
User_Defined_Extensions.ppt Page 1 of 23

®

IBM Software Group

© 2006 IBM Corporation

Updated December 21, 2006

WebSphere ® Message Broker V6

User-defined extensions enhancements

This presentation discusses the enhancements in user-defined extensions implemented in
WebSphere Message Broker V6.

User_Defined_Extensions.ppt Page 2 of 23

IBM Software Group

2
User-defined extensions enhancements © 2006 IBM Corporation

Agenda

� User-defined extensions overview

� User-defined extensions enhancements

� Summary and References

The agenda for this presentation includes an overview of user-defined extensions and
enhancements.

User_Defined_Extensions.ppt Page 3 of 23

IBM Software Group

3
User-defined extensions enhancements © 2006 IBM Corporation

UserUser--defined extensions overviewdefined extensions overview

SectionSection

This section provides an overview of user-defined extensions.

User_Defined_Extensions.ppt Page 4 of 23

IBM Software Group

4
User-defined extensions enhancements © 2006 IBM Corporation

User-defined extensions

�Add function to your implementation of WebSphere
Message Broker

� Types of user-defined extensions:
�User-defined input nodes

�User-defined message processing nodes

�User-defined output nodes

�User-defined parsers

A user-defined extension is a component that you can design and implement to add to the
function of your implementation of WebSphere Message Broker.

The user-defined nodes and parsers that you create can be used in conjunction with both
the nodes and parsers supplied with the product, and with third-party supplied nodes and
parsers. You can also configure a user-defined node to use a user-defined parser that you
have written rather than one of the supplied parsers.

User_Defined_Extensions.ppt Page 5 of 23

IBM Software Group

5
User-defined extensions enhancements © 2006 IBM Corporation

User-defined extension APIs

� Java™ or C language user-defined extension API provided
with the product
�you must install the "Samples and SDK" optional component

�SDK provides the required header files and contains samples

� Platform independent, if using ANSI standard C or Java

� User-defined nodes
�in C or Java

� User-defined parsers
�only in C

A user-defined parser must be written in the C programming language. User-defined
nodes can be written in the C or Java programming language. User-defined nodes and
parsers written in C must be compiled into a loadable implementation library, that is, a
shared library on Linux® and UNIX®, or a Windows® DLL. User-defined nodes written in
Java must be packaged as a jar file. You must integrate any user-defined extension you
create into the WebSphere Message Broker tools before you can use it.

You can use your new node types on more than one operating system, if you make them
platform independent. You can achieve this platform independence by using the ANSI
standard C or Java programming languages, and by avoiding the use of platform specific
code in your user-defined extension.

If you plan to program using the supplied Java or C language user-defined extension API,
you must install the "Samples and SDK" optional component on at least one system. The
SDK provides the required header files and contains samples that you can modify to your
own requirements.

User_Defined_Extensions.ppt Page 6 of 23

IBM Software Group

6
User-defined extensions enhancements © 2006 IBM Corporation

User-defined nodes

� A user-defined node is an Eclipse plug-in that adds a
category of nodes to the Message Flow editor palette.

� To create a user-defined node in the WMB V6 toolkit:
�Create user-defined node project

�Create the user-defined node plug-in files

�Define the properties

� Optionally:
�Add help to the node

�Create node icons

�Add a property editor or compiler

A user-defined node is an Eclipse plug-in that adds a category of nodes to the Message
Flow editor palette. These user-defined nodes, often called plug-ins, allow you to define
your own specific but reusable functionality in your message flows.

Before creating a user-defined node, you must have created a user-defined node project.
To create the visual representation of your user-defined node in the workbench, perform
the following tasks:

Create the user-defined node plug-in files:

In the Broker Application Development perspective, launch the Plug-in node project
wizard: Click File > New > Project... then Message Flow Node Development >
Message Flow Plug-in Node Project and specify a filename for the node

Define the properties

You can also perform the following optional tasks:

Add help to the node

Create node icons

Add a property editor or compiler

User_Defined_Extensions.ppt Page 7 of 23

IBM Software Group

7
User-defined extensions enhancements © 2006 IBM Corporation

UserUser--defined extension enhancementsdefined extension enhancements

SectionSection

This section will cover the user-defined extension enhancements.

