
Timeouts.ppt Page 1 of 18

®

IBM Software Group

© 2006 IBM Corporation

Updated 21 December 2006

WebSphere ® Message Broker Version 6

Timeout nodes

This session discusses the new timeout nodes, introduced in WebSphere Message Broker
Version 6.

Timeouts.ppt Page 2 of 18

IBM Software Group

2
Timeout nodes © 2006 IBM Corporation

Agenda

�Overview

� Implementation and configuration

�Summary

The agenda for this presentation includes an overview and a discussion of implementation
and configuration of timeout nodes.

Timeouts.ppt Page 3 of 18

IBM Software Group

3
Timeout nodes © 2006 IBM Corporation

OverviewOverview

Section

This section covers the overview.

Timeouts.ppt Page 4 of 18

IBM Software Group

4
Timeout nodes © 2006 IBM Corporation

Overview

� WebSphere Message Broker V6 nodes support timeout
function
�Drive a message flow after defined interval

�WebSphere MQ based, SYSTEM.BROKER.TIMEOUT.QUEUE

� TimeoutControl node
�Receives, validates, stores and propagates a Timer Request

Message

�Generates configuration message for TimeoutNotification node

� TimeoutNotification node
�Acts on timeout requests

�Starts the flow, Stand-alone or with TimeoutControl node

WebSphere Broker V6 provides two new nodes to support a basic timeout function:
TimeoutControl node
TimeoutNotification node

Use these nodes in message flows to process timeout requests or to generate timeout notifications at
specified intervals. These can be used to drive message flows automatically at regular intervals - these
are known as automatic timeouts. Or you can provide controlled timeouts to applications on a per-
message basis.

The timeout nodes use the WebSphere MQ queue, SYSTEM.BROKER.TIMEOUT.QUEUE, which holds the
active timeout requests for a running broker.

The TimeoutControl node receives an input message that contains a timeout request. The node validates the
request, stores the message, and propagates the message to the next node in the message flow.

The TimeoutNotification node is an input node which reads from the SYSTEM.BROKER.TIMEOUT.QUEUE
any timeout requests that relate to it, processes them and propagates the messages as required.

The TimeoutNotification node can be used in one of two ways:
1. Paired with one or more TimeoutControl nodes.
2. Stand-alone. Generated messages are propagated to the next node in the message flow at timed

intervals that are specified in the configuration of this node.

.

.

Timeouts.ppt Page 5 of 18

IBM Software Group

5
Timeout nodes © 2006 IBM Corporation

When to use the timeout nodes

�When you need to start a flow at a certain time or
regular intervals
�User defined

�As a result of other message flow

�Examples
�Batch type processing
� Use with MQGet node to retrieve data from queues at timed

intervals

� Use with ESQL nodes to perform regular database extraction

�Event driven SLAs
� Check that event has occurred after a required time

– Otherwise perform exception processing

Use the TimeoutControl and TimeoutNotification nodes in message flows to process
timeout requests or to generate timeout notifications at specified intervals.

Here are examples of when you might want to use the timeout nodes in a message flow:

• You need to run a batch job every day at midnight.

• You want information about currency exchange rates to be sent to banks at hourly
intervals.

• You want to confirm that important transactions are processed within a certain time
period and perform some other specified actions to warn when a transaction has not
been processed in that time period.

Timeouts.ppt Page 6 of 18

IBM Software Group

6
Timeout nodes © 2006 IBM Corporation

Implementation and configurationImplementation and configuration

Section

This section covers implementing and configuring Timeout nodes.

Timeouts.ppt Page 7 of 18

IBM Software Group

7
Timeout nodes © 2006 IBM Corporation

Implementation details:
Timeout request message

� Timeout Request message
�IBM supplied schema is at 6.0.0\ibm\nodes\timeout\timeoutrequest.xsd

�Pre-defined format to carry timeout requests

The XML format of a timeout request message is show on this slide. Any other format that is supported by an
installed parser can be used instead of XML.

A Timeout Request is either SET or CANCELed. If CANCEL, the Identifier is required and must match the
Identifier of the TimeoutRequest that is to be cancelled. TimeoutControl nodes and TimeoutNotification
nodes have an individual identifier that is unique within the broker. Any requests that those nodes receive
are indexed by the timeout node identifier and their own unique identifier embedded in the timeout
request. If you want to set a timeout request you have to pass in an identifier; you can then pass this
identifier in a subsequent message requesting a cancellation of the original request.

