
JMS.ppt Page 1 of 39

®

IBM Software Group

© 2006 IBM Corporation

Updated 22 December 2006

WebSphere ® Message Broker Version 6

JMS nodes

This session discusses the new JMS nodes introduced in Message broker Version 6.

JMS.ppt Page 2 of 39

IBM Software Group

2
JMS nodes © 2006 IBM Corporation

Agenda

�Overview

�Message handling

�Configuration

�Debugging

�Summary and references

The agenda for this presentation covers message handling, configuration, and
debugging…

JMS.ppt Page 3 of 39

IBM Software Group

3
JMS nodes © 2006 IBM Corporation

OverviewOverview

Section

…starting with an overview.

JMS.ppt Page 4 of 39

IBM Software Group

4
JMS nodes © 2006 IBM Corporation

JMS overview

� V5 broker is currently JMS provider for MQ and IP
transports

� WMB V6 JMS nodes allow broker to be a JMS client to any
JMS provider

� Point to Point

� Publish Subscribe

� Four new nodes

� JMSInput

� JMSOutput

� JMSMQTransform

� MQJMSTransform

In previous versions of WebSphere Message Broker, the support for JMS messages
extended only to JMS provision. In WebSphere Message Broker Version 6.0, brokering
value has been added to enable the broker to behave like a JMS client. In Message
Broker Version 6, the JMS clients can be embedded into a message flow. This means that
an input node can be JMS message consumer, and an output node can be a message
producer. The two primary functions that are available in these scenarios are ‘Point to
Point’ and ‘Publish Subscribe’ JMS messaging.

In previous versions of the broker, the WebSphere MQ Real-time Transport enabled
support for JMS provision; the built in nodes, Real-timeInput node, Real-
timeOptimizedFlow node, and Publication node, allow JMS applications to communicate
with applications that use other supported protocols and transports.

In this implementation, the Real-time node acts as a server for a JMS client, where the
client can be WebSphere MQ.

WebSphere Message Broker Version 6.0 adds brokering value to a JMS network. Four
new built-in nodes, JMSInput node, JMSOutput node, JMSMQTransform node, and
MQJMSTransform node, provide support for the broker to act like a JMS client. JMS
messages can be sent and received, and can be transformed into other message formats.

JMS.ppt Page 5 of 39

IBM Software Group

5
JMS nodes © 2006 IBM Corporation

JMS overview
�JMS nodes behave as clients
(JMSconsumer / JMS producer)

�Use JNDI to obtain JMS Connection
factories and JMS Destinations

�Connect to JMS provider

�Exchange JMS Messages across JMS
Session for :

�Publish and Subscribe (Topic)

�Point to Point (JMS Queues)
JMS API

MESSAGE
FLOW

JMS
OUTPUT
NODE

JMS
INPUT
NODE

INITIAL CONTEXT
FACTORY

JMS
SESSIONJMS

SESSION

JMS Server

JMS PROVIDER

JMS
QUEUE

TOPIC

JNDI
BINDINGS

MSGMSG
g

JMS Resource

This schematic shows a high-level picture of JMS support in Message Broker Version 6.
The JMS nodes work with the WebSphere MQ JMS provider, WebSphere Application
Server Version 6.0, the IBM Service Integration Bus, and any JMS provider that conforms
to the Java™ Message Service Specification, version 1.1.

The JMSInput and JMSOuput nodes can be regarded as stand-alone JMS clients. Just
like any other JMS client, they connect to a JMS provider in order to exchange messages.
They look up various artifacts called “JNDI administered objects” requiring a connection
factory within JNDI (Java Naming and Directory Interface). This provides a pointer into the
JMS namespace which is used to create a connection to a JMS provider. Once this
connection is established, across the JMS API, a session to the JMS provider is created.
All message sends and receives are done using this session.

The JMS support allows for two different types of JMS destinations; the ‘Topics’ for the
‘Publish Subscribe’ message domain, and the JMS queues for the ‘Point to Point’
message domain. This is shown in the centre of the schematic.

JMS.ppt Page 6 of 39

IBM Software Group

6
JMS nodes © 2006 IBM Corporation

JMS added value

� Add brokering value to JMS network

� Route, transform P2P (Point to Point) and PS (Publish / Subscribe)
messages

� Simplifies JMS message processing

� Canonical form for JMS messages

� Connect JMS network to existing MQ network

� Inbound and outbound scenarios

� Includes MQ Publish Subscribe

� Connect different providers

� Provider X connected to Provider Y

� IBM’s MQ & WebSphere Process Server

� Non-IBM JMS providers that conform to JMS 1.1 specification

This new function allows you to integrate applications which connect over more protocols
than just WebSphere MQ. With this new function, you can connect your message flow
to an external JMS provider, you can route JMS messages to alternative destinations,
and you can transform data passing through the broker. All the function available with
WebSphere MQ are available when messages arrive over JMS.

The JMS function provides a simplified view of the JMS message; this has to be
transformed into a broker message tree so that any JMS message from any JMS
provider can be represented within a broker message tree. This data is then
independent of the source of the data, and can be operated on by a normal message
flow.

