
JavaCompute.ppt Page 1 of 27

®

IBM Software Group

© 2006 IBM Corporation

Updated December 19, 2006

JavaCompute node

WebSphere ® Message Broker Version 6

This session looks at the new JavaCompute node, introduced in Message Broker Version
6.

JavaCompute.ppt Page 2 of 27

IBM Software Group

2
JavaCompute node © 2006 IBM Corporation

Agenda

�Overview

�Configuration

�Processing messages

�Summary

The agenda for this presentation includes an overview, configuring, and processing
messages.

JavaCompute.ppt Page 3 of 27

IBM Software Group

3
JavaCompute node © 2006 IBM Corporation

OverviewOverview

Section

This section will overview the JavaCompute node.

JavaCompute.ppt Page 4 of 27

IBM Software Group

4
JavaCompute node © 2006 IBM Corporation

JavaCompute node – What is it?

� General purpose programmable node
�Java™ programming language

�Standards based - J2SE 1.4.2

� Offers “Compute node” alternative for Java programmers
�Similar UI, but no ESQL skill or experience required

�Optionally deployed in BAR file from toolkit

� Simple tree access and manipulation
�The message tree can be queried and traversed using XPath 1.0

�Standards based

�Extensions to allow new elements to be created in message structure
�Maintains full access to the existing Java user-defined enhancement API

� Databases can be accessed via two supported routes
�Type 4 JDBC drivers - standard Java, non-transactional
�MbSQLStatement - uses broker’s ESQL syntax, fully transactional

WebSphere Message Broker Version 6 has introduced the capability for message flow compute nodes to be
written entirely in Java. In previous versions, processing logic had to be written in ESQL, although Version 5
of the broker did allow the possibility of calling a Java routine from within an ESQL Compute node.

The new node provides a full Java implementation, and is based on the Java 1.4.2 level. The Java code that
is used by the node is stored in an Eclipse Java project. The JavaCompute node has the same look and feel
as other nodes, with similar properties and connecting terminals. The resulting jar file is deployed to the
broker by including it in the broker archive file.

Message trees can be accessed from within the JavaCompute node. If required, this can be done using the
XPath tools, similar to that used within the Mapping node. However, there is no 'content-assist' to complete
an XPath like there is in ESQL.

If you have developed Java user-defined enhancements using the existing mechanism, the Java API is still
maintained.

Relational databases can be accessed in two ways. Type 4 JDBC drivers can be used from within the
JavaCompute node. However, this is currently a non-transactional interface, so updates will not be
coordinated with any other updates done within the same message flow, including any updates to MQ.

Alternatively, databases can be updated using the MbSQLStatement class. This provides full transactional
integrity across all updated resources.

JavaCompute.ppt Page 5 of 27

IBM Software Group

5
JavaCompute node © 2006 IBM Corporation

JavaCompute node – When is it useful?
� When you need to access external resources using Java

� Many products offer Java interface

� Google, Amazon, e-mail

� Easy to wrap Java logic within a node

� User-defined properties help with node customization

� When Java fits the job better than ESQL

� Skills

� Programming language needs

� Rich class library

� Reduce z/OS® CPU charging

� Java logic offloaded to zSeries® Application Assist processors
(zAAP)

� Note: Parsers are not Java, so all CPU isn’t offloaded

The JavaCompute node can be used in three ways:

1) to look at a message, and propagate the message to an output terminal based on the message content.
The message content is not changed and you have read-only access to the message.
2) to modify a message, and propagate the modified message to an output terminal.

3) to create a new message, and propagate the new message to an output terminal.

The JavaCompute node can be used to do many things. The previous three options are presented in a
wizard when creating a new JavaCompute node. There are a very rich set of Java libraries available to this
node, providing interfaces to external products.

Many application interfaces are compatible only with Java. Services such as Google and Amazon offer this
type of interface, and if web services are not well established in your environment, it may be easier to call
such services directly via Java. Function isolation is possible within a JavaCompute node by passing user-
defined properties.