The “StartDate” and “StartTime” values are self explanatory; the default values are ‘Today’ and ‘Now’.
‘Count’ is the number of times a timeout request is going to start. So, you could start a timeout request

immediately and request that it is initiated ten times. Those ten times will be separated by ‘Interval’
number of seconds. The default of ‘Count’ is ‘1’ and the default of ‘Interval’ is ‘0’, which means that if you
put in a default message with just a ‘SET’ and an ‘Identifier’, you will get a message immediately straight
from the timeout node, since it uses the defaults of ‘Today’, ‘Now’, ‘0’ and ‘1’.

‘IgnoreMissed’ controls whether timeouts that occur while either the broker or the timeout notification flow is
stopped, are processed the next time that the broker or timeout notification flow is started. The default
value is TRUE which means that missed timeouts are ignored by the TimeoutNotification node when the
broker or message flow is started. If this value is set to FALSE then the missed timeouts are all
immediately processed by the TimeoutNotification node when the flow is started.

‘AllowOverwrite’ controls whether subsequent timeout requests with a matching Identifier can overwrite this
timeout request. This is used to allow a SET request with the same Identifier as a running timeout
application to overwrite the original. The default value is TRUE; FALSE throws an exception for any
attempt to overwrite a running timeout message.

Timeouts.ppt Page 8 of 18

IBM Software Group

8
Timeout nodes © 2006 IBM Corporation

Details – TimeoutControl node

� TimeoutControl node

�Validates incoming requests
�Timeout requests embedded in incoming message

�Stores validated requests
�Stores all or part of incoming message to timeout queue

�Cancels stored requests
�Deletes stored requests from timeout queue

�Passes input message through unchanged

The TimeoutControl node is a standard data flow node; it receives incoming messages
and validates the Timeout Requests embedded in them. If they are validated, it then
stores them to the SYSTEM.BROKER.TIMEOUT.QUEUE. It can store all or part of
the incoming message. The default is to store the entire incoming message so that the
message that the TimeoutNotification node propagates is what is generated by the
TimeoutControl node. Alternatively, if you have a very large message, you can store
just part of this message.

The TimeoutControl node can also cancel stored requests. If a cancellation request is
received, it just deletes the message from Timeout Queue. The input message passes
through unchanged; if you connect the output terminal, the message is simply
propagated to the next node in the flow.

If the TimeoutControl node gets a failure during processing, it throws an exception.
Examples are:

• if the request could not be validated

• if the Identifier matches an existing request

• If the Timeout Request has been badly formatted

Timeouts.ppt Page 9 of 18

IBM Software Group

9
Timeout nodes © 2006 IBM Corporation

Details – TimeoutControl node

�Basic Properties: Unique Identifier
�Unique name within a broker

�Used to associate with exactly one TimeoutNotification
node

�Basic Properties: Request Location
�Location of timeout request in incoming message

�Basic Properties: Request Persistence
�Controls persistence of messages stored on timeout

queue

�Yes, No or Automatic (as incoming message)

When you have put an instance of the TimeoutControl node into a message flow, you can
configure its properties. Unique Identifier is the only mandatory property. It does not
have a default value. Its value must be unique within the broker. The equivalent
property of the TimeoutNotification node with which it is paired must have the same
value. The maximum length of this identifier is 12 characters.

Each Timeout Request has a unique identifier which associates it with exactly one
TimeoutNotification node. However, multiple TimeoutControl nodes can be associated
with one TimeoutNotification node; several different TimeoutControl nodes can store
messages to be processed by a single TimeoutNotification node.

The Request Location property describes where to find the timeout request information.
This must be a valid location in the message tree. This is validated at runtime. If no
request location is specified, LocalEnvironment.TimeoutRequest is assumed. The
value can be stored there using a Compute node, or you can embed it using the
supplied XSD within your message tree and specify its precise location within the
message tree.

The Request Persistence property determines whether an incoming timeout request
survives a broker or message flow restart. The value of this property can be Automatic,
Yes, or No. If the value is Automatic, the Persistence setting in the Properties folder of
the incoming message is used.

