
MIME_XML_COBOL_C.ppt Page 1 of 26

®

IBM Software Group

© 2006 IBM Corporation

Updated October 6, 2006

WebSphere® Message Broker V6

MIME, XML, COBOL, C

This presentation discusses changes in MIME, XML, COBOL and C support in
WebSphere Message Broker V6.

MIME_XML_COBOL_C.ppt Page 2 of 26

IBM Software Group

2

MIME, XML, COBOL and C © 2006 IBM Corporation

Agenda

�MIME

�XML and XML Schema

�COBOL & C Related Changes

The topics presented in this presentation include MIME, XML & XML Schema, COBOL
and C related changes.

MIME_XML_COBOL_C.ppt Page 3 of 26

IBM Software Group

3

MIME, XML, COBOL and C © 2006 IBM Corporation

MIMEMIME

Section

The MIME domain should be used if your messages exploit the MIME standard for
multipart messages. The following slides summarize the enhancements to the MIME
domain support in WebSphere Message Broker V6.

MIME_XML_COBOL_C.ppt Page 4 of 26

IBM Software Group

4

MIME, XML, COBOL and C © 2006 IBM Corporation

� A gateway tolerant protocol
�Designed for e-mail, but increasingly popular for general messaging

�Messages can consist of one or more ‘parts’, each of a defined ‘content
type’

�A message with more than one part is a ‘Multipart MIME’ message

� Broker supports a new MIME domain and parser
�The domain is specified on input nodes or in MQRFH2 header

�The MIME parser has its own logical tree format

� The parser does not provide full support for all
possible MIME messages

�Designed to support SwA (SOAP with Attachments), RosettaNet and
TLOG

� These are all ‘Multipart MIME’ messages

�In practice most common usages should be supported

MIME

MIME or Multipurpose Internet Mail Extensions, was originally designed for e-mail but has
become increasingly popular for general messaging. This standard allows for messages
to consist of one or more parts, with each part identified with a “content type”. The MIME
domain and parser implementations in V6 are rewritten to provide greater function and
flexibility. A MIME message of more than one part is called a “multipart MIME message”.
The domain name is specified on input nodes or in MQRFH2 headers. The MIME parser
creates its own logical tree using bit stream metadata. The MIME domain that is
implemented in WebSphere Message Broker V6 does not support the full MIME standard,
but it does support the common MIME formats in use in message-based applications,
including SOAP with Attachments (or SwA), RosettaNet and TLOG. In practice you will
find that most usages should be supported.

MIME_XML_COBOL_C.ppt Page 5 of 26

IBM Software Group

5

MIME, XML, COBOL and C © 2006 IBM Corporation

Multipart MIME message

� Initial Content-Type header says ‘multipart/related’

� Consists of a number of ‘parts’

� Parts are delimited by a boundary string

�The boundary string is also defined in the initial Content-Type header

�Must be unique within the message

� The first part typically contains references to subsequent

parts

�Parts are identified by and referenced by a Content-ID header

� Each part can have a number of headers of its own

�The type of each part is defined by its own Content-Type header

�Content-Transfer-Encoding indicates how the part was encoded

A multipart MIME message contains an initial Content-Type header which indicates
‘multipart/related’ followed by a number of parts, delimited by a unique boundary string
defined in the initial ‘Content-Type’ header. Each subsequent message part also contains
its own ‘Content-ID’ header, with a ‘Content-Transfer-Encoding’ property to indicate how
that particular part was encoded.

MIME_XML_COBOL_C.ppt Page 6 of 26

IBM Software Group

6

MIME, XML, COBOL and C © 2006 IBM Corporation

Multipart MIME Example

MIME-Version: 1.0
Content-Type: Multipart/Related; boundary=************; type=text/xml;

Content-Description: This is the optional message description.

--************

Content-Type: text/xml; charset=UTF-8

Content-Transfer-Encoding: 8bit

Content-ID: <rootpart@example.com>

...XML attachment – for example, SOAP envelope

--************

Content-Type: application/octet-stream

Content-Transfer-Encoding: binary

Content-ID: <claimphoto@example.com>

...binary attachment – for example, JPEG

--************--

Initial Content-
Type header Boundary

First
part

Second
part

Here is a simple example of a MIME multipart message. The initial ‘Content-Type’
indicates that the message is a multipart message of related messages, and defines the
boundary string using a set of characters that must be unique within the message. The
following two message parts shown also contain their own ‘Content-Type’ headers,
‘Content-Transfer-Encoding’ settings, and ‘Content-ID’ settings.