One of the samples that is shipped with message broker Version 6 is an implementation of the Google Java
API.

The JavaCompute node provides an alternative to ESQL, allowing use of existing Java skills and reuse of
pre-built Java code.

On z/OS, it is possible to reduce the overall CPU usage by taking advantages of the zAAP charging
mechanism. Using this, all Java processing can be offloaded to a separate processing engine, which does
not incur software charges.

JavaCompute.ppt Page 6 of 27

IBM Software Group

6
JavaCompute node © 2006 IBM Corporation

ConfigurationConfiguration

Section

This section covers configuration.

JavaCompute.ppt Page 7 of 27

IBM Software Group

7
JavaCompute node © 2006 IBM Corporation

Configuring the JavaCompute node

� Similar look and feel to existing Compute node

� Basic properties
�Java class used by this node

� Advanced properties
�Validation

�Parser options

� Terminals
�In

�Out

�Alternate - provides alternate output destination

�Failure - Input message propagated here, ExceptionList contains
MbException

Using the JavaCompute node in a message flow follows the usual node conventions. The
node has a similar feel to the existing Compute node.

In the Properties of the node, the Basic and Advanced sections allow you to specify
parameters. The JavaCompute node has only one basic property. This is Java Class.
Enter the name of the Java class that is used in this node. This name must be in the list of
JavaCompute node classes that are available in the project references for the message
flow project. This is the only property which must be set for the node. The Advanced
properties provide options for validation and parsing.

The node has one input terminal and three output terminals. The output terminals are the
standard failure terminal and two general purpose output terminals. This enables the node
to be used as a general purpose routing node.

JavaCompute.ppt Page 8 of 27

IBM Software Group

8
JavaCompute node © 2006 IBM Corporation

Using the JavaCompute node

� Open Java Wizard
�Guides user to select correct code template

� Read input message (Filtering message
class)

� Modify input message (Modifying
message class)

� Build new message (Creating message
class)

�Places user in Eclipse Java perspective

�Stored in broker file system

You configure each instance of the JavaCompute node that occurs in a message flow. To
do this, right-click the node in the editor view. The Open Java option is presented. Select
this option (as shown in this slide).

The first time that you select Open Java for a node, a wizard is launched that guides you
through the creation of a new Java project and a Java class that contains skeleton code.
You are given a selection of templates to use for this node; the options are:

Read input message

Modify input message

Create new message

This skeleton code is presented in a Java editor.

If this is not the first time that you have done this, you are presented with the Java code
that you have created for this node in a Java compute perspective.

Java files are managed through the Java perspective and stored in the toolkit file system.

JavaCompute.ppt Page 9 of 27

IBM Software Group

9
JavaCompute node © 2006 IBM Corporation

Using the JavaCompute node

This screen capture shows the part of the wizard where you select the Class that provides
the functions and templates for your processing needs:

Filtering (read input message)

Modifying input message

Creating new message

JavaCompute.ppt Page 10 of 27

IBM Software Group

10
JavaCompute node © 2006 IBM Corporation

Filtering Message Class template

When you select the Filtering Message Class template in the JavaCompute node creation
wizard, template code is produced. The code shown in this slide passes the input
message to the Out terminal without doing any processing on the message. The template
produces a partial implementation of a method called evaluate(). The broker calls
evaluate() once for each message that passes through the node. The parameter that is
passed to evaluate() is the message assembly. The message assembly encapsulates the
message that is passed on from the previous node in the message flow.

You can add custom code to the template to propagate messages to both the Out and
Alternate terminals to create a message filter.

JavaCompute.ppt Page 11 of 27

IBM Software Group

11
JavaCompute node © 2006 IBM Corporation

Using the JavaCompute node

� Java editing facilities
�Javadoc for content assist

�Incremental compilation

�Deployment of Java
�Automatic when JavaCompute node flow added to bar file

�Workspace searched and JAR automatically added to bar

�External JAR files can be added to project class path

You can add any valid Java code to a JavaCompute node, making full use of the existing
Java user-defined node API to process an incoming message. You can use the Java
editing facilities of the Eclipse platform to develop your Java code. These facilities include:

•code completion

•integrated Javadoc documentation

•automatic compilation

The Message Brokers Toolkit handles the deploying of JavaCompute node code
automatically. When you create a bar file and add the message flow, the Message Brokers
Toolkit packages the compiled Java code (JAR file) and its dependencies into the bar file.