Timeouts.ppt Page 10 of 18

IBM Software Group

10
Timeout nodes © 2006 IBM Corporation

Details – TimeoutControl node (cont.)

�Message Properties: Stored Message Location
�Location of part of incoming message to be stored

�Default is blank (InputRoot)

�Message Properties: Domain, Set, Type and
Format
�Used if part of incoming message is stored

�Used by TimeoutNotification node to process what is
stored

�Has no effect on message propagated from Out terminal

Additional TimeoutControl node properties need to be considered in the context of the
TimeoutNotification node.

The ‘Stored Message Location’ provides the location of the part of the request message
that you want to store for propagation by the TimeoutNotification node with which this
node is paired. If you do not specify a value, the entire message is stored.

In Message Domain, select the name of the parser that you are using from the drop-down
list. This value, and the three corresponding values in Message Set, Message Type,
and Message Format, are used by the TimeoutNotification node with which it is paired
when it rebuilds the stored message for propagation. If you have stored the entire
request message (by leaving Stored Message Location blank), do not specify any
values here. If you choose to store part of the request message, you must specify
values here that reflect the stored request message fragment as if it was the entire
message, which is the case when it is processed by the TimeoutNotification node.

Since a TimeoutNotification node can process multiple TimeoutControl nodes, the values
specified in the TimeoutControl node are important as these properties would not
necessarily be the same in the various TimeoutControl nodes.

Timeouts.ppt Page 11 of 18

IBM Software Group

11
Timeout nodes © 2006 IBM Corporation

Details – TimeoutNotification node

� TimeoutNotification node

�Processes stored requests
�Propagates copies of stored messages as timeouts

expire

� Tracks states of active timeouts
�Updates stored timeout messages on timeout queue

�Standard input node behavior
�Out, Failure and Catch terminals

The TimeoutNotification node is an input node, which looks very much like an MQInput
node. However, the input queue for the TimeoutNotification node is the internal
SYSTEM.BROKER.TIMEOUT.QUEUE. Messages on the
SYSTEM.BROKER.TIMEOUT.QUEUE which have a Correlation ID (from the Unique
Identifier property of the TimeoutControl node) equal to the TimeoutNotification node
Unique Identifier are processed.

Each broker has a single SYSTEM.BROKER.TIMEOUT.QUEUE which holds all of the
messages for different TimeoutNotification nodes from different TimeoutControl nodes,
all with different Unique Identifiers. The Correlation ID of the stored messages matches
the Unique Identifiers of the nodes.

The broker keeps track of the state of its active timeouts by keeping those messages
updated as it sends out timeout events. Hence, for example, the broker knows how
many events have been processed, since it updates the status message every time an
event is propagated.

The Timeout Notification node has standard input node behavior with Out, Failure, Catch
Terminals. If you get an Exception downstream from the TimeoutNotification node, it
goes to the ‘Catch’ terminal. If the catch terminal hasn’t been connected, it rolls back.

If you get a failure during normal processing inside the node, it goes to the Failure
terminal, If you haven't connected Failure, it rolls back, exactly as the MQInput node
does. The only difference in this case is that the message flow should actively cancel
the message which caused the problem in the first place. If this is not done, all
subsequent Timeout events will result in the same repeated error.

Note that when a TimeoutNotification node is started as a result of the broker, or the
message flow that contains the node, starting, it scans its internal timeout store and

Timeouts.ppt Page 12 of 18

IBM Software Group

12
Timeout nodes © 2006 IBM Corporation

Details – TimeoutNotification node

�Basic Properties: Unique Identifier
�Unique name within a broker

�Used to associate with one or more TimeoutControl
nodes

�Basic Properties: Transaction Mode
�Yes, No or Automatic (persistence of stored message)

�Basic Properties: Operation Mode
�Automatic (does not read queue) or Controlled (reads

queue)

�Basic Properties: Timeout Interval
�Only used in Automatic (Stand-alone) mode

In common with other nodes, the TimeoutNotification node has several properties.

The ‘Unique Identifier’ allows you to associate it with one or more TimeoutControl nodes.