User_Defined_Extensions.ppt Page 8 of 23

IBM Software Group

8
User-defined extensions enhancements © 2006 IBM Corporation

V6 enhancements to user-defined extensions

�User-defined extension limitations in the previous
release included:
�Validation of data type and object passed by API calls to

and from user-defined extensions was not performed

�Tracing on behalf of user-defined extensions was not
available

In the previous release of Message Broker, the data that was passed to and from a user-
defined extension was not validity checked. Any bad parameters or invalid data passed
could cause a variety of problems. In addition, there was no tracing available for user-
defined extensions.

User_Defined_Extensions.ppt Page 9 of 23

IBM Software Group

9
User-defined extensions enhancements © 2006 IBM Corporation

User-defined extension API parameter checking

�User-defined extension API now checks
parameters for correct type and valid object
�Provides earlier detection of errors

�Improves broker runtime robustness

�Helps determine if problem is in user-defined node or
broker

�New returns codes from most user-defined
extension API calls
�Indicates problem with parameter

� Examples: cci_INVALID_ELEMENT_OBJECT,
cci_INVALID_NODE_OJBECT

The user-defined extension interface API was enhanced in Version 6 to allow user-defined
nodes to be more robust and to allow errors to be detected in the API layer. This extra
checking also assists in problem debugging so that you can determine if the error is likely
to be in the user-defined extension or in the broker itself. This is achieved by a series of
API checks which validity check the parameter types and objects related to the user-
defined extension API calls. New return codes are provided to report the various errors
that can occur.

User_Defined_Extensions.ppt Page 10 of 23

IBM Software Group

10
User-defined extensions enhancements © 2006 IBM Corporation

Writing entries to broker trace

�User-defined extensions can now write to broker
trace
�Improves problem diagnosis

�Simplifies tracing

�Consolidated with User and Service Trace (caller
specifies message catalog to use)
� cciUserTrace()
� cciUserDebugTrace() – trace if user trace set to DEBUG

� cciServiceTrace()
� cciServiceDebugTrace() – trace if service trace set to DEBUG

2006-01-14 12:48:31.736389 3968 UserTrace SwitchMSG2: Switch
element received name=action value =wrongValue. No user action
required.

The user-defined nodes can now optionally write user, user-debug, service, or service-
debug trace entries to the broker trace file. This improves problem diagnosis and
simplifies tracing, since the user and system trace entries are consolidated into a single
file.

User_Defined_Extensions.ppt Page 11 of 23

IBM Software Group

11
User-defined extensions enhancements © 2006 IBM Corporation

User-defined parser trace entry

�User debug must be set “on” for this trace

�BIP4146: a debug message that is traced when
invoking a user-defined parser utility function,
where the utility function alters the state of a
syntax element. This includes all utility functions
that start with cpiSetElement*, where * represents
all nodes with that stem.

Trace entry BIP4146 is issued when a user-defined extension parser utility function alters
the state of a syntax element. User debug tracing must be set “on” for this trace entry to
be written.

User_Defined_Extensions.ppt Page 12 of 23

IBM Software Group

12
User-defined extensions enhancements © 2006 IBM Corporation

User-defined extension API parameter error
tracing
� BIP4147: an error message that is traced when a user-defined

extension passes an invalid input object to a user-defined extension
utility API function.

� BIP4148: an error message that is traced when a user-defined
extension damages a broker's object. Possible message broker objects
include syntax element, node, and parser.

� BIP4149: an error message that is traced when a user-defined
extension passes an invalid input data pointer to a user-defined
extension utility API function.

� BIP4150: an error message that is traced when a user-defined
extension passes invalid input data to a user-defined extension utility
API function.
�Example: BIP4150 User defined extension input parameter failed debug

validation check. Input parameter 2 passed into function ‘cciFoo’ does not
have a valid value.