This allows you to connect a JMS network to an MQ network, thus providing a bridge
between two different messaging environments. You can also connect different JMS
providers; the broker can be used to bridge between different JMS providers within the
broker environment. This includes the JMS provider included with MQ JMS and the
WebSphere messaging platform. It also includes JMS providers from other vendors,
providing that they conform to the JMS 1.1 specification.

JMS.ppt Page 7 of 39

IBM Software Group

7
JMS nodes © 2006 IBM Corporation

Message handlingMessage handling

Section

This section covers message handling.

JMS.ppt Page 8 of 39

IBM Software Group

8
JMS nodes © 2006 IBM Corporation

JMS message tree

At the JMSInput node, a message is received as a Java object and not as a bit stream
wire format (as would be the case with an MQInput node). The message does not
populate an MQMD and RFH2 header, but instead populates a new message tree that
represents a JMS message in a more native way.

To represent a JMS message in a message tree, a new canonical form has been created.
This new message tree allows for representation of JMS message header data and
message properties. The JMS message tree is in a format that is recognizable to Java
programmers.

JMS.ppt Page 9 of 39

IBM Software Group

9
JMS nodes © 2006 IBM Corporation

JMS message tree (cont.)

�Properties

� JMS Transport
�Header_Values subfolder; always created; includes JMS

message attributes:
– JMSDestination, JMSDeliveryMode, JMSExpiration, JMSPriority,

JMSTimeStamp, JMSMessageID, JMSCorrelationID, JMSReplyTo, JMSType,
JMSRedelivered

�JMS properties subfolders; optional
� Application related properties: from originating application

� Provider related properties: vendor-specific values
� Standard properties: fixed by JMS specification

�Message_MetaData subfolder
� Used when creating a JMS message

The Properties folder contains information such as message domain, message set, message type and
message format.

The JMSTransport folder is comprised of several subfolders. The Header_Values subfolder is mandatory
and is always created. It includes the fixed header fields shown here.

JMS message properties are optional. If they are present in input messages, they are stored in the
appropriate property subfolder.

Application related properties are assigned by a Java application and are set before the message is
delivered. The property names of the application are meaningful only to the sending and receiving
applications.

Every JMS provider can define proprietary properties that can be set either by the client or automatically by
the provider. Provider related properties are prefixed with JMS_ followed by the vendor name and the
specific property name. For example, the WebSphere MQ JMS client sets the provider property to be
JMS_IBM_MsgType.

Standard properties are set by the JMS provider when a message is sent. The JMS provider vendor can
choose to support none, some, or all standard properties. Standard property names start with JMSX; for
example: JMSXUserid or JMSXDeliveryCount.

Message_MetaData subfolder is included in order to preserve the payload type of the JMS message. It is
used by the JMSOutput node when creating a JMS message.

JMS.ppt Page 10 of 39

IBM Software Group

10
JMS nodes © 2006 IBM Corporation

JMS message tree (cont.)

�Body
�Payload transferred by:

� XML

� XMLNS

� XMLNSC

� BLOB

� JMSMap

� JMSStream

� MRM

� MIME

� IDoc

The message payload is stored in the body folder, which is the last child of Root. The
payload is transferred by using one of the message domain parsers listed here.

JMS.ppt Page 11 of 39

IBM Software Group

11
JMS nodes © 2006 IBM Corporation

JMS header and property data
� JMSInput node extracts the header data and property data from messages by

using JMS API methods.

� Header values are stored as name-value pairs in the Header_Values folder.

� JMSDestination

� JMSDeliveryMode

� JMSExpiration

� . . .

� Property values, if present, also stored as name-value pairs in the appropriate
JMS Property folders, for example.

� JMSXUserId in Standard properties

� JMS_<VendorName>_<VendorProperty> in Provider properties

� MyProperty properties in Application properties

The JMSInput node extracts header data from messages by using JMS API methods.
Header data is stored as name-value pairs in the Header_Values folder. The API methods
return the value.

In a similar way, the JMSInput node extracts property data from messages by using JMS
API methods. Property data is stored as name-value pairs in the properties folders. The
API method returns a value for every property name with which it is supplied.

The JMSInput node uses the header and property data to create an XML representation of
the JMSTransport folders. The node passes the XML data to the JMSTransport parser as
a byte array. The byte array is then used to populate or to refresh the elements in the
message tree. The JMSTransport parser is a new parser type.

JMS.ppt Page 12 of 39

IBM Software Group

12
JMS nodes © 2006 IBM Corporation

Message body
� Payload extracted using JMS API

� Forms message body

� Different JMS message types require different processing

� JMS BytesMessage, TextMessage

� Added to tree as message bit stream for subsequent parsing

� XML, XMLNS, XMLNSC, BLOB, MRM, MIME, IDoc

� JMS ObjectMessage

� Passed as BLOB

� Additional processing is required to serialize/deserialize

� JMS MapMessage, StreamMessage

� Reformatted by the JMSInput node to XML

� Same format as JMS MQ and Realtime XML forms

JMS defines six message interface types; a base message type and five subtypes. The base class is used
for event notification and does not have a payload. The message types are defined according to the type of
the message payload, where the payload is the body of a message that holds the content. JMS specifies only
the interface and does not specify the implementation. This allows for vendor specific implementation and
transportation of messages while using a common interface.