MIME_XML_COBOL_C.ppt Page 7 of 26

IBM Software Group

7

MIME, XML, COBOL and C © 2006 IBM Corporation

MIME – logical view

Here is a logical view of a MIME multipart message. The Content-Type values are simple
name-value strings. Note that the content for each part can be further parsed in a
different domain based on application design.

Although Message Broker CAN parse a multipart MIME message, it cannot parse the
entire message, including attachments, in one pass. The attachments are blobs after
initial MIME parse. For example if your MIME message contains two XML attachments,
Message Broker would parse the entire message initially using MIME, then each
attachment would be reparsed using the appropriate XML parser. This could be done in a

single message flow by propagating each of the attachments to a ResetContentDescriptor
node to request that the message is reparsed by a different parser.

MIME_XML_COBOL_C.ppt Page 8 of 26

IBM Software Group

8

MIME, XML, COBOL and C © 2006 IBM Corporation

MIMEMIME

ContentContent--TypeType Other headersOther headers PartsParts

ContentContent--TypeType ContentContent--IDID DataData

HeaderHeader BodyBody

CookieCookie SendClaimSendClaim

Part [1]Part [1] PartPart [[N]N]

BLOBBLOB MRMMRM

Other headersOther headers

__************
Content-Type: text/xml; charset=UTF-8
Content-Transfer-Encoding: 8bit
Content-ID: rootpart@example.com
…XML attachment – like SOAP envelope

MIME-Version: 1.0
Content-Type: Multipart/Related; boundary=************; type=text/xml;
Content-Description: An optional message description

MIME – Logical view 2

Here is a logical view of a MIME multipart message, showing header information.

MIME_XML_COBOL_C.ppt Page 9 of 26

IBM Software Group

9

MIME, XML, COBOL and C © 2006 IBM Corporation

MIME Message Model

� Canned message definitions for

MIME

� Import manually with New
Message Definition File wizard

File > New > Message Definition File >
IBM Supplied Message

� Both multipart and nested

multipart

� BLOB alternatively modeled as

composition=“message”

� Provides ‘content assist’ for
ESQL editor

To assist in MIME multipart message development, V6 provides canned message
definitions for MIME.

You can import MIME message definitions manually with the new Message Definition File
wizard. Both multipart and nested multipart MIME message definitions are supported in
the model. The data type of ‘BLOB’ can alternatively be modeled as
composition=“message”. Within the MIME Message Model, content assist for the ESQL
editor is provided.

MIME_XML_COBOL_C.ppt Page 10 of 26

IBM Software Group

10

MIME, XML, COBOL and C © 2006 IBM Corporation

XML & XML SchemaXML & XML Schema

Section

This portion of the presentation discusses the V6 enhancements and changes to XML and
XML Schema.

MIME_XML_COBOL_C.ppt Page 11 of 26

IBM Software Group

11

MIME, XML, COBOL and C © 2006 IBM Corporation

XML Schema

� The logical message model is XML Schema with a
few restrictions and a few extensions. V6 removes
most of the remaining restrictions.

� xsd:list & xsd:union simple types

�Supported in toolkit and by MRM XML physical format

� xsd:redefine

�Accepted by XML Schema importer

�Gives task list error but with QuickFix to convert to
xsd:include

In WebSphere Message Broker, the logical message model is XML Schema. In V6, most
of the schema restrictions in earlier releases have been removed. For example, in V6, the
xsd:list and xsd:union simple types can be imported without error. In the case of
xsd:redefine, it can be imported and accepted by the importer, but a task list error is
produced. You can use QuickFix to convert it to xsd:include.

MIME_XML_COBOL_C.ppt Page 12 of 26

IBM Software Group

12

MIME, XML, COBOL and C © 2006 IBM Corporation

XML Schema (cont.)

� xsi:type attribute
�xsi:type is used in XML messages to dynamically specify

element’s data type
� For example, <price xsi:type=“xsd:decimal”>100.00</price>

�Now observed by MRM XML physical format

�Correct data type located in message dictionary

�‘type’ child element added to logical message tree

�New MRM XML message property ‘xsi:type output policy’

�Migration issue: used to be added as ‘@type’ because
self-defining

� Environment variable MQSI_IGNORE_XSI_TYPE
reverts to V5 behavior

In V5, the xsi:type attribute was accepted but support for it was not completely
implemented. For example, in V5, when this attribute was detected, the attribute was
stored but not fully resolved within the MRM XML physical format. The xsi:type attribute is
now fully supported in WebSphere Message Broker V6. The attribute is stored within the
physical format and a child element is added to the logical message tree. A new MRM
XML message property called ‘xsi:type output policy’ is provided.

