visibility of the new SHARED variable. Where you define the variable
determines whether the variable is “Node Shared” or “Flow Shared”.

SemiPersistent_Env.ppt Page 7 of 17

IBM Software Group

7

Semi-persistent Environment and Shared Variables © 2006 IBM Corporation

Shared variables lifetime and scope

� Lifetime according to node or flow defining variable

�MODULE variables have node scope

�SCHEMA variables have flow scope

�Flow or execution group stopping ends variable lifetime

�A shared variable is NOT shared

�Across different schemas

�Across different message flows

The lifetime and scope of sharing is determined by where the variable is defined. Variables
defined as SHARED within modules are “Node Shared” and have node scope for all threads in
that node. Variables defined as SHARED within schemas are “Flow Shared” and have flow
scope for all threads and all nodes in the message flow. If the flow or execution group is
stopped, the variable lifetime ends.

Shared variables are NOT shared if they are defined within different schemas, or if they are
defined within different message flows, even if the different message flows are using the same

schema.

SemiPersistent_Env.ppt Page 8 of 17

IBM Software Group

8

Semi-persistent Environment and Shared Variables © 2006 IBM Corporation

Variable syntax

� All ESQL types can be shared

� ROW data type is newly externalized in V6

�particularly useful for storing message trees

� Examples:

�DECLARE Fred STRING SHARED;

�DECLARE MyTree ROW SHARED;

This slide summarizes the “DECLARE variable” syntax with emphasis on the new functionality.
If neither SHARED nor EXTERNAL is specified, the variable is a normal unshared variable. A
new parameter “SHARED” is provided in V6 to define a shared variable, which is stored in the
semi-persistent environment. All ESQL types can be shared.

A newly externalized ROW DataType is particularly useful for storing message trees, either as a
normal variable or a shared variable.

SemiPersistent_Env.ppt Page 9 of 17

IBM Software Group

9

Semi-persistent Environment and Shared Variables © 2006 IBM Corporation

ROW variables

�ROW data type is new

�Allows ESQL programmer to create named trees

�Allows for very flexible data structures

�ROW operates as expected

�Assign to other variables with data type ROW or to sub-
trees

�Compare with other variables with data type ROW

�Scalar value is root element value

�Variables with data type ROW can be SHARED

The ROW data type is new to V6. It allows you to create an entire named tree with very flexible
data structures. Variables defined with the ROW data type operate as you would expect. You
can assign the variable to other variables with data type ROW or to sub-trees. You can
compare the variable to other variables with data type ROW. The scalar value of a variable
defined with data type ROW is its root element value.

If a variable with data type ROW is defined as SHARED, its lifetime, scope and visibility is
handled in the same way by the semi-persistent environment as other SHARED variables.

SemiPersistent_Env.ppt Page 10 of 17

IBM Software Group

10

Semi-persistent Environment and Shared Variables © 2006 IBM Corporation

Restrictions on ROW SHARED data types

�Must use multiple reader thread safe parser

�The new XMLNSC parser is thread safe

�ROW SHARED variables must not exist on both
sides of the assignment statement

Shared variables with ROW data types must be parsed with a thread safe parser. The new
XMLNSC parser is thread safe and can be used.

ROW SHARED variables must not exist on both sides of an assignment statement. For
example, a ROW SHARED variable cannot be assigned to a ROW SHARED variable.

SemiPersistent_Env.ppt Page 11 of 17

IBM Software Group

11

Semi-persistent Environment and Shared Variables © 2006 IBM Corporation

SHARED variable initialization

�MODULE initialization is declaration order in
node’s ESQL text

�Initialization can refer to previous initialization

�SCHEMA initialization does not have implied order

�Keep SHARED SCHEMA variables initialization

independent

The SHARED variables defined within modules are initialized in the order in which they are
declared within the node’s ESQL text.

Since schema initialization has no implied order, your application design should allow for this
when working with SHARED SCHEMA variables.

SemiPersistent_Env.ppt Page 12 of 17

IBM Software Group

12

Semi-persistent Environment and Shared Variables © 2006 IBM Corporation

ATOMIC blocks

� ATOMIC blocks can serialize access to SHARED variables

�Necessary if multiple threads can possibly set or update a shared

variable

Because it is possible that more than one thread can be setting or updating a shared variable,
you can ensure the integrity of that shared variable by using an Atomic block to enclose the code
that does the set or update of the variable. An Atomic block uses a lock to ensure that only one
thread runs within the block at the same time; all other threads are suspended on the lock until
the lock owner exits the block. In that way, setting or updating the variable is serialized.

SemiPersistent_Env.ppt Page 13 of 17

IBM Software Group

13

Semi-persistent Environment and Shared Variables © 2006 IBM Corporation

Initialization and atomic operation example

Here is an example of using an ATOMIC block to control the initialization of SCHEMA SHARED
variables.

SemiPersistent_Env.ppt Page 14 of 17

IBM Software Group

14

Semi-persistent Environment and Shared Variables © 2006 IBM Corporation

Summary and references

Section

The last portion of the presentation contains a summary and references.

SemiPersistent_Env.ppt Page 15 of 17

IBM Software Group

15

Semi-persistent Environment and Shared Variables © 2006 IBM Corporation

Summary

�Semi-persistent environment is new for Version 6

� The scope and lifetime of a shared variable is
determined by where it is defined

�All threads within a respective scope can access a
shared variable

� The new ROW data type provides greater
programming flexibility for message tree data

� The ATOMIC block allows you to serialize setting
and updating variables

This presentation discussed the semi-persistent environment, which is new for Version 6.
Shared variables use this environment for storing and controlling access to their data. The
scope and lifetime of a shared variable is determined by where the variable is defined. All
threads within a respective scope can access a shared variable. In Version 6, a new ROW data
type was introduced which can be used within normal or shared variable definitions, providing
you greater programming flexibility for message tree data. For protecting the integrity of shared
variables in a multi-threaded environment, you can use the ATOMIC block within your ESQL to
serializing the setting or updating of the shared variables.

SemiPersistent_Env.ppt Page 16 of 17

IBM Software Group

16

Semi-persistent Environment and Shared Variables © 2006 IBM Corporation

References

�WebSphere Message Broker library:

http://www-
306.ibm.com/software/integration/wbimessagebrok
er/library/

�WebSphere Message Broker Information Center:

http://publib.boulder.ibm.com/infocenter/wmbhelp/v6

r0m0/index.jsp

SemiPersistent_Env.ppt Page 17 of 17

17

IBM Software Group

Semi-persistent Environment and Shared Variables © 2006 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM CICS IMS MQSeries Tivoli
IBM(logo) Cloudscape Informix OS/390 WebSphere
e(logo)business DB2 iSeries OS/400 xSeries
AIX DB2 Universal Database Lotus pSeries zSeries

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product and service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements and/or changes in the product(s) and/or program(s) described herein at any time without notice. Any statements regarding IBM's
future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or
services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program
Product in this document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual
property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER
EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall
have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and conditions of the agreements (e.g., IBM Customer Agreement,
Statement of Limited Warranty, International Program License Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. IBM makes no representations or warranties, express or implied, regarding non-IBM products and
services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2006. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

Template Revision: 04/25/2006 11:09 AM