In BytesMessage the payload is stored as an array of bytes. This message type is useful for exchanging data
in an application’s native format and when JMS is used as a transport between two systems, where the JMS
client does not know the message payload type.

TextMessage data is stored as a string. This message type is useful for exchanging simple text messages
and for more complex character data, such as XML documents.

ObjectMessage carries a serializable Java Object as its payload. It is useful for exchanging Java objects.

A StreamMessage is a sequence of primitive Java types. The message object keeps track of the order and
the types of these primitives within the stream. Formal conversion rules apply

The payload of a MapMessage is stored as a set of name-value pairs. The name is defined as a string and
the value is typed. The MapMessage is useful for delivering keyed data that can change from one message
to the next.

JMS.ppt Page 13 of 39

IBM Software Group

13
JMS nodes © 2006 IBM Corporation

Determining domain, set, type, format
� Contained within JMS message – JMSType

�mcd://domain/[set]/[type]/[?format=fmt]
�BLOB, XML…

� Set by JMSInput node
�D, S, T, F and JMS Type must be compatible

When a JMS Message is received by the JMSInput node, the message domain is derived
according to the following criteria and in the following order of precedence:

• If the Message Domain property is set to a specific domain type the node expects to
receive only the JMS message types shown in this slide.

• If the Message Domain property is blank (default), the JMSType header value from the
JMS input Message is used to determine the format

• If the Message Domain property is blank (default) and the JMSType header value from
the JMS input message is also blank, the message domain is set according to the JMS
Message Java Class as follows:

• TextMessage XML

• BytesMessage BLOB

• Message JMSMap

• StreamMessage JMSMap

• StreamObjectMessage BLOB

JMS.ppt Page 14 of 39

IBM Software Group

14
JMS nodes © 2006 IBM Corporation

MapMessage payload example

� JMS Message type containing name-value pairs
� Elements are also typed

� JMSMap messages represented in XML form
� JMSMap is synonym for XML parser

� MapMessage payload sample XML:
<map>

<Item_8_of_10_Char dt='char'>A</Item_8_of_10_Char>

<Item_5_of_10_Double dt='r8'>999999.0</Item_5_of_10 _Double>

<Item_10_of_10_String>Last Map Item</Item_10_of_10_ String>

<Item_9_of_10_Boolean dt='boolean'>0</Item_9_of_10_ Boolean>

<Item_2_of_10_Integer dt='i4'>999</Item_2_of_10_Int eger>

<Item_3_of_10_Short dt='i2'>9999</Item_3_of_10_Shor t>

<Item_7_of_10_Byte dt='i1'>9</Item_7_of_10_Byte>

<Item_6_of_10_Float dt='r4'>2.24</Item_6_of_10_Floa t>

<Item_1_of_10_String>P2P Map Msg Number:1</Item_1_o f_10_String>

<Item_4_of_10_Long dt='i8'>99999</Item_4_of_10_Long >

</map>
NAME VALUETYPE

The payload for MapMessage and StreamMessage can be extracted only as individual
elements and must be reformatted by the JMSInput node before it can be used to create
the message body. The JMSMap domain is a synonym for the broker XML parser, which
expects a stream of XML data. MapMessage payload data however, is extracted as sets
of name-value pairs from the message object. The JMS API is used to obtain the name-
value pairs. The JMSInput node appends each name-value pair to a bit stream as an XML
element and value, and preserves the type of the value by using the dt= attribute. This
example shows the XML that is generated by the JMSInput node for the MapMessage
payload.

The first blue box (Item 5) encompasses a type, indicating that this schema has been
borrowed from the real-time processing in MQ JMS client code. It is a way of representing
data within the message tree so it can be recreated in an outbound message.

In Item 6 the value is highlighted; ‘2.24’ is the value of Map element.

The last blue box shows the element name.

JMS.ppt Page 15 of 39

IBM Software Group

15
JMS nodes © 2006 IBM Corporation

StreamMessage payload example

� JMS message containing sequence of UNNAMED values
� Elements are typed
� Default element name “elt” is used to generate the XML elements.

� JMSStream messages represented in XML form
� JMSStream is synonym for XML parser

� StreamMessage payload sample XML
<stream>

<elt>P2P Stream Message Number :7</elt>

<elt dt='i4'>999</elt>

<elt dt='i2'>9999</elt>

<elt dt='i8'>99999</elt>

<elt dt='r8'>999999.0</elt>

<elt dt='r4'>2.24</elt>

<elt dt='i1'>9</elt>

<elt dt='char'>A</elt>

<elt dt='boolean'>0</elt>

<elt>Last Stream Item</elt>

</stream>

The sample XML shown here is an illustration of what a StreamMessage would look like
within the message tree. A StreamMessage is a sequence of unnamed values. Each ‘elt’
is followed by a data type and value.

Both the JMS MapMessage and JMS StreamMessage domains are synonyms for the
XML parser within the broker.

JMS.ppt Page 16 of 39

IBM Software Group

16
JMS nodes © 2006 IBM Corporation

ConfigurationConfiguration

Section

This section covers configuration.

