
WMB61_IEA_Message_modeling.ppt Page 1 of 31

®

IBM Software Group

© 2008 IBM Corporation

Updated January 22, 2008

Message modeling

WebSphere ® Message Broker Version 6.1

This presentation provides a general introduction to message modeling in WebSphere
Message Broker, and discusses the new facilities for modeling in Version 6.1.

WMB61_IEA_Message_modeling.ppt Page 2 of 31

IBM Software Group

2

Message modeling © 2008 IBM Corporation

Agenda

�Review of parsing and modeling in Message
Broker version 6.0

�How this changes in version 6.1

�New function in version 6.1

Parsing is more
model-driven in

version 6.1

The presentation first provides a review of parsing and message modeling in Message
Broker version 6.0. It then looks at how these basic techniques have evolved in version
6.1, and then concludes by looking at the new modeling function in version 6.1.

WMB61_IEA_Message_modeling.ppt Page 3 of 31

IBM Software Group

3

Message modeling © 2008 IBM Corporation

<Person Age=“32” Height=“172.5”>

<Name>Joe Bloggs</Name>

</Person>

Review: What is Message Parsing?

Input message
bit stream

Output logical
message tree

Input logical
message tree

Output message
bit stream

Transformation

Independent of
physical format

Model

Parser Parser

032 1725 Joe Bloggs

Typically a WebSphere Message Broker message flow will receive messages in a defined
format, transform them, and output them in a different format. The example shows a
COBOL Person data structure being transformed into an XML Person document. You can
see that each of the Person messages contains Name, Age and Height fields.
The COBOL Person message arrives in the form of an input bit stream. Before it can be
processed by the message flow, it must be converted into something called an input
logical message tree for transformation by the message flow. This is a broker data
structure that reflects the logical structure of the message. All of the broker’s processing
nodes work with the logical message tree, regardless of whether your transformation logic
is expressed in Java or ESQL, or as a graphical mapping. In the example, some logic is
applied which transforms the message and creates a new, output logical message tree.
Finally this is converted into an output bit stream that represents the message as an XML
document.
The component of the broker responsible for converting a bit stream into a logical
message tree (parsing), and vice versa (serializing or writing), is called a parser. The
parser must understand both the physical format of the bit stream and its logical structure
in order to create the logical message tree. In the example you can see two parsers, one
that understands COBOL data structures and another that understands XML.
Note that it is only the parser that needs to understand the physical format of the
message. The logical message tree is independent of the physical format of the message
bit stream. This decoupling of physical format from transformation logic is a key
architectural feature of broker message flows.
A parser may, or may not, use a model when parsing. You will see the advantages
provided by having such a model, later on.

WMB61_IEA_Message_modeling.ppt Page 4 of 31

IBM Software Group

4

Message modeling © 2008 IBM Corporation

Review: Types of Parser

� Parsers understand the format of messages

� Two approaches

� ‘Programmatic’
�Knowledge of the message format is encoded in a program

�Each message format needs a new parser program

� ‘Descriptive’
�Knowledge of the message format is encoded in a model
�A general purpose parser program uses the model when parsing

�Model can be used as-is or generated into code

� Broker uses both approaches

A parser must understand the format of the messages that it will be parsing and
serializing, it would not be of much use otherwise! There are two basic approaches to
writing a parser.

The first is the ‘Programmatic’ approach, where a specific parser program would be written
to parse each different message format. For example, if you had five different COBOL
data structures, you would write five different format specific parsers. The knowledge of
the format is hard-wired into the parser program code. This approach works well where the
format tends to be fixed or where the format is self-defining. It has the advantage that
optimizations for specific formats can easily be made, but has the disadvantage of
inflexibility. A new parser program must be written for each new format, and if a format
changes, the parser program must be changed, re-compiled, re-linked and re-deployed.

The second is the ‘Descriptive’ approach, where a single general purpose model-driven
parser program would be written to parse all formats, each message format being
represented by its own model. The knowledge of the format is not in the parser, instead it
is in the model. The model is either accessed directly by the parser at runtime, or can be
generated into code that the parser invokes. Model-driven parsing is a flexible approach
as it is typically easier to change and deploy models, but it is harder to optimize a general
purpose parser.

WebSphere Message Broker uses both programmatic and descriptive parsers, depending
on the nature of the message formats involved.