� Environment variable must be set for these trace entries to be written
�MQSI_UDE_ERROR_CHECKING = on/off (“on” is default)

In Version 6, when a parameter error or object error is detected, a report of the error is
now written to the broker trace log. Notice the new trace entries provided to report these
errors, ranging from BIP4147 to BIP4150. These trace entries are controlled by
MQSI_UDE_ERROR_CHECKING environmental variable, which is set “on” by default.

User_Defined_Extensions.ppt Page 13 of 23

IBM Software Group

13
User-defined extensions enhancements © 2006 IBM Corporation

User-defined extension invocation/exit tracing

�User debug must be set “on” for these traces

�BIP2233 and BIP2234: a pair of messages traced
before and after a user-defined extension
implementation function is invoked. These
messages report the input parameters and the
returned value.

�BIP3904: a message traced before invoking the
Java evaluate() method of a user-defined node.

�BIP3905: a message traced before invoking the C
cniEvaluate() implementation function (iFpEvaluate
member of CNI_VFT) of a user-defined node.

Additional tracing is added in Version 6 to record key processing points for user-defined
extensions. BIP2233 is issued just before the invocation of a user-defined extension, and
BIP2234 is issued after the return from the user-defined extension. BIP3904 is issued
before the Java evaluate method is called within a user-defined extension. BIP3905 is
issued just before the C language evaluate implementation function is called within a user-
defined extension. User debug tracing must be set “on” for these trace entries to be
written.

User_Defined_Extensions.ppt Page 14 of 23

IBM Software Group

14
User-defined extensions enhancements © 2006 IBM Corporation

More user-defined extension trace entries

� User debug must be set “on” for these traces

� BIP4142: a debug message that is traced when invoking a
user-defined node utility function, where the utility function
alters the state of a syntax element. This includes all utility
functions that start with cniSetElement*, where * represents
all nodes with that stem.

� BIP4144 and BIP4145: a pair of messages traced by
certain implementation functions that, when invoked by a
user-defined extension, can modify the internal state of a
message broker's object. Possible message broker objects
include syntax element, node, and parser.

Trace entry BIP4142 is issued whenever a user-defined extension alters a syntax element.
BIP4144 and BIP4145 trace entries record when the user-defined extension can modify
the state of a message broker’s object. User debug tracing must be set “on” for these
trace entries to be written.

User_Defined_Extensions.ppt Page 15 of 23

IBM Software Group

15
User-defined extensions enhancements © 2006 IBM Corporation

User-defined extension trace multi-byte
support
�User-defined extension trace now supports multi-

byte characters
�Wide forms of APIs

�cciUserTraceW()

�Wide exceptions

�cciGetLastExceptionDataW

�cciThrowExceptionW

The user-defined extension trace API now supports multi-byte characters, called the
“wide” form of the API. Related “wide” exception responses are also issued. The “wide”
form is indicated by the capital “W” suffix of the API call or exception response.

User_Defined_Extensions.ppt Page 16 of 23

IBM Software Group

16
User-defined extensions enhancements © 2006 IBM Corporation

Call-back registration

� User-defined extension node “registers” for a certain event

� User-defined extension node informed when event occurs
�“No messages to process”, “Instance pooled”, “Instance ended”

�Optimize resource usage when flow is not processing messages

�Close open files
�Lazy commit

� Register user call-back function using new user-defined
extension API
�Allows call-back state to be maintained by threadContext

Version 6 allows a user-defined extension to register for a particular event in the system.
Once registered, the user-defined extension is notified when that event occurs. You can
use this facility, for example, to close any open files or to commit changes when there are
no messages to process or when a message instance ends. The registration uses the
new user-defined extension API, allowing the call-back state to be maintained by the
thread context.

User_Defined_Extensions.ppt Page 17 of 23

IBM Software Group

17
User-defined extensions enhancements © 2006 IBM Corporation

Example: Call-back registration

cciMessageContext* messageContext = cniGetMessageContext(NULL,message);
cciThreadContext* threadContext =

cniGetThreadContext(NULL,messageContext);
static MyContext myContext={1};

cciRegisterForThreadStateChange(
NULL,
threadContext,
& myContext,
switchThreadStateChange,
CCI_THREAD_STATE_IDLE |
CCI_THREAD_STATE_INSTANCE_END |
CCI_THREAD_STATE_TERMINATION);

Here is an example of a registration for call-back, which monitors for thread idle, thread
instance end, and thread termination.