Note there may be a migration issue in V6 because the xsi:type attribute is fully supported;
in V5 the attribute was not fully supported and was added as ‘@type”. If you want the V5
behavior, then you can achieve this by setting the environmental variable

MQSI_IGNORE_XSI_TYPE.

MIME_XML_COBOL_C.ppt Page 13 of 26

IBM Software Group

13

MIME, XML, COBOL and C © 2006 IBM Corporation

XMLNSC Domain

� Broker supports a new XMLNSC domain and parser

�The domain is specified on input nodes or in MQRFH2 header

�Supports namespaces

�‘Generic’ XML parser, does not use metadata

�Uses XML4C under the covers, just like XMLNS

� The XMLNSC parser is a ‘compact’ parser

�It has its own logical tree format

�Default is to discards DTDs, processing instructions and comments

�Default is to discard white space and ‘mixed content’

�Creates name/value syntax elements for simple values

� Results in about half as many syntax elements

In V6, a new way to parse XML messages is provided with the XMLNSC domain and
parser. The intent of the XMLNSC parser is to produce “generic” XML that is flexible and
very memory-efficient. The XMLNSC parser is an XML parser that is namespace aware,
denoted by “NS”, and produces more “compact” formats, denoted by the letter “C”. The
domain name is specified on input nodes or in MQRFH2 headers. The XMLNSC parser
does not use metadata.

The XMLNSC parser produces more “compact” tree formats and XML than the XMLNS
parser in the previous release. The older XMLNS parser would preserve all elements of
XML documents during message processing, including white space character formatting,

processing instructions and comments, thus increasing the size of the XML document. If
the document does not need to preserve white space characters, formatting controls and
other such data because the delivery is not a human-readable document, these extra

elements in the XML document needlessly increase the document size and processing
time. In addition, the older XMLNS parser created individual elements for an element
name and an individual element for its value, which also increased XML document size
and complexity. By default, the XMLNSC parser discards DTD’s, processing instructions,

comments, white space characters, and ‘mixed content’. It also creates a combined
name-value syntax element for simple values, resulting in about half as many syntax
elements as an equivalent document parsed with XMLNS.

MIME_XML_COBOL_C.ppt Page 14 of 26

IBM Software Group

14

MIME, XML, COBOL and C © 2006 IBM Corporation

XMLNSC Domain (cont.)

�Complementary ‘compact’ MQRFH2C parser for
MQRFH2 headers
�Creates name/value syntax elements for simple values

�New ESQL constants for XMLNSC and MQRFH2C
�For example, XMLNSC.Attribute & MQRFH2C.Attribute

Complementary to the XMLNSC parser “compact” functionality, V6 also provides the
MQRFH2C parser for parsing the MQRFH2 headers. The MQRFH2C parser achieves a
significant savings in MQRFH2 size and complexity by using the combined “name/value”
syntax element for simple values.

Use the MQRFH2C compact parser by selecting the Use MQRFH2C Compact Parser for
MQRFH2 Domain check box on the input node of the message flow.

New ESQL constants of XMLNSC.Attribute and MQRFH2C.Attribute settings are provided
to indicate compact parsing.

MIME_XML_COBOL_C.ppt Page 15 of 26

IBM Software Group

15

MIME, XML, COBOL and C © 2006 IBM Corporation

XMLNSC ‘Parser Properties’

� New ‘Parser Properties’

concept

� These are node properties

that are passed directly to a

parser

� Added for XMLNSC parser
to control retention of mixed

content, comments and
processing instructions

The ability to control the way a parser behaves did not exist until V6. V6 introduces a new
‘Parser Properties’ concept. These node properties are passed directly to a parser,
providing a set of controls to the parser. This new property allows the XMLNSC parser to
control the retention of mixed content, comments, and processing instructions.

MIME_XML_COBOL_C.ppt Page 16 of 26

IBM Software Group

16

MIME, XML, COBOL and C © 2006 IBM Corporation

XMLNSC ‘Parser Properties’ (cont.)

� Option to invoke XMLNSC

parser instead of XMLNS
parser

� Option to invoke
MQRFH2C parser instead
of MQRFH2 parser

The ‘Parser Properties’ also sets the option of which parser to invoke. In the graphic, you
see that in ‘XMLNSC Parser Options’ you can set the checkbox ‘Use XMLNSC Compact
Parser for XMLNS Domain’. In the ‘General Message Options’, you can set the checkbox
for ‘Use MQRFH2C Compact Parser for MQRFH2 Domain’.