JMS.ppt Page 17 of 39

IBM Software Group

17
JMS nodes © 2006 IBM Corporation

JMSInput node

� First node in message flow
�Point to Point or Pub/Sub

�Responsible for creating JMS tree from JMS input message

�Hands payload to appropriate broker parser

Message flows which handle messages that are received from connections to JMS
providers must always start with a JMSInput node. If you include an output node in a
message flow that starts with an JMSInput node, it can be any of the supported output
nodes (including user-defined output nodes); you do not have to include an JMSOutput
node. However, if you do not include a JMSOutput node, you must include the
JMSMQTransform node to transform the message to the format that is expected by the
output node.

JMS.ppt Page 18 of 39

IBM Software Group

18
JMS nodes © 2006 IBM Corporation

JMSInput node properties
� Basic Properties

�Initial Context Factory (name of JMS provider)
�Location JNDI bindings

� Points to JNDI administered objects
� LDAP requires user ID and password

�Connection Factory Name
�Backout Destination and Threshold (optional)

� Default Properties (domain, set, type, format)

� Point to Point (SourceQueue) or Pub/Sub (Topic)

� Message Selectors (if filtering required)

� Advanced Properties
�Transaction mode: none, global, local

� Additional Properties
�Validation, parser options

To configure the properties right-click the node in the editor view and click Properties. The basic properties of the node are displayed in
the properties dialog. All mandatory properties that do not have a default value defined are marked with an asterisk on the properties
dialog.

Configure the following Basic properties:

•Enter an Initial Context Factory value. A JMS application uses the initial context to obtain and look up the JNDI administered objects
for the JMS provider. The default value is com.sun.jndi.fscontext.RefFSContextFactory, which defines the file-based initial context
factory for the WebSphere MQ JMS provider. To identify the name of the Initial Context Factory for the JMS provider, refer to the JMS
provider documentation.
•Enter a value for the Location JNDI Bindings. This value specifies either the file system path or the LDAP location for the bindings file.
The bindings file contains definitions for the JNDI administered objects that are used by the JMSInput node.
•Enter a Connection Factory Name. The connection factory name is used by the JMSInput node to create a connection to the JMS
provider. This name must already exist in the bindings file.
•Enter a Backout Destination name. Input messages are sent to this destination when errors prevent the message flow from
processing the message, and the message must be removed from the input destination. The backout destination name must exist in
the bindings file.
•Enter a value for the Backout Threshold. This value determines when an input message is put to the Backout Destination. For
example, if the value is 3, the JMS provider attempts to deliver the message to the input destination three times. After the third
attempted delivery, the message is removed from the input destination and is sent to the backout destination. The default value is 0.

Default in the properties provide values for the properties that describe the message domain, message set, message type, and
message format.

If the JMSInput node is to be used to subscribe to a topic, select Pub/Sub in the properties dialog navigator. Enter the name of the
Subscription Topic. If the node is to receive publications from a durable subscription topic, enter a Durable Subscription ID.

If the JMSInput node is to be used to receive point to point messages, select Point to Point in the properties dialog navigator.

If filtering of messages is required, select Message Selectors in the properties dialog navigator. Use Advanced properties to specify
transaction mode.

JMS.ppt Page 19 of 39

IBM Software Group

19
JMS nodes © 2006 IBM Corporation

JMSInput node configuration

� Terminals
� Input

� Out

� Failure

� Catch

� Define a backout destination

� Coordinated transactions
� To coordinate JMS with other transactional resources such as MQ,

database

� Transaction Mode in the Advanced node property specifies message
to be received within syncpoint

� Additional configuration steps required; once per provider

For each message that is received successfully, the JMSInput node routes the message to the out terminal.
If this fails, the message is retried. If the retry threshold is reached, where the threshold is defined by the
BackoutThreshold property of the node, the message is routed to the failure terminal.
You can connect nodes to the failure terminal to handle this condition. If you have not connected nodes to the
failure terminal, the message is written to the backout destination. If a backout destination has not been
provided, an error message is issued and the node stops processing further input. The error message is
bip4669.

If the message is caught by the JMSInput node after an exception has been thrown elsewhere in the
message flow, the message is routed to the catch terminal. If you have not connected nodes to the catch
terminal, the node will backout message for re-delivery until the problem is resolved or the backout threshold
is reached.

When you include a JMSInput node in a message flow, the value that you set for Transaction Mode in
Advanced properties defines whether messages are received under syncpoint. When messages are to be
received under external syncpoint, additional configuration steps are required. These steps need only be
applied the first time that a JMSOutput or JMSInput is deployed to the Broker for a particular JMS provider.

The Transaction Mode in the Advanced properties is used to define the transactional characteristics of how
the message is handled.
•Select none if the incoming message is to be treated as non persistent.
•Select local if the JMSInput node should coordinate the commit or roll back of JMS messages received by
the node, along with any other resources such as DB2 or WebSphere MQ that perform work within the
message flow.
•Select global if the JMSInput node should participate in a global message flow transaction that will be
managed by the broker’s external syncpoint coordinator. The syncpoint coordinator is the broker’s queue
manager on distributed platforms and RRS (Resource Recovery Services) on z/OS®.

