
Aggregation.ppt Page 1 of 21

®

IBM Software Group

© 2006 IBM Corporation

Updated December 20, 2006

WebSphere ® Message Broker Version 6

Aggregation node improvements

This session looks at the improvements that have been made for the Aggregation node in
WebSphere Message Broker Version 6.

Aggregation.ppt Page 2 of 21

IBM Software Group

2
Aggregation node improvements © 2006 IBM Corporation

Agenda

�Overview

�Configuration

�Migration

�Summary and References

This presentation will cover an overview of the Aggregation node, as well as configuration
and migration.

Aggregation.ppt Page 3 of 21

IBM Software Group

3
Aggregation node improvements © 2006 IBM Corporation

OverviewOverview

Section

This section provides an overview of aggregation.

Aggregation.ppt Page 4 of 21

IBM Software Group

4
Aggregation node improvements © 2006 IBM Corporation

Overview

Aggregation is the generation and fan-out of related
requests derived from a single input message and
the fan-in of the corresponding replies to produce a
single aggregated reply message.

There are three aggregation nodes, used together
�AggregateControl in the fan-out flow

�AggregateRequest in the fan-out flow

�AggregateReply in the fan-in flow

Aggregation is the generation and fan-out of related requests derived from a single input
message and the fan-in of the corresponding replies to produce a single aggregated reply
message. The initial request received by the message flow, representing a collection of
related request items, is split into the appropriate number of individual requests to satisfy
the subtasks of the initial request. This process is known as fan-out and is provided by a
message flow that includes aggregation nodes. Replies from the subtasks are combined
and merged into a single reply that is returned to the original requester (or another target
application) to indicate the completion of the processing. This process is known as fan-in,
and is also provided by a message flow that includes aggregation nodes.

A typical scenario is a travel request message needing flight, car and hotel reservations
from separate data sources returned in a single message. Aggregation also supports
response timeout.

There are three aggregation nodes used together. They are:

•AggregateControl node used in the fan-out flow which controls the overall
aggregation

•AggregateRequest node, one for each specific request needing a reply, in the fan-
out flow

•AggregateReply node in the fan-in flow to process the responses

This is shown schematically on the next slide.

Aggregation.ppt Page 5 of 21

IBM Software Group

5
Aggregation node improvements © 2006 IBM Corporation

Aggregation schematic

fan-out flow

fan-in flow

When you include these nodes in your message flows, the multiple fan-out requests are
issued in parallel from within a message flow. This is in contrast to the standard operation
of the message flow in which each node performs its processing in sequence.

You can also use these nodes to issue requests to applications outside the broker
environment; messages can be sent asynchronously to external applications or services,
the responses retrieved from those applications, and the responses combined to provide a
single response to the original request message.

Aggregation.ppt Page 6 of 21

IBM Software Group

6
Aggregation node improvements © 2006 IBM Corporation

V6 enhancements to aggregation

� Changes for WebSphere Message Broker V6
�In previous versions, DB2® broker tables were used to persist

aggregation

�In V6, WebSphere MQ queues are used, improving performance
� Aggregation can then be run in a non-persistent mode when persistence of

aggregation requests is not required

� Timeout properties can be used instead of Control terminals

�External functions and properties remain unchanged

The primary change that was made for the aggregation nodes in WebSphere
Message Broker Version 6 was to hold the aggregation state in a set of WMQ
queues, instead of writing this data to the broker data base. This improves
overall performance and throughput, as it does not incur the overhead of
relational database access.

Aggregation.ppt Page 7 of 21

IBM Software Group

7
Aggregation node improvements © 2006 IBM Corporation

ConfigurationConfiguration

Section

This section discusses configuration of aggregation nodes.

Aggregation.ppt Page 8 of 21

IBM Software Group

8
Aggregation node improvements © 2006 IBM Corporation

Creating the aggregation fan-out flow

�A fan-out aggregation flow uses the following
nodes connected in this order:
�Input node

�AggregateControl node

�Compute node (optional)

�Output node

�AggregateRequest node

The aggregation fan-out flow receives the initial input message and restructures it to
present a number of requests to a number of target applications.

Input node
The input node receives an input message from which multiple request messages
are generated. This can be any one of the built-in nodes, or a user-defined input
node. Specify the source of input messages for this node. Connect the input node's
out terminal to the in terminal of an AggregateControl node. This represents the
simplest configuration; if appropriate, you can include other nodes between the
input node and the AggregateControl node.