If a message flow has a large JAR file, or has a large number of java dependencies, it is
possible for the bar file to become quite large. If this is a concern, it is also possible to
manually copy these JAR files to the broker runtime, instead of using the bar file
mechanism. When the broker is stopped, you add the directory containing your files to the
LILPATH by using the mqsichangebroker command. This must be done for every broker
that uses the file. Details are provided in topic as10004 in the Information Center.

JavaCompute.ppt Page 12 of 27

IBM Software Group

12
JavaCompute node © 2006 IBM Corporation

Processing messagesProcessing messages

Section

This section covers processing messages.

JavaCompute.ppt Page 13 of 27

IBM Software Group

13
JavaCompute node © 2006 IBM Corporation

Message tree
� Four message objects passed as an argument of

evaluate method
�Message

�LocalEnvironment

�GlobalEnvironment

�ExceptionList

InputExceptionListgetExceptionList().getRootElement()

EnvironmentgetGlobalEnvironment().getRootElement()

InputLocalEnvironmentgetLocalEnvironment().getRootElement()

InputBodygetMessage().getRootElement().getLastChild()

InputRootgetMessage().getRootElement()

Equivalent ESQL
Correlation name

Java accessor from MbMessageAssembly

When you want to access the contents of a message, for reading or writing, use the
structure and arrangement of the elements in the tree that the parser creates from the
input bit stream. Follow the relevant parent and child relationships from the top of the tree
downwards, until you reach the required element.

The message tree is passed to a JavaCompute node as an argument of the evaluate
method. The argument is a MbMessageAssembly object. MbMessageAssembly contains
four message objects:

•Message

•Local Environment

•Global Environment

•Exception List

These objects are read-only, except for Global Environment. If you try to write to the read-
only objects, a MbReadOnlyException is thrown.

The table at the bottom of this slide shows the corresponding Java methods for the
equivalent objects accessible from ESQL statements.

JavaCompute.ppt Page 14 of 27

IBM Software Group

14
JavaCompute node © 2006 IBM Corporation

Traversing a message tree

The JavaCompute node operates on the logical message tree within the broker.

The example on this slide shows a simple XML message, and the logical tree that would
be created from the message. The logical tree diagram also shows the methods to call to
navigate around the tree.

JavaCompute.ppt Page 15 of 27

IBM Software Group

15
JavaCompute node © 2006 IBM Corporation

Accessing information about an element

� getName()
�Returns the element name as a java.lang.String

� getValue()
�Returns the element value

� getType()
�Returns the generic type, which is one of the following types:

– NAME. An element of this type has a name, but no value.

– VALUE. An element of this type has a value, but no name.

– NAME/VALUE. An element of this type has both a value and a name.

� getSpecificType()
�Returns the parser-specific type of the element

� getNamespace()
�Returns the namespace URI of this element

Use the methods listed here to retrieve information about the referenced element from
within the JavaCompute node.

JavaCompute.ppt Page 16 of 27

IBM Software Group

16
JavaCompute node © 2006 IBM Corporation

Simplifying tree access - XPath
� Select element from a tree using declarative expression

�No need for explicit navigation
� for example: /document/chapter/title

�Returned Nodeset of syntax elements subsequently manipulated by Java

� Select multiple elements
� /library/books/book returns all book elements in /library/book path
� //book returns all book elements in tree regardless of parents

� XPath axes allow tree to be navigated in different ways
�self, parent, child, ancestor, ancestor-or-self, descendant, attribute, namespace…
�Abbreviated forms are usually used . .. // @ *

� XPath expressions support selection predicates
�Powerful specification of search criteria
�For example, book[author=‘Stephen Hawking’]

� XPath functions for trivial expression evaluations
�count(/sum/library/books/book), sum(/library/books/book/cost)

XPath is a query language designed for use with XML documents, but it can be applied to any tree structure
for querying purposes. WebSphere Message Broker uses XPath to select elements from the logical message
tree regardless of the format of the bit stream.