JMS.ppt Page 20 of 39

IBM Software Group

20
JMS nodes © 2006 IBM Corporation

JMSOutput node configuration
� Send JMS Message to destination

�Point to Point or Pub/Sub message producer
�Responsible for creating JMS output message from JMS tree

� Basic properties
�Similar to JMSInput node Basic, but values can be different!

� For example, different providers

� Point to Point (Destination Queue) or Pub/Sub (Topic)

� Request properties
�Determines whether output message is a Datagram, Request or Reply

� Advanced properties
�New Correlation ID
�Transaction Mode: Global, Local, None
�Delivery Mode
�Message Expiration in milliseconds
�Message Priority 0 (hi) to 9 (low)

� Validation

Use the JMSOutput node to send messages to JMS destinations. The JMSOutput node acts as a JMS message producer and can
publish all six message types that are defined in the JMS v1.1 specification. Messages are published by using method calls, which are
described in the JMS specification.

The JMSOutput node acts as a message producer and supports the following message scenarios:
Sending a datagram message
Sending a reply message
Sending a request message

The Basic properties are required and supply:
•Initial Context Factory (name of JMS provider)
•Location JNDI bindings
•Connection Factory Name

If the JMSOuput node is to be used to publish a topic, select Pub/Sub in the properties dialog navigator and enter the name of the
Publisher Topic.
If the JMSOutput node is to be used to send point to point messages then select Point to Point in the properties dialog navigator and
enter the Destination Queue name for the JMS queue name that is listed in the bindings file.

The Request property is used to supply a destination for a requested reply. The default value is Destination Name. If this is selected,
the message is treated as a request of a datagram and it targets either the Publication Topic or the Destination Queue . If the
message is to be treated as a reply, select Reply Destination Name and provide a value for Reply To Destination. The Reply To
Destination is the name of the JMS destination to which the receiving application should send a reply message. The default value is
blank, in which case the JMS output message can be regarded as a datagram. If the field is blank, the JMSOutput node does not
expect a reply from the receiving JMS client.

The Advanced properties provide the capability to specify:
•A New Correlation ID (allows a link to an MQOutput node)
•Transaction Mode
•Delivery Mode (persistence)
•Message Expiration (in milliseconds)
•Message Priority (0 to 9)

JMS.ppt Page 21 of 39

IBM Software Group

21
JMS nodes © 2006 IBM Corporation

JMSOutput node configuration

� Terminals

� In

� Message propagated from JMSInput node or MQJMSTransform
node

� Out

� Successful messages propagated

� Failure

� Coordinated transactions

� To coordinate JMS with other transactional resources such as MQ,
database

� Transaction Mode in the Advanced node property specifies message
to be received within syncpoint

� Additional configuration steps required; once per provider

On the JMSOutput node, there are three terminals: In, Out and Failure.

Connect the in terminal of the JMSOutput node to the node from which outbound
messages are routed. Connect the out terminal of the JMSOutput node to another node in
the message flow if you want to process the message further, to process errors, or to send
the message to an additional destination.

As with the JMSInput node, the transaction mode values can be set to none, local or
global. These can be set independently of the values specified in the JMSInput node.

JMS.ppt Page 22 of 39

IBM Software Group

22
JMS nodes © 2006 IBM Corporation

JMSMQTransform node
MQJMSTransform node

� To simplify MQ interoperation with any JMS provider

� Add JMSInput, JMSOutput nodes to existing MQ based flows

� Converts between JMS canonical and MQ specific formats

� Transforms JMS tree to MQRFH2 format

� Bidirectional

� MQ->JMS

� JMS->MQ

� Terminals

� In

� Input JMS/MQ tree
� Out

� Transformed MQ/JMS tree
� Failure

� Transformation failed

Use the JMSMQTransform node to transform a message with a JMS message tree into a
message that has a message tree structure compatible with the format of messages that
are produced by the WebSphere MQ JMS provider.

The JMSMQTransform node can be used to send messages to legacy message flows and
to interoperate with WebSphere MQ JMS and WebSphere Event Broker publish subscribe.

The MQJMSTransform performs this transformation in the opposite direction. Use the
MQJMSTransform node to receive messages that have a WebSphere MQ JMS provider
message tree format, and transform them into a format that is compatible with messages
that are to be sent to JMS destinations.

The MQJMSTransform node can be used to send messages to legacy message flows and
to interoperate with WebSphere MQ JMS and WebSphere Event Broker publish subscribe.

These nodes require no configuration, apart from connecting the input and output
terminals.

JMS.ppt Page 23 of 39

IBM Software Group

23
JMS nodes © 2006 IBM Corporation

Configuration steps for a JMS provider

� Provider must conform to JMS Service Specification v1.1

� Ensure JMS provider jars available to the broker
�Broker shared_classes directory on Windows® / UNIX® /Linux®

� Jars added automatically to CLASSPATH when broker starts.

�CLASSPATH for z/OS (BIPBPROF)

� Add JMS Provider native libraries to broker’s LIBPATH

� Create JNDI Bindings for each JMS Provider – options :
�FILE

� For example, Use JMSAdmin tool for WebSphere MQ JMS

�LDAP
� Use mqsicreatebroker / mqsichangebroker –y ldapPrincipal -z ldapCredentials to

set for LDAP access

�IIOP (CORBA)

Additional configuration is required to enable global transaction support for the JMSInput
and JMSOutput node. Any JMS provider that conforms to the Java Message Service
Specification, version 1.1 and that supports the JMS XAResource API through the JMS
session can be used if transaction coordination is required. If the message designer has
specified a non XA compliant provider, the non transactional mode only is supported.