AggregateControl node
The AggregateControl node updates the LocalEnvironment associated with the
input message with information required by the AggregateRequest node. The
Aggregate Name property of the AggregateControl node identifies this particular
aggregation which is used later to associate this AggregateControl node with a
specific AggregateReply node. Connect the out terminal of the AggregateControl
node to the in terminal of one or more Compute nodes that provide the analysis and
breakdown of the request in the input message that is propagated on this terminal.

Compute node
The Compute node extracts information from the input message and constructs a
new output message. If the target applications that handle the subtask requests can
extract the information that they require from the single input message, you do not
need to include a Compute node to split the message. You can pass the whole
input message to all target applications. If your target applications expect to
receive an individual request, not the whole input message, you must include a
Compute node to generate each individual subtask output message from the input
message. Connect the out terminal of each Compute node to the in terminal of the

Aggregation.ppt Page 9 of 21

IBM Software Group

9
Aggregation node improvements © 2006 IBM Corporation

Creating the aggregation fan-in flow

�A fan-in aggregation flow uses the following nodes
connected in this order:
�Input node

�AggregateReply node

�Compute node

�Output node

The aggregation fan-in flow receives the responses to the request messages sent out by
the fan-out flow and constructs a combined response message containing all the
responses received.

Input node
The input node receives the responses to the multiple request messages generated
from the fan-out flow. This must be an input node that supports the request/reply
model, such as an MQInput node, or a mixture of these nodes. The response
received by each input node must be sent across the same protocol as the request
to which it corresponds (for example, if you include an MQOutput node in the fan-
out flow, the response to that request must be received by an MQInput node in this
flow). In properties, specify the source of input messages for this node. Connect the
input node's out terminal to the in terminal of an AggregateReply node. This
represents the simplest configuration; if appropriate, you can include other nodes
between the input node and the AggregateReply node.

AggregateReply node
The AggregateReply node receives the inbound responses from the input node
through its in terminal. Each reply message received by the AggregateReply node
is stored. When all the replies for a particular group of aggregation requests have
been collected, the AggregateReply node creates an aggregated reply message
and propagates this through the out terminal. Set the Aggregate Name property of
the AggregateReply to identify this aggregation. Set this value to be the same value
that you set for the Aggregate Name property in the corresponding
AggregateControl node in the fan-out flow.

Compute node
The Compute node receives the message that contains the combined responses. It
is unlikely that this combined message is in a format that is valid for output, so you

Aggregation.ppt Page 10 of 21

IBM Software Group

10
Aggregation node improvements © 2006 IBM Corporation

Accessing the combined message contents

The AggregateReply node creates a folder in the combined message tree below Root,
called ComIbmAggregateReplyBody. Below this, it creates a number of folders using the
folder names that you set in the AggregateRequest nodes. The associated reply
messages are put beneath them.

The request messages might have folder names such as:

TAXI

HOTEL

The resulting aggregated reply message created by the AggregateReply node might have
a structure similar to that shown here.

You can use a Compute node to access the reply from the taxi company using the
following correlation name:

InputRoot.ComIbmAggregateReplyBody.TAXI.xyz

The folder name does not have to be unique. If you have multiple requests with the folder
name TAXI, you can access the separate replies using the array subscript notation, for
example:

InputRoot.ComIbmAggregateReplyBody.TAXI[1].xyz
InputRoot.ComIbmAggregateReplyBody.TAXI[2].xyz

Aggregation.ppt Page 11 of 21

IBM Software Group

11
Aggregation node improvements © 2006 IBM Corporation

Associating fan-out and fan-in aggregation flows

Fan-out and fan-in flows in the same message flow
�Simple flows

� Or in two different message flows
�Recommended for more complex flows

� Associated by setting the Aggregate Name property.

� Advantages of separate fan-out and fan-in flows:
�Can be modified independently of each other.

�Can be stopped and started independently of each other.

�Can be deployed to separate execution groups

�Can be assigned different numbers of additional threads

You can either create the fan-out and fan-in flows in the same message flow, or in two
different message flows. In either case, the two parts of the aggregation are associated by
setting the Aggregate Name property.

The advantages of creating separate fan-out and fan-in flows are:

•The two flows can be modified independently of each other.

•The two flows can be stopped and started independently of each other.

•The two flows can be deployed to separate execution groups to take advantage of
multiprocessor systems, or to provide data segregation for security or integrity purposes.

•The two flows can be assigned different numbers of additional threads as appropriate to
maintain an appropriate processing ratio.

Aggregation.ppt Page 12 of 21

IBM Software Group

12
Aggregation node improvements © 2006 IBM Corporation

MigrationMigration

Section

This section discusses migration of aggregation flows.