This slide shows some of the types of XPath statements, which allow a powerful way of accessing data items
in a message tree.

The basic form of XPath is to use a declarative type of expression, such as /document/chapter/title. This
would return the value of the variable “title”.

The second example shows how multiple values can be returned in a single XPath request. This example
would return all instances of “book” under the path shown. //book will return all book elements, regardless of
where they lie in the tree.

The range of XPath terms include self, parent, child, ancestor, ancestor-or-self, descendant, attribute,
namespace, and following-sibling; these are normally abbreviated. A full description of XPath axes is given at
www.w3.org/TR/xpath.

XPath supports predicates, so you can search the message tree for any occurrence of a particular value of a
variable.

And finally, the XPath syntax provides a number of functions for simple evaluations. For example, it can be
used to count the number of occurrences of a variable, or to calculate the sum of a number of variable values
which match a set of criteria.

JavaCompute.ppt Page 17 of 27

IBM Software Group

17
JavaCompute node © 2006 IBM Corporation

XPath retrieval example
(1) <library>
(2) <customers>
(3) <customer id="0032-453">
(4) <name>Smith</name>
(5) <address>Winchester</address>

</customer>
(7) <customer id="0295-835">
(8) <name>Jones</name>
(9) <address>Hursley</address>

</customer>
(10) </customers>
(11) <loans>
(17) </loans>
(18) <books>
(19) <book isbn='0099468670'>
(20) <title>Catch-22</title>
(21) <author>Joseph Heller</author>
(22) <copies>2</copies>
(23) </book>
(27) <book isbn='0192861980'>
(28) <title>The Emperor's New Mind</title>
(29) <author>Roger Penrose</author>
(30) <copies>1</copies>

</book>
(30) </books>
(31) <journals>
(32) <journal name='Proceedings of the Royal S ociety'>
(33) <title>The Singularities of Gravitational Colla pse and…
(34) <author>Roger Penrose>

� What do these XPath expressions return?
1. /library/books/book

2. /library/books/book[author=‘Joseph
Heller’]

3. /library/books/book[copies > 2]

4. //*[author=‘Roger Penrose']/title

5. sum(/library/books/book/copies)

6. count(//customer)

This slide shows an example of how to use XPath to select parts of the message tree. Although this example
uses XML, this function is not restricted to XML.

Example one selects all occurrences of “book” under the tree “library/books”, namely “Catch-22” and “The
Emperor’s New Mind’. The returned data would include the attribute of “book”, namely “isbn”. Data lower
down the tree would not be returned by this expression, so “title”, “author” and “copies” would not be returned
in this example.

Example 2 uses an expression to further qualify example 1. This will return just one occurrence, namely
“Catch-22”. This type of expression can also use the attribute to make a selection. This is denoted by the @
sign in the qualifier.

Example 3 is similar to example 2. In this case, there are no books which satisfy the expression “copies > 2”,
so the result is null.

Example 4 uses the double-slash addressing. This means that the expression should look for a result in any
part of the tree. This case is simply looking for any match, where “author” has the value “Roger Penrose”.
The expression then returns the value “title” corresponding to that match.

Example 5 returns the total number of books fulfilling the expression. In this case the answer is three.

And finally, the count function counts the number of occurrences of the returned matches. The double-slash
indicates looking for all occurrences of “customer”; the answer in this case is two.