These steps must be completed for each JMS provider, but not for each flow using that
JMS provider. The JMS provider can supply additional jar files that are required for
transactional support. Refer to the JMS provider documentation for details. For distributed
platforms, copy the java .jar files and any native libraries for the JMS provider client into a
the broker shared-classes directory. For example, on Windows C:\Documents and
Settings\All Users\Application Data\IBM\MQSI\shared-classes. This ensures that the java
class path for the JMS nodes is set correctly.
For z/OS, there is no shared-classes directory. Instead you must specify each JMS
provider java .jar file in the class path in the BIPPROF member of the broker’s PDS
(Partitioned Data Set). Then update the LIBPATH with any native libraries, and submit the
BIPGEN JCL job to update the broker ENVFILE.

JNDI bindings must be created for each JMS provider. For example, the MQ JMS provider
supplied a tool called JMS-Admin. Other providers have their own method of creating JNDI
administered objects. Each has different ways of storing the JNDI data. This can either be
file based, which is the simplest form, or it can be stored within an LDAP directory. If you
are using LDAP you may need to specify the security credentials. This can be done by
specifying the LDAP user, the LDAP principle and the password, passing these
parameters as options on the “MQSICreateBroker” or “MQSIChangeBroker” commands.
Alternatively, you can use CORBA, over IIOP.

JMS.ppt Page 24 of 39

IBM Software Group

24
JMS nodes © 2006 IBM Corporation

Transaction support

JMS API

MESSAGE
FLOW

JMS
OUTPUT
NODE

JMS
INPUT
NODE

INITIAL CONTEXT
FACTORY

JMS
SESSIONJMS

SESSION

JMS Server

JMS PROVIDER

JMS
QUEUE

TOPIC

JNDI
BINDINGS

MSGMSG
g

JMS Resource

S C

Y O

N O

C R

P D

O I

I N

N A

T T

O

R start / end /

commit or rollback

transactions

XA/Open calls

Transaction Modes

� None – message ack

�Local – Input node
transaction control

�Global – external
transaction control

SWITCH

FILE

(distributed)

In this diagram, messages are consumed from a topic by a JMSInput node, and are produced to a JMS
queue JMSOutput node. The nodes are connected with and are in session with a JMS provider. Any
message flow input node can inform the external Syncpoint Coordinator when a message flow transaction
starts and ends, and whether any resources that have been touched by the flow should be committed or
rolled back.

The Syncpoint Coordinator sends XA/Open compliant requests to all participating Resource Managers to
inform them to prepare. Any changes are then either committed or rolled back. Resource Managers such as
WebSphere MQ, DB2 and any XA compliant JMS provider can participate in a global transaction. The
external Syncpoint Coordinator is WebSphere MQ on distributed platforms, and RRS (Resource Recovery
Services) on z/OS.

The JMSInput node and JMSOutput node can participate in a global transaction only if the JMS provider to
which they connect supports the XA/Open interface through the JMS XAResource Class. An example JMS
provider is the WebSphere MQ Java Client.

On distributed platforms an additional component called the ‘Switch File’ is needed for Global transactions.
The Switch file is a shared library (a DLL on Windows). When the broker's WebSphere MQ queue manager
starts up, it loads the Switch file. The Switch file forwards XA/Open transaction calls from the Syncpoint
Coordinator to the JMS Provider. This ensures that the JMS resources that participate in the transaction can
be coordinated in synchronization with other Resource managers that are involved in the same transaction.

JMS.ppt Page 25 of 39

IBM Software Group

25
JMS nodes © 2006 IBM Corporation

Configuring global transactions, distributed

�Set the Message Flow property Coordinated
Transaction to yes

�Set the Advanced property Transaction Mode to
global

�Create a queue connection factory and supply
either a default name, recoverXAQCF or supply a
user defined name

�Update the Queue Manager .ini file to provide
SwitchFile component (next slide)

Additional configuration is required to enable global transaction support for the JMSInput
and JMSOutput node. Before deploying a message flow that contains JMS nodes
complete the following steps:

1. Set the Message Flow property Coordinated Transaction to yes.

2. For each JMSInput or JMSOutput node that is required to participate in the global
transaction, set the Advanced property Transaction Mode to global.

3. Create a queue connection factory and supply either a default name, recoverXAQCF or
supply a user defined name.

4. On distributed platforms, the external syncpoint coordinator for the broker is
WebSphere MQ. Before you deploy a message flow in which the Transaction
Coordination is set to Global, modify the queue manager .ini file to include extra
definitions for each JMS provider Resource Manager that participates in globally
coordinated transactions.

JMS.ppt Page 26 of 39

IBM Software Group

26
JMS nodes © 2006 IBM Corporation

Configuring global transactions (cont.)