Aggregation.ppt Page 13 of 21

IBM Software Group

13
Aggregation node improvements © 2006 IBM Corporation

Aggregation migration

� No tool changes
�Aggregation nodes and their properties remain as before
�V5 and earlier flows should migrate with or without redeployment

� Broker now has queues instead of a database table
�SYSTEM.BROKER.AGGR.* queues instead of BAGGREGATE db

table
�Migrate old brokers to get the new queues
�Make sure your WebSphere MQ logs are big enough

� Control terminal deprecated (no control messages by
default)
�Create the MQSI_AGGR_COMPAT_MODE environment variable in

the broker's environment.
�For details see

http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r0m0/index.jsp?to
pic=/com.ibm.etools.mft.doc/ac12312_.htm

In Version 6 the aggregation nodes and their properties have not changed; therefore
message flows from Version 5 should migrate easily to Version 6.

The aggregation state for each active message flow is now stored in a set of WMQ
queues. These are prefixed SYSTEM.BROKER.AGGR. There are five queues, with
the suffices: CONTROL, UNKNOWN, TIMEOUT, REQUEST, and REPLY. These
replace the previous implementation of aggregation in the broker which used a
database table called BAGGREGATE.

To allow the possibility of migration to Version 6, while the table contained live aggregation
data, the BAGGREGATE table is not updated during the migration process. This
allows the option to rollback, complete the unfinished aggregation, and proceed with
the migration when no aggregation is active. One point to note is that since the
aggregation function uses WMQ in Version 6, you may need to increase the size of
your WMQ logs to handle the increased usage of WMQ.

The control terminal of the AggregationControl node has been deprecated in Version 6
even though the terminal is still available. By default, in WebSphere Message Broker
Version 6.0 any connections from the control terminal of the AggregateRequest node
to the AggregateReply node are ignored. This is to maximize the efficiency of
aggregation flows and does not damage the reliability of aggregations. This is the
optimum configuration. However, if you do want a control message to be sent from the
AggregateControl node to the AggregateReply node, you must connect the control
terminal to the corresponding AggregateReply node on the fan-in flow. For these

Aggregation.ppt Page 14 of 21

IBM Software Group

14
Aggregation node improvements © 2006 IBM Corporation

Flow Design

� Transactions on fan-out and fan-in
�Possibly an issue due to performance improvement

�Set “Transaction Mode” to Yes

�Using deprecated control terminals can cause
problems
�Race conditions with unknown reply messages

�Thread starvation on the fan-in flow if multiple MQInput
nodes

�Considerably lower performance

�Control terminals incur additional overhead

Since the aggregation function now performs significantly faster than in Version 5, there
are some important considerations when designing your messages flows.

First, on the fan-out flow, you should ensure that the aggregation request messages are
put under syncpoint. This will ensure that the AggregationReply node cannot receive
replies to the aggregation request before it has received the notification of the request
from the fan-out flow. You should do this by setting the Advanced property
“Transaction Mode” to Yes.

Using the deprecated control terminals can result in problems, as a result of the improved
performance of the aggregation nodes. First, it is possible to observe race conditions,
where unknown reply messages arrive in a non-deterministic fashion. This means that
a flow may work well for one invocation, but on a subsequent invocation it may receive
an aggregation timeout. This inconsistent result will be difficult to manage within your
message flow.

Secondly, you may experience thread starvation on the fan-in flow if you have multiple
MQInput nodes feeding a single AggregationReply node. This only applies if the
Control terminal of the AggregateControl node in your fan-out flow is connected to
output control messages to a queue.

Finally, performance is impacted if you use the deprecated control terminals. This is
because it results in the overhead of building an XML Control Message, sending it out
and reading it back in again. This will be even worse if the AggregationControl node

Aggregation.ppt Page 15 of 21

IBM Software Group

15
Aggregation node improvements © 2006 IBM Corporation

Aggregation timeout

� Set the Timeout property of the AggregateControl node (in
seconds)
�Default is 0 – no timeout

� AggregateReply node sends a partial response message to
its timeout terminal if not all replies received in specified
time (from AggregateControl node)

� AggregateReply node sends unexpected replies to its
unknown terminal
�Set the Unknown Message Timeout property

� In previous versions, control terminals of AggregateControl
node and AggregateReply node were used for timeout
processing.
�V6 uses WebSphere MQ Expiry time

In certain situations you might need to receive an aggregated reply message within
a certain time. Some reply messages might be slow to return, or might never arrive.
Set the Timeout property of the AggregateControl node to specify how long (in
seconds) the broker must wait for replies. By default, this property is set to 0, which
means that there is no timeout and the broker waits indefinitely.