JavaCompute.ppt Page 18 of 27

IBM Software Group

18
JavaCompute node © 2006 IBM Corporation

Using XPath in the JavaCompute node
� Use evaluateXPath method on appropriate tree element
�List bookList = (List)message.evaluateXPath(“/library/books/book”);

�MbElement[] elementArray = (MbElement[])bookList.toArray();

� Four return types
�java.lang.Boolean for XPath Boolean values
�java.lang.Double for XPath number values

�java.lang.String for XPath string values

�java.util.List for XPath node sets; direct or iterated access

� Variable binding allows runtime expression evaluation
�titleExtractor = new MbXPath(“string(/library/books/book[@isbn =

$isbn]/title)”);

�titleExtractor.assignVariable(“isbn”, “0140620168”);

The evaluateXPath() method can be called on a MbMessage object (for absolute paths),
or on a MbElement object (for relative paths). The XPath expression is passed to the
method as a string parameter. A second form of this method is provided that takes an
MbXPath object. This object encapsulates an XPath expression along with variable
bindings and namespace mappings, if these are required.

The evaluateXPath() method returns an object of one of these four types, depending on
the expression return type, as listed here. The List interface represents an ordered
sequence of objects, in this case MbElements. It allows direct access to the elements, or
the ability to get an Iterator or an MbElement array.

When using XPath expressions, you can dynamically set values to the variables that are
used in the XPath expression. The example shown here assigns a numeric value to the
variable “isbn”, before using this to obtain the title of the corresponding book.

JavaCompute.ppt Page 19 of 27

IBM Software Group

19
JavaCompute node © 2006 IBM Corporation

XPath extension functions

� set-value(object)
�Sets the string value for a node

� set-local-name(object)
�Sets the local part of the expanded name

� set-namespace-uri(object)
�Sets the namespace URI part of the expanded name

� All three functions return ‘true’ always
�No filtering effect in predicates

The standard XPath capability does not allow you to create messages. However, in
message broker processing, it is important to be able to create or update message trees
using this technique.

The WebSphere Message Broker implementation of XPath provides these three extra
functions for modifying the message tree.

set-value sets the string value of the context node to the value specified in the argument.
object can be any valid expression and is converted to a string as if a call to the string
function were used.

set-local-name sets the local part of the expanded name of the context node to the value
specified in the argument. object can be any valid expression and is converted to a string
as if a call to the string function were used.

set-namespace-uri sets the namespace URI part of the expanded name of the context
node to the value specified in the argument. object can be any valid expression and is
converted to a string as if a call to the string function were used.

JavaCompute.ppt Page 20 of 27

IBM Software Group

20
JavaCompute node © 2006 IBM Corporation

Updating the tree with XPath extensions
� New, broker specific XPath functions to change message tree

� set-local-name(object)

� set-namespace_uri(object)

� set-value(object)

� New XPath axis to select-or-create elements, abbreviated ?
� ?name select children called ‘name’. Create it (as last child) if it doesn’t

exist, then select it.
� ?$name create ‘name’ as last child, then select it.

� ?^name create ‘name’ as first child, then select it.
� ?>name create ‘name’ as next sibling, then select it.
� ?<name create ‘name’ as previous sibling, then select it.

� @name to create or select an attribute

� Provides elegant navigation and creation and syntax

outMessage.evaluateXPath(

“/document/?$chapter/?@title[set-value(‘Chapter 1’)]”);

The use of this is best illustrated by means of an example, shown on the next slide.

To allow for syntax element trees to be built as well as modified, the following axis is
available in addition to the thirteen that are defined in the XPath 1.0 specification:

select-or-create::name or ?name

?name is equivalent to select-or-create::name. If name is @name, an attribute is
created or selected. This selects child nodes matching the specified nametest or
creates new nodes according to the following rules:

?name selects children called name if they exist. If there is not a child
called name, ?name creates it as the last child then selects it.

?$name creates name as the last child, then selects it.

?^name creates name as the first child, then selects it.

?>name creates name as the next sibling, then selects it.

?<name creates name as the previous sibling, then selects it.