�Windows SwitchFile property:
install_dir/bin/ JMSSwitch.dll
XAOpenString=Initial Context,location JNDI,Optional_parms
ThreadOfControl=THREAD

�Linux and UNIX:
� Add stanza to queue manager .ini for each JMS provider

� Example:
XAResourceManager:
Name=Jms_Provider_Name
SwitchFile=/install_dir/bin/ JMSSwitch.so
XAOpenString=Initial Context,location JNDI,Optional_parms
ThreadOfControl=THREAD

�Update Java PATH and CLASSPATH environment
variables

On Windows, set the SwitchFile property to the value shown here.

On Linux and UNIX platforms, add a stanza to the queue manager ini file for each JMS
provider as in this example.

5. The JMS provider can supply additional jar files that are required for transactional
support.

Update the Java CLASSPATH environment variable for the broker's queue manager to
include a reference to xarecovery.jar. For example:

install_dir/classes/xarecovery.jar

Update the Java PATH environment variable for the broker's queue manager to point to
the bin directory, in which the Switch File is located. For example

install_dir/bin

JMS.ppt Page 27 of 39

IBM Software Group

27
JMS nodes © 2006 IBM Corporation

Configuring global transactions, z/OS

� Set the Message Flow property Coordinated Transaction to
yes

� Set the Advanced property Transaction Mode to global

� Configure the broker CLASSPATH and LIBPATH in
BIPBROF
�Update the CLASSPATH to include all WMQ JMS jars
�Update the LIBPATH to include directory location for all WMQ JMS

native libraries

� Run BIPGEN job to update the broker ENVFILE with
CLASSPATH and LIBPATH

� The only JMS provider currently supported is WebSphere
MQ Java Client.

� RRS is the external syncpoint manager

As on distributed platforms, the message flow properties for coordinated transactions and
global transactions must be set.

Specify each JMS provider java .jar file in the class path in the BIPPROF member of the
broker’s PDS (Partitioned Data Set). Then update the LIBPATH with any native libraries,
and submit the BIPGEN JCL job to update the broker ENVFILE.

On z/OS, the external syncpoint manager is Resource Recovery Services (RRS). The only
JMS provider that is supported on z/OS is WebSphere MQ JMS. The only Transport
option that is supported for WebSphere MQ JMS on z/OS is the Bind option. Syncpoint
control for the JMS provider is managed with RRS syncpoint coordination of the queue
manager of the broker. You do not need to modify the .ini file.

JMS.ppt Page 28 of 39

IBM Software Group

28
JMS nodes © 2006 IBM Corporation

DebuggingDebugging

Section

This section covers debugging.

JMS.ppt Page 29 of 39

IBM Software Group

29
JMS nodes © 2006 IBM Corporation

Debugging (1/7)

� BIP2211
�Configuration error at deployment time

�Incompatible to configure a JMS node for both Topic and Source
Queue .

�Not valid to configure node property “Transaction Mode”=‘global’
when message flow property “Coordinated Transaction” = ‘no’.

� User Action :
�Modify properties and redeploy

� NOTE: In the Service Trace the JMS nodes are called
JMSClientInputNode and JMSClientOutputNode and not
JMSInput and JMSOutput .

The primary debugging tools are ‘service trace’ and the ‘event log’. Note that in the service
trace the JMS nodes are called JMSClientInputNode and JMSClientOutputNode.

If there is any configuration error at run-time, you will receive the standard BIP2211
message. To recover from this, modify the appropriate properties which should be
indicated in the message and redeploy the message flow.

JMS.ppt Page 30 of 39

IBM Software Group

30
JMS nodes © 2006 IBM Corporation

Debugging (2/7)
� BIP4640

�Usually found on first deployment – but can occur whenever JNDI bindings changed
�JNDI is unable to obtain the Initial Context, or a Connection Factory, or a JMS

Destination

� User Action :
�Check that the JNDI bindings contain definitions for the names of the Connection

Factories and Destinations (Topic or Queues) specified in the JMS node properties
�Check that the JNDI bindings are in the location specified in the node property
� If The JNDI administered objects are stored in LDAP check that the LDAP Principal

and LDAP Credentials have been configured using mqsicreatebroker or
mqsichangebroker command

� If still having problems then collect Service Trace . Search for the string
“lookUpFactoryInJNDI()“ in the trace. This will show the JNDI Exception message

�Check System Event Log for details of the JNDI Exception message
�Refer to the vendor documentation for the JMS provider on how to create the JNDI

administered objects

If there is anything wrong with the JNDI administered objects, you may receive a BIP4640
message. This slide gives some options to correct this.

JMS.ppt Page 31 of 39

IBM Software Group

31
JMS nodes © 2006 IBM Corporation

Debugging (3/7)

�BIP4643
�Error receiving a JMS message in the JMSInput node

�User Action :
�Check the broker event log message for any associated

JMS provider exception message.

�Collect broker service trace and look for the string
BIP4643 for any JMS Provider exception message and
return codes.

�Check the vendor documentation for the JMS provider to
determine the cause of the provider error code.

�Verify that the JMS message at the input Destination is
correctly formed.

If there is an error receiving the JMS message in the JMSInput node, you get a BIP4643
failure. This may be as a result of a failure outside the broker environment. Refer to the
vendors documentation for further problem diagnosis information.