If the timeout interval passes without all the replies arriving, the replies that have
arrived are turned into an aggregated reply message by the corresponding
AggregateReply node, and propagated to its timeout terminal. If you choose, you
can process this partial response message in the same way as a complete
aggregated reply message. If you prefer, you can provide special processing for
incomplete aggregated replies.

When a message arrives at the in terminal of an AggregateReply node, it is
examined to see if it is an expected reply message. If it is not recognized, it is
propagated to the unknown terminal. You might want the broker to wait for a given
period of time before doing this, because:
•The reply message might arrive before the work performed by the
AggregateRequest node has been transactionally committed.
•The reply message might arrive before the control message. This situation can be
avoided by leaving the control terminal of the AggregateControl node unconnected.
Set the Unknown Message Timeout property on the AggregateReply node. When
you set this property, a message that cannot be recognized immediately as a valid
reply is held persistently within the broker for the number of seconds that you
specify for this property.
If the unknown timeout interval expires, and the message is recognized, it is
processed. The node also checks to see if this previously unknown message is the
last reply needed to make an aggregation complete. If it is, the aggregated reply
message is constructed and propagated.

Aggregation.ppt Page 16 of 21

IBM Software Group

16
Aggregation node improvements © 2006 IBM Corporation

Debugging

� Lost aggregation data during migration from V5 to V6
�Allow aggregations to finish before stopping broker

� Control messages not sent from AggregateControl node
�Deprecated behavior. Can be used, but caveat emptor

� Broker queue manager runs out of log space
�Increase the WMQ logs. Aggregation now uses WMQ instead of DB2

� Above average unknown message generation
�Check transactional control of fan-out flow
�Review “Extending the Sample” in the Aggregation Sample

� Basic WMQ Errors
�Queue full, message too big, etcetera

This slide discusses some possible error scenarios.

When migrating from Version 5 to Version 6, you should ensure that all active
aggregations have completed. This will avoid the possibility of losing any of this data
during migration.

The Control terminal is now deprecated. In Version 6, control messages are not sent from
the AggregateControl node, even if this is connected in the message flow. If this
function is still required when running the flow in Version 6, you will need to set the
environment variable accordingly. Be aware that this function may be removed from
future versions of Message Broker.

If the Broker Queue Manager runs out of queue space, increase the WMQ logs size. This
is a result of the increased usage of WMQ for this function.

You might see an increase in the rate of arrival of unknown messages. These should be
handled through your normal timeout processing. Some might be avoided by setting
the transaction context in the fan-out flow.

Finally, if you’ve got basic WMQ errors such as the queue is full, the message is too big
for the queue, etc, make the appropriate alterations to the queue definitions.

Aggregation.ppt Page 17 of 21

IBM Software Group

17
Aggregation node improvements © 2006 IBM Corporation

Summary and referencesSummary and references

Section

This section contains a summary and references.

Aggregation.ppt Page 18 of 21

IBM Software Group

18
Aggregation node improvements © 2006 IBM Corporation

Summary

�Overview

�Configuration of aggregation flows

�Aggregation migration

This session looked at aggregation nodes, key items to be considered when configuring
the nodes, and how to migrate existing aggregation flows.

Aggregation.ppt Page 19 of 21

IBM Software Group

19
Aggregation node improvements © 2006 IBM Corporation

Samples

The supplied samples contain good examples of how to use the aggregation function. Use
of this is fully demonstrated in the “Airlines” sample, access from the Broker Toolkit,
Samples Gallery.

Aggregation.ppt Page 20 of 21

IBM Software Group

20
Aggregation node improvements © 2006 IBM Corporation

References

�WebSphere Message Broker library:

http://www-306.ibm.com/software/integration/wbimessagebroker/library/

�WebSphere Message Broker Information Center:

http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r0m0/index.jsp

Aggregation.ppt Page 21 of 21

IBM Software Group

Aggregation node improvements © 2006 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or
both:

DB2 WebSphere

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document
could include technical inaccuracies or typographical errors. IBM may make improvements or changes in the products or programs described herein at
any time without notice. Any statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent
goals and objectives only. References in this document to IBM products, programs, or services does not imply that IBM intends to make such products,
programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program Product in this document is
not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual
property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS"
WITHOUT ANY WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products are
warranted, if at all, according to the terms and conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty,
International Program License Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the
suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products in connection with
this publication and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights.
Inquiries regarding patent or copyright licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples
described are presented as illustrations of how those customers have used IBM products and the results they may have achieved. The actual
throughput or performance that any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's
job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user
will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2006. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA
ADP Schedule Contract and IBM Corp.

21