MIME_XML_COBOL_C.ppt Page 17 of 26

IBM Software Group

17

MIME, XML, COBOL and C © 2006 IBM Corporation

XML 1.1 supported

�XML, XMLNS, XMLNSC parsers can read and
write XML 1.1

�MRM XML parser can read and write XML 1.1

�Writing controlled by new message set property ‘XML

Version’

�XML4C checks during parsing that characters
comply with XML 1.1 rules

�Similar checks are not made when writing

The XML, XMLNS and XMLNSC parsers can parse and write both XML 1.0 and XML 1.1.
In addition, the MRM XML parser can parse and write in either version as well. The
version of XML written is controlled by the new message set property ‘XML Version’. The
underlying XML4C parser checks during parsing that characters comply with appropriate
XML rules. Note that character compliance checks are NOT made when XML documents
are written.

MIME_XML_COBOL_C.ppt Page 18 of 26

IBM Software Group

18

MIME, XML, COBOL and C © 2006 IBM Corporation

MRM XML property changes

�Message set property ‘Root Tag Name’ now
defaults to empty string

�Message set property ‘Suppress DOCTYPE’ now
defaults to true

�New message set property ‘XML Encoding’ to

govern output of XML declaration ‘encoding’
attribute

�Message set Encoding Null values ‘NULLElement’

and ‘NULLAttribute’ deprecated

Some property changes have been made to reflect more common usage. The message
set property ‘Root Tag Name’ now defaults to an empty string. The message set property
‘Suppress DOCTYPE’ now defaults to true.

A new message set property called ‘XML Encoding’ allows you to control the XML
declaration ‘encoding’ attribute. The message set Encoding Null values ‘NULLElement’
and ‘NULLAttribute’ are deprecated in V6.

MIME_XML_COBOL_C.ppt Page 19 of 26

IBM Software Group

19

MIME, XML, COBOL and C © 2006 IBM Corporation

Namespaces in XML

� Namespaces provide a method to qualify object names

avoiding problems of name collision and mistaken
recognition

� XML Schemas can define a target namespace

� The scope of a namespace extends beyond that of its
containing document and is identified by a Uniform

Resource Identifier (URI)

� When you create a new message definition file, you have
the option of specifying a namespace

� You choose whether you want to enable or disable
namespaces for your message set

XML instance documents and XML Schemas can make use of namespaces. Namespaces
provide a method to qualify object names.

A single XML instance document can contain elements and attributes that are defined for
and possibly used by multiple applications. Two different elements or attributes within the
same document might require the same name. Individual applications need to be able to
recognize the elements and attributes which they are to process. In circumstances such
as this, the definitions can be distinguished from each other by qualifying each element
with a different namespace. This avoids problems of name collision and mistaken
recognition.

XML Schemas can define a target namespace. Global elements, attributes, groups and
types defined within an XML Schema are qualified by the target namespace if it has been
defined. Optionally, local elements and attributes can also be qualified by the target
namespace.

The scope of a namespace extends beyond that of its containing document and is
identified by a Uniform Resource Identifier (URI).

A namespace may be associated with a message definition file as it is created.

The message model provides the ability to support namespaces within message sets.
However you can choose whether you want to enable or disable namespaces for your
message set.

MIME_XML_COBOL_C.ppt Page 20 of 26

IBM Software Group

20

MIME, XML, COBOL and C © 2006 IBM Corporation

COBOL & C Related ChangesCOBOL & C Related Changes

Section

This portion of the presentation discusses COBOL and C related changes in V6.

MIME_XML_COBOL_C.ppt Page 21 of 26

IBM Software Group

21

MIME, XML, COBOL and C © 2006 IBM Corporation

COBOL & C Importers

� C: New ‘String encoding’ option

�Select whether char arrays are imported with CWF ‘Physical Type’
property of ‘Fixed Length’ or ‘Null Terminated’

� COBOL & C: New ‘Padding character for strings’ option

�Specify the CWF ‘Padding Character’ property for all strings

� COBOL & C: New ‘Use target namespace’ option

�Specify a namespace for the created message definition file

�Use when transforming from COBOL/C to namespace-aware XML

�Simplifies creation of web service from legacy application

V6 provides a new ‘String encoding’ option for the C importer so you can select whether
char arrays are imported with the CWF ‘Physical Type’ property of ‘Fixed Length’ or ‘Null
Terminated’.