WMB61_IEA_Message_modeling.ppt Page 5 of 31

IBM Software Group

5

Message modeling © 2008 IBM Corporation

Review: Parsers and domains in version 6.0

� Each message is associated with a domain
�Each domain is suited to a particular class of messages

�A domain has its own dedicated parser

� Broker version 6.0 supplies several domains
�You choose which domains to use to parse your messages

�Some domains use a descriptive (model-driven) parser
� MRM domain for binary data, formatted text and XML

� IDOC for SAP ALE IDocs from WMQ Link for R3

�Others have a programmatic parser
� BLOB domain for opaque data

� XML, XMLNS and XMLNSC for generic XML parsing

� MIME domain for multipart MIME messages

When a message arrives at the broker it has to know how to parse it.
This is achieved by giving the message something called a domain.
Each domain is suited to a particular class of messages and has its own dedicated parser.
Each domain has a name, and its parser has the same name.
In fact the terms domain and parser are used interchangeably in the broker.
Message Broker supplies several domains and you choose the most suitable one for your message formats.
The way you tell the broker the domain is normally on the input node of the flow for an input message, or
alternatively you can specify the domain in the MQRFH2 or JMS header.
For an output message you specify the domain when you create the output logical message tree.
Each message that is to be processed by a message flow must be associated with a domain. A domain
determines the parser that is used when parsing and serializing the message. Each domain is suited to a
particular class of messages. Some domains even support several different classes of message. The domain
to use for an input message is typically specified on the input node of the message flow, but can also be
specified by an MQRFH2 header or JMS header. The domain to use for an output message is specified
when the message is created in the logical tree. To keep things simple, the parser for a domain has the
same name as the domain – effectively domain and parser mean the same thing.
WebSphere Message Broker supplies several different domains. You choose the domain most suitable for
the message format in question.
The most flexible domain is called “MRM” which has a general purpose model-driven parser capable of
parsing binary messages, text messages and XML documents.
The BLOB domain can be used when the message is being treated as opaque, and just being routed.
Effectively the message is not parsed at all.
For programmatic parsing of XML documents without a model, a set of ‘generic’ XML domains exist, called
XML, XMLNS, and XMLNSC.
Specialist domains are provided for MIME messages (for example, SOAP with Attachments, RosettaNet)
and for SAP IDOC structures.
If a supplied domain is not suitable for a particular message format, you can write your own programmatic or
descriptive parser for use by your own user-defined domain.

WMB61_IEA_Message_modeling.ppt Page 6 of 31

IBM Software Group

6

Message modeling © 2008 IBM Corporation

Review: Generic XML domains in version 6.0

� Dedicated domains for XML documents
�Programmatic parsing of XML according to basic XML rules

�No XML model used when parsing

�Use IBM’s Xerces implementation to parse the XML

� XML domain
�Original version 2.0 domain, no longer recommended

� XMLNS domain
�Added in version 5.0 to handle documents using XML namespaces

� XMLNSC domain
�Added in version 6.0 to create a more compact logical message tree

�Comes with ‘Parser Options’ node properties to control behavior

A set of domains is provided for parsing XML documents without an XML model. Because
XML is so verbose, a model is not actually needed to parse XML and a parser can be
written to parse the XML programmatically.
The XML domain was the original way of processing XML documents in MQSI version 2.0.
It has no support for XML namespaces and should not be used for developing new
message flows.
The XMLNS domain was added in Message Broker version 5 to provide true support for
XML namespaces. Use of namespaces alters the content (but not the shape) of the logical
message tree, which is why a new domain was created instead of altering the original XML
domain.
Both XMLNS and XML create a logical tree whose shape conforms very closely to the
XML data model. Hence, formatting white space is retained and simple elements and
attributes have their value held in a separate child node of the tree.
The XMLNSC ‘compact’ domain was added in Message Broker version 6.0, to reduce the
amount of memory occupied by logical message trees created from XML documents. This
‘compact’ behavior alters the shape of the logical message tree, which is why a new
domain was created. By default, formatting white space is discarded and simple elements
and attributes do not have child nodes. Substantial memory saving can result.
The XMLNSC domain is the first domain to exploit a facility in version 6.0 called parser
options. These are a set of options exposed as node properties that are passed to a
specific parser at runtime, thereby allowing its behavior to be controlled on a per-node
basis.
Whether to use a generic XML domain or the MRM domain to parse your XML documents
is discussed later on.