JMS.ppt Page 32 of 39

IBM Software Group

32
JMS nodes © 2006 IBM Corporation

Debugging (4/7)

� BIP4651
�Error sending a JMS message in the JMSOutput node

� User Action :
�Check the broker event log message for any associated JMS

Provider exception message.

�Collect broker service trace and look for the string
“sendOutputMessage()“ to look for any JMS provider exception
message and return codes.

�Check the vendor documentation for the JMS provider to determine
the cause of the Provider error code.

�Verify that any node that modifies or creates the JMS message in the
flow is correctly formatting elements in the JMS message tree.

If there is an error sending the JMS message in the JMSOutput node, you get a BIP4651.

JMS.ppt Page 33 of 39

IBM Software Group

33
JMS nodes © 2006 IBM Corporation

Debugging (5/7)

� BIP4648
�Unable to connect to the JMS provider at deploy time or start-up, or

when a JMS provider becomes unavailable.
�This message will be output approximately every 30 minutes while

the JMS node attempts to connect (or reconnect) to the JMS
provider.

� User Action :
�Check that the JMS Provider is running and accessible to the broker.
�Check the broker event log message for any associated JMS

Provider exception message.
�Collect broker service trace and look for the string “(((

JMSPROVIDER)))” to look for more detailed JMS Provider exception
message and return codes.

�Check the vendor documentation for the JMS Provider to determine
the cause of the Provider error code.

If you are unable to connect to the JMS provider, you see a BIP 4648 message telling you
that the node is unable to connect to the JMS provider. Perhaps the JMS provider is
out of action. No user action is required other than to try and restart the provider and
the node will continue to retry connecting.

JMS.ppt Page 34 of 39

IBM Software Group

34
JMS nodes © 2006 IBM Corporation

Debugging (6/7)

� BIP4655 through BIP4664
�Problems obtaining data from a JMS message in the JMSInput node

or creating a JMS message in the JMSOutput node.

� User Action :
�Check the broker event log message for any associated JMS

Provider exception message.
�Collect broker service trace and look for the string “JMSClient” to

search for more detailed JMS Provider exception message and return
codes associated with the BIP message number.

�Check the vendor documentation for the JMS Provider to determine
the cause of the Provider error code.

If there are any problems with the data from a message as it is being processed through a
message flow, there are a suite of messages, BIP4655 through to BIP4664.

JMS.ppt Page 35 of 39

IBM Software Group

35
JMS nodes © 2006 IBM Corporation

Debugging (7/7)
� BIP4669

�There has been a failure in the message flow when trying to process a JMS
Message received by a JMSInput node, so the input node does not commit
the receipt of the message , which therefore remains on the input
Destination.

�The JMSInput node attempts to receive the message, again and finds that
the Delivery count (JMSXDeliveryCount message property) exceeds the
value in the “Backout Threshold” node property, and attempts to send the
Message to the Destination defined in the “Backout Destination” node
property.

�A Backout JMS destination has not been specified in the JMSInput node or
has not been defined in the JNDI administered objects

� User Action :
�Confirm that a Backout Destination has been specified in the JMSInput node
�Conform that the Backout Destination has been defined in the JNDI

administered objects (JNDI bindings)
�Collect broker service trace and look for the string “JMSClientInput” to search

for more detailed JMS Provider exception message and return codes
associated with the BIP message number.

If you have not provided the backout destination to handle failed messages, then you will
receive a BIP4669 message, which will tell you that you need to configure that
destination.

JMS.ppt Page 36 of 39

IBM Software Group

36
JMS nodes © 2006 IBM Corporation

Summary and referencesSummary and references

Section

This section contains a summary and references.

JMS.ppt Page 37 of 39

IBM Software Group

37
JMS nodes © 2006 IBM Corporation

Summary

� WebSphere Message Broker V6 JMS nodes allow broker to
be a JMS client to any JMS provider

� JMSInput

� JMSOutput

� JMSMQTransform

� MQJMSTransform

� Message handling
� JMS message tree

� Configuration
� Point to point and Pub/Sub

� Transactional support

� JMS provider configuration

� Debugging

This module presented the new capabilities of JMS processing within the broker. The
four new nodes allow the broker to be a JMS client to any JMS provider. The JMS
message tree can be read in, transformed, and put out. Transactional support is available.
JMS provider and the JMS nodes configuration details were provided.

JMS.ppt Page 38 of 39

IBM Software Group

38
JMS nodes © 2006 IBM Corporation

References

�WebSphere Message Broker library:
http://www-306.ibm.com/software/integration/wbimessagebroker/library/

�WebSphere Message Broker Information Center:

http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r0m0/index.jsp

JMS.ppt Page 39 of 39

IBM Software Group

JMS nodes © 2006 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM WebSphere z/OS

Windows, and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries, or both.

Java, JMS, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include
technical inaccuracies or typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any
statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this
document to IBM products, programs, or services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM
operates or does business. Any reference to an IBM Program Product in this document is not intended to state or imply that only that program product may be used.
Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY
WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and
conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License Agreement, etc.) under which
they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly
available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other
claims related to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding
patent or copyright licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented
as illustrations of how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will
experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration,
and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements equivalent to the
ratios stated here.

© Copyright International Business Machines Corporation 2006. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule
Contract and IBM Corp.

39