‘Transaction Mode’ is set ‘Yes’, ‘No’ or ‘Automatic’ based on the persistence of the stored
message. The scope of the transaction includes any updates that are made to the
stored messages on the Timeout Queue as well, so if this is done within a Sync-Point,
then the whole transaction is fully coordinated.

If the ‘Operation Mode’ is set to ‘Control’, then the TimeoutNotification node is being
controlled by TimeoutControl nodes; in this case, it is reading messages from the
SYSTEM.BROKER.TIMEOUT.QUEUE that the TimeoutControl node is putting there.

If it is in ‘Automatic Mode’, then it is working in isolation. It simply executes, acting like a
heart beat, driving the attached flow, without reading or looking at the
SYSTEM.BROKER.TIMEOUT.QUEUE.

It uses the Timeout Interval to determine how often to generate an event. So the ‘Timeout
Interval’ is only required in ‘Automatic’ mode.

Timeouts.ppt Page 13 of 18

IBM Software Group

13
Timeout nodes © 2006 IBM Corporation

Debugging

�Useful sources of information
�Event Log or syslog

�Service trace (if possible)

�Messages on SYSTEM.BROKER.TIMEOUT.QUEUE

�WebSphere MQ FFDCs and broker dumps

�Full Exception text (${ExceptionList} in a Trace node)

�Search for “Timeout” in trace

�BIP4601 to BIP4629

Debugging should use the same tools as for other nodes. The Event log on Windows or
the service log on UNIX® will contain the usual diagnostic information. In some cases,
the Service Trace may be useful as well. If you are familiar with the structure of the
Timeout Messages, you can look at the messages on
SYSTEM.BROKER.TIMEOUT.QUEUE. The content of these messages may provide
some useful information to aid problem determination. Since the Timeout messages
are stored in WebSphere MQ queues, it may also be useful to look for MQ “FFDC”s.

When reading the trace files, search for the ‘timeout’ string, which will help you to focus on
the right area of the trace.

Timeouts.ppt Page 14 of 18

IBM Software Group

14
Timeout nodes © 2006 IBM Corporation

Summary and referencesSummary and references

Section

And, in summary…

Timeouts.ppt Page 15 of 18

IBM Software Group

15
Timeout nodes © 2006 IBM Corporation

Summary

� Timer Request Message

� TimeoutControl nodes

� TimeoutNotification nodes

�SYSTEM.BROKER.TIMEOUT.QUEUE

This presentation discussed the components, capabilities and interactions of the WMB V6
timeout functions. A TimeoutControl node will read Timer Request information that has
been imbedded in a message. It will validate this information and put it on the
SYSTEM.BROKER.TIMEOUT.QUEUE for subsequent processing by a
TimeoutNotification node. The TimeoutNotification node will read the
SYSTEM.BROKER.TIMEOUT.QUEUE for messages matching its unique identifier
property and propagate the message. Alternatively, the TimeoutNotification node may run
stand-alone. In this case, generated messages are propagated to the next node in the
message flow at timed intervals that are specified in the configuration of this node.

Timeouts.ppt Page 16 of 18

IBM Software Group

16
Timeout nodes © 2006 IBM Corporation

Samples

Samples for the timeout nodes are provided in the Samples Gallery; access through the
Broker Toolkit, Samples Gallery.

Timeouts.ppt Page 17 of 18

IBM Software Group

17
Timeout nodes © 2006 IBM Corporation

References

�WebSphere Message Broker library:
http://www-306.ibm.com/software/integration/wbimessagebroker/library/

�WebSphere Message Broker Information Center:
http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r0m0/index.jsp

Timeouts.ppt Page 18 of 18

IBM Software Group

Timeout nodes © 2006 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM WebSphere

UNIX is a registered trademark of The Open Group in the United States and other countries.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include
technical inaccuracies or typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any
statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this
document to IBM products, programs, or services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM
operates or does business. Any reference to an IBM Program Product in this document is not intended to state or imply that only that program product may be used.
Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY
WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and
conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License Agreement, etc.) under which
they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly
available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other
claims related to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding
patent or copyright licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented
as illustrations of how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will
experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration,
and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements equivalent to the
ratios stated here.

© Copyright International Business Machines Corporation 2006. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule
Contract and IBM Corp.