WMB61_IEA_Message_modeling.ppt Page 7 of 31

IBM Software Group

7

Message modeling © 2008 IBM Corporation

Review: MRM domain in version 6.0

� Flexible, model-driven domain
�Supports a wide variety of message formats

�Message model is deployed to the broker for use by MRM parser

�Optionally validates messages against the model

� Supports binary messages
�C, COBOL, PL/1, etc, structures

� Supports formatted text messages
� Industry standards such as SWIFT, X12, HL7, FIX

�Common text formats such as CSV

� Supports XML messages
�Uses Xerces to parse the XML

<Person Age=“32” Height=“172.5”>

<Name>Joe Bloggs</Name>

</Person>

32,172.5,Joe Bloggs

{A:32;H:172.5;N:Joe Bloggs}

032 1725 Joe BloggsCWF

TDS

XML

The most flexible domain is called MRM which has a general purpose model-driven
parser. For example, the MRM parser can perform runtime validation of messages against
the model.

The MRM domain supports modeling binary messages from applications written in C,
COBOL, PL/1 and other languages. This support includes the ability to create a message
model directly from a C header file or COBOL copybook. Binary messages are modeled
using a physical format called Custom Wire Format (CWF).

The MRM domain supports modeling formatted text messages, perhaps with field content
identified by tags or separated by specific delimiters or both. This includes industry
standards such as SWIFT, EDIFACT, X12, HL7 and FIX, and commonly used text
messages such as Comma Separated Values (CSV). Text messages are modeled using a
physical format called Tagged/Delimited String format (TDS).

The MRM domain supports modeling XML messages, including those that exploit XML
namespaces. Because it is using a model to parse XML, it provides extra functionality
beyond the generic XML domains. Examples are creating objects in the logical message
tree with the correct data type, and validating XML against the model. XML messages are
modeled using a physical format called XML Wire Format (XML).

Note that when parsing XML, the MRM behaves as a ‘compact’ domain like XMLNSC.

WMB61_IEA_Message_modeling.ppt Page 8 of 31

IBM Software Group

8

Message modeling © 2008 IBM Corporation

Runtime use of
model by parser

Design time use of
model by toolkit

Review: Why model messages?

1.Most messages are not self-defining
�Often a model is needed to parse the message bit stream

2.Validation
�A model is needed to check message correctness when parsing

3.Speeds development of transformations
�Provides source and target for graphical mappings
�Provides assistance when editing transformation programs

4.Version control
�By storing in a central shared repository

5. Instant documentation
�For programmers, analysts and integration specialists

There are several reasons why you might need to model your messages. The first two are
uses of the model by a parser at runtime. The others are uses of the model at design time,
and are independent of whether the model is actually used by a parser.

The majority of messages are not what is termed ‘self-defining’. Think of a message
created by a C or COBOL program – it’s just a stream of binary data. Without some
intelligence to interpret it, it is meaningless, and that’s where the model comes in. XML is
the opposite – it is so verbose that an XML parser can parse any XML document without
using a model at all.

If you want to validate that your messages are correctly structured you need a model. An
XML parser can parse any XML document but it can only check it is correct if it has a
model to guide it.

A model can speed up the development of transformations enormously. For example,
graphical mapping from a source message to a target message is not possible without a
model. If you are transforming XML documents in this manner, you need a model even if
the XML parser chooses not to use a model at runtime.

Models provide a good way of tracking different versions of your messages. COBOL
programmers typically create a new version of a copybook each time a change is made,
using a configuration control system. The same principle applies to message models.

A model provides documentation for a message that can be shared between
programmers, business analysts and integration specialists.

WMB61_IEA_Message_modeling.ppt Page 9 of 31

IBM Software Group

9

Message modeling © 2008 IBM Corporation

Review: Creating & using message sets in 6.0

Generators

Message
set

WSDL

Importers

COBOL C XSD WSDL

Message Message
Brokers Brokers
ToolkitToolkit

ESQL

Mapper

Message Message
Broker Broker
RuntimeRuntime

Model

MRM
Parser

XMLNSC
Parser

Message
dictionary

Message
dictionary

Domain: MRM

Set: Person Defs

Type: Person

Format: COBOL1

Domain: XMLNSC

Set:

Type:

Format:

Message models live in a container called a message set. The typical sequence of events when creating and
using a message set is as follows.