User_Defined_Extensions.ppt Page 18 of 23

IBM Software Group

18
User-defined extensions enhancements © 2006 IBM Corporation

ESQL path expressions

�Allows user-defined node to build an ESQL path
expression
�User-defined node property specifications of runtime

behavior

�Navigation to input or output tree elements

�Examples
�Navigate to InputRoot.XML.A.B[3].E

�Navigate and create OutputRoot.XML.A.B[<].E.F

ESQL Path Expressions are allowed in WebSphere Message Broker Version 6. For
example, you can create the path expression for a particular array element for input or
output. Using path expressions allows the path to be more dynamic and can also reduce
the number of function calls, especially if a target element is used a number of times and
is deep within the tree structure.

User_Defined_Extensions.ppt Page 19 of 23

IBM Software Group

19
User-defined extensions enhancements © 2006 IBM Corporation

ESQL path expression APIs

�Create path expression
�cniSqlCreateReadOnlyPathExpression()

�cniSqlCreateModifiablePathExpression()

�Run expression
�cniSqlNavigatePath()

�Returns located tree element

�Delete Expression
�cniSqlDeletePathExpression()

There are two API calls to create the path expression objects; the
CreateReadOnlyPathExpression and the CreateModifiablePathExpression. Once created,
the NavigatePath API call is used to run the path expression that you have created. The
DeletePathExpression API call is used to delete a path expression.

User_Defined_Extensions.ppt Page 20 of 23

IBM Software Group

20
User-defined extensions enhancements © 2006 IBM Corporation

Summary and referencesSummary and references

Section

The last portion of the presentation contains a summary and references.

User_Defined_Extensions.ppt Page 21 of 23

IBM Software Group

21
User-defined extensions enhancements © 2006 IBM Corporation

Summary

� Improved API parameter checking

�Enhanced trace API
�User-defined extension tracing

�Multi-byte string support

�Call-back registration

�ESQL path expressions

WebSphere Message Broker provides enhancements in Version 6 for the user-defined
extension API so that data references and objects are validity checked in the API
interface. The enhanced API for user-defined extensions also provides additional tracing
capabilities so that user-defined extension errors and optional user trace entries are
written to the broker trace log. In addition, tracing and exception responses now support
multi-byte strings.

A new call-back registration is provided so that user-defined extensions can monitor for
certain events, allowing user-defined extensions to respond more dynamically to changes
in the execution flow or system conditions.

ESQL path expressions are now supported which can reduce the number of API calls and
allow more flexibility in path references.

User_Defined_Extensions.ppt Page 22 of 23

IBM Software Group

22
User-defined extensions enhancements © 2006 IBM Corporation

References

� WebSphere Message Broker library is at:

http://www.ibm.com/software/integration/wbimessagebroker/library/

� WebSphere Message Broker Information Center is at:

http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r0m0/index.jsp

� In the WebSphere Message Broker V6 Information Center:
�See topic as04500 in the WMB V6 Information Center for details on

creating a user-defined node

�See topic as01380 for designing a user-defined extension

�See topic au20120 for details resolving problems with user-defined
extensions

User_Defined_Extensions.ppt Page 23 of 23

IBM Software Group

IBM Confidential Presentation Title © 2006 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM WebSphere z/OS zSeries

J2SE, Java, Javadoc, JDBC, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include
technical inaccuracies or typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any
statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this
document to IBM products, programs, or services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM
operates or does business. Any reference to an IBM Program Product in this document is not intended to state or imply that only that program product may be used.
Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY
WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and
conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License Agreement, etc.) under which
they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly
available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other
claims related to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding
patent or copyright licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented
as illustrations of how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will
experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration,
and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements equivalent to the
ratios stated here.

© Copyright International Business Machines Corporation 2006. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule
Contract and IBM Corp.