JavaCompute.ppt Page 21 of 27

IBM Software Group

21
JavaCompute node © 2006 IBM Corporation

XPath example to build a message
(1) <library>
(2) <customers>
(3) <customer id=“0032-453”>
(4) <name>Smith</name>
(5) <address>Winchester</address>
(6) </customer>
(7) <customer id=“0295-835”>
(8) <name>Jones</name>
(9) <address>Warwick</address>
(10) </customer>
(11) <customer id=“0275-877”>
(12) <name>Woods</name>
(13) <address>London</address>
(14) </customer>
(15) </customers>
(16) </library>

The XML in lines 11, 12 and 13 are created by the following XPath extension
statement:

//customers /?$customer[@id [set-value(‘0275-877’)]]

[?name[set-value(‘Woods’)]]

[?address[set-value(‘London’)]]

This example starts with two customers in the XML message tree. To add a third customer
with the data values shown in lines 11, 12 and 13 select all elements called “customers”,
by using the double-slash.

The question mark creates a new element, called customer. The $ (dollar sign) indicates
that it should be created as the last child under “customers”.

A new attribute (@) called “id” is created with a value of “0275-877”.

New elements “name” and “address” are created (?) and assigned values.

JavaCompute.ppt Page 22 of 27

IBM Software Group

22
JavaCompute node © 2006 IBM Corporation

Summary and referencesSummary and references

Section

This section contains a summary and references.

JavaCompute.ppt Page 23 of 27

IBM Software Group

23
JavaCompute node © 2006 IBM Corporation

Summary

�What is JavaCompute node?

�When is it useful?

�How to use and configure the JavaCompute node

�How to process messages in Java
�XPath capability

�Element retrieval

�New element creation

To summarize, this session provided an introduction to the JavaCompute node, and
explained when and how to use this function. It described how to use it to process
messages, how to use it in conjunction with XPath for data transformation, and how to
access individual elements of the message tree.

JavaCompute.ppt Page 24 of 27

IBM Software Group

24
JavaCompute node © 2006 IBM Corporation

Samples
� Comprehensive Suite of 5 Samples demonstrate how to:

�Filter message depending on content to one of the node's two output terminals
�Change part of an incoming message and propagate to one of the output

terminals
�Create and build a new output message unrelated to the input message

� Samples
�RegexFilterNode sample

�Filter node using regular expressions
�RoutingFileNode sample

�Use a configuration file to route a message
�JavaComputeTransform

�Perform transformation of input method
�GoogleAPINode

�Use input message to perform Google search, propagate results according to
results

�NewsGroupGetNode
�Augment incoming message with postings from news group

The Samples Gallery provides a number of samples illustrating how Java can be used to
do different functions. These cover simple examples such as transformation and routing,
as well as more complex usage covering the invocation of external services such as a
search engine or a News group feed.

JavaCompute.ppt Page 25 of 27

IBM Software Group

25
JavaCompute node © 2006 IBM Corporation

Samples Gallery

The Samples Gallery can be accessed from your toolkit by selecting Help, Samples
Gallery.

JavaCompute.ppt Page 26 of 27

IBM Software Group

26
JavaCompute node © 2006 IBM Corporation

References

� WebSphere Message Broker library:

http://www-306.ibm.com/software/integration/wbimessagebroker/library/

� WebSphere Message Broker Information Center:

http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r0m0/index.jsp

� XML Path Language (XPath):

http://www.w3.org/TR/xpath

� Online documentation:

Start > Programs > IBM WebSphere Message Brokers 6.0 >
Java Programming APIs > Java Plugin API Documentation

JavaCompute.ppt Page 27 of 27

IBM Software Group

IBM Confidential Presentation Title © 2006 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM WebSphere z/OS zSeries

J2SE, Java, Javadoc, JDBC, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include
technical inaccuracies or typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any
statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this
document to IBM products, programs, or services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM
operates or does business. Any reference to an IBM Program Product in this document is not intended to state or imply that only that program product may be used.
Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY
WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and
conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License Agreement, etc.) under which
they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly
available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other
claims related to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding
patent or copyright licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented
as illustrations of how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will
experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration,
and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements equivalent to the
ratios stated here.

© Copyright International Business Machines Corporation 2006. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule
Contract and IBM Corp.