For the COBOL and C importers, a new ‘Padding character for strings’ option allows you
to specify the CWF ‘Padding Character’ for all strings. Also a new ‘Use target namespace’
option allows you to specify a namespace for the created message definition file, used
when transforming the COBOL or C input to namespace-aware XML. This feature
simplifies the creation of web services from legacy applications.

MIME_XML_COBOL_C.ppt Page 22 of 26

IBM Software Group

22

MIME, XML, COBOL and C © 2006 IBM Corporation

CWF Enhancements

� CWF ‘Repeat Count’ property removed

�Uses maxOccurs instead, brings CWF into line with TDS & XML

�Gives task list warning, with QuickFix to automatically set maxOccurs

� Repeat to end of bit stream

�Allows unbounded repetitions of the last element in the bit stream

�Unbounded repeat given by maxOccurs = -1

� CWF ‘Repeat Reference’ restrictions lifted

�Counter element no longer has to be within same complex type as

repeating element

�Can be anywhere earlier in the message (except an unresolved

choice)

�Provides better support for COBOL OCCURS DEPENDING ON

The Custom Wire Format (CWF) ‘Repeat Count’ property is removed. You should instead
use ‘maxOccurs’, which is consistent with TDS and XML standards. The CWF ‘Repeat
Count’ property will cause a task list warning, with QuickFix available to automatically set
this property to ‘maxOccurs’.

A new ‘Repeat to end of bit stream’ property is available, using ‘maxOccurs=-1’. This
setting allows unbounded repetitions of the last element in the bit stream until the end of
the bit stream.

The CWF ‘Repeat Reference’ restrictions have been lifted in V6. The counter element no

longer has to be within the same complex type as the repeating element, but instead can
be anywhere earlier in the message, with the exception that the counter element cannot
be within an unresolved choice. The removal of this restriction provides better support for

COBOL ‘OCCURS DEPENDING ON’.

MIME_XML_COBOL_C.ppt Page 23 of 26

IBM Software Group

23

MIME, XML, COBOL and C © 2006 IBM Corporation

Summary and referencesSummary and references

Section

This section contains summary and references.

MIME_XML_COBOL_C.ppt Page 24 of 26

IBM Software Group

24

MIME, XML, COBOL and C © 2006 IBM Corporation

Summary

�MIME and multipart messages

�XML V1.0 and V1.1 support with fewer restrictions

�Compact parsers

�Default settings more “real-world” friendly

� Improvements to C and COBOL importers

�CWF now allows unbounded repeats of last
element and better support for COBOL ‘OCCURS
DEPENDING ON’

V6 provides significant enhancements to MIME support with new support for multipart
messages.

V6 now supports both XML V1.0 and XML V1.1. Almost all XML element restrictions have
been lifted. With the addition of the new compact parsers XMLNSC and XMLRFH2C, tree
structures and XML can now be much smaller, saving space and processing time. In
addition, unneeded properties have been deprecated and some default settings have
been changed to be more consistent with actual usage.

The C and COBOL importers have been improved so that the imported data is more

usable, resulting in less time spent in customizing and revising the imported data.

The Custom Wire Format (CWF) has been changed to allow unbounded repeats of the
last element. In addition, the CWF offers better support in V6 for COBOL 'OCCURS
DEPENDING ON'.

MIME_XML_COBOL_C.ppt Page 25 of 26

IBM Software Group

25

MIME, XML, COBOL and C © 2006 IBM Corporation

References

�WebSphere Message Broker library:

http://www-
306.ibm.com/software/integration/wbimessagebrok
er/library/

�WebSphere Message Broker Information Center:

http://publib.boulder.ibm.com/infocenter/wmbhelp/v6

r0m0/index.jsp

References

MIME_XML_COBOL_C.ppt Page 26 of 26

26

IBM Software Group

MIME, XML, COBOL and C © 2006 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM CICS IMS MQSeries Tivoli
IBM(logo) Cloudscape Informix OS/390 WebSphere
e(logo)business DB2 iSeries OS/400 xSeries
AIX DB2 Universal Database Lotus pSeries zSeries

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product and service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements and/or changes in the product(s) and/or program(s) described herein at any time without notice. Any statements regarding IBM's
future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or
services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program
Product in this document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual
property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER
EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall
have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and conditions of the agreements (e.g., IBM Customer Agreement,
Statement of Limited Warranty, International Program License Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. IBM makes no representations or warranties, express or implied, regarding non-IBM products and
services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2006. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

Template Revision: 04/25/2006 11:09 AM