First you create a message set project and message set.
Next you import application message formats described by XML DTD, XML Schema, WSDL types, C
structures or COBOL structures, which create and populate message definition files. You can then edit the
logical structure of your messages, and the physical format annotations, using the message definition
editor.
Alternatively, you can create an empty message definition file and create your logical structure and
physical annotations using just the editor.
If the message models in the message set are to be used by the MRM parser at runtime, you must deploy
them to the broker. It is the message set that is the unit of deployment. You do this by adding the message
set to a broker archive (.bar) file, which causes the message set to be generated into a compact form
called a message dictionary.
If the message models in the message set are to be referenced by the Mapping editor or the ESQL editor,
you must set the message flow project so that it references the message set project. This is done using the
File, Properties menu.
If the message models in the message set are to be used by other tools to create Web Services, you can
generate WSDL from the message set using a wizard.

When using the MRM domain, in addition to associating the message with the domain as discussed earlier,
you must also provide some further information. This is so the MRM parser can correctly locate the definition
of the message in the model. These properties (Set, Type, Format) are specified in the same way as the
domain.
The Set specifies the message set that contains the definition of the message.
The Type specifies the message within the message set. It should be set to the name of the message in the
message model.
The Format specifies the physical format to use, which describes the physical layout of the message bit
stream. It should be set to the name of the physical format in the message model.

WMB61_IEA_Message_modeling.ppt Page 10 of 31

IBM Software Group

10

Message modeling © 2008 IBM Corporation

How this changes in version 6.1How this changes in version 6.1

Section

The presentation now describes how this has changed in Message Broker version 6.1.

WMB61_IEA_Message_modeling.ppt Page 11 of 31

IBM Software Group

11

Message modeling © 2008 IBM Corporation

Parsers and domains in version 6.1

� New domains
�SOAP

� Model-driven parsing of SOAP messages with WS-* standards

� Includes MTOM and SwA (MIME)

�DataObject
� Model-driven domain for data from WebSphere Adapters

� Enhanced domains
�XMLNSC can now use model to validate XML documents

�Improvements to MRM for binary and text messages

� Deprecated domains
�XML – use XMLNSC instead

�IDOC – use MRM TDS instead

Two new model-driven domains are added for version 6.1:
First, the SOAP domain. This is for use with the new SOAP nodes introduced in version
6.1. These nodes handle SOAP XML, MIME wrappered SOAP with Attachments and
MTOM, and provide support for WS-Addressing and WS-Security standards. A canonical
tree is created, which is owned by this new domain.
Second, the DataObject domain. This is for use with the new Adapter nodes. These
nodes interface directly with enterprise information systems using embedded
WebSphere adapters. A tree is created to represent the adapter business object, which
is owned by this new domain.

Two key existing domains are enhanced:
The XMLNSC domain is given a new internal high-speed parser which can be used
without a model as in version 6.0, but can also parse and validate against a real XML
Schema, so becoming model-driven. This is covered later in this presentation.
The MRM domain continues to be enhanced to increase the number of formats that can
be modeled and to make modeling easier. Again, this is covered later in this
presentation.

Two existing domains are officially deprecated:
XML domain. There is no need for this domain because XMLNSC or XMLNS can be
used instead.
IDOC domain. There are limitations with this domain, and rather than fix them, MRM is
now capable of handling SAP ALE and file IDocs, and so should be used instead.

WMB61_IEA_Message_modeling.ppt Page 12 of 31

IBM Software Group

12

Message modeling © 2008 IBM Corporation

Message sets in version 6.1 – key changes

� Concept of ‘supported domains’
�You say which domains a message set can support

� New adapter connection wizard
�Creates message definition files from EIS metadata

�Used by the new DataObject domain

� WSDL as a first-class object
�WSDL now resides within a message set

�Used by the new SOAP domain

� Runtime model generation
�Adding a message set to a .bar file supports all model-driven

domains

Message Broker version 6.1 made some changes to message set definitions. These are
described in Part 1 of the Toolkit presentation.

As a reminder, the key changes are:

First, you indicate in a message set which domains it is capable of supporting, using a
new ‘Supported message domains’ property. There is no limit to the number of
domains that can be supported, nor are there any combinations that are disallowed.
However, best practice is to model unrelated models in separate message sets, so the
recommendation is for most message sets to support one or two domains.

Second, a new Adapter Connection wizard allows you to interrogate EIS applications
such as SAP and populate a message set with message definition files that model the
messages that will be exchanged with the EIS applications. These models will be used
by the new model-driven DataObject domain.

And finally, when WSDL is imported into a message set, the WSDL is added to the
message set itself, becoming a first-class artifact within the message set. The WSDL
will be used to configure new SOAP nodes and will be used by the new model-driven
SOAP domain.

These changes are important to keep in mind when looking at the runtime models
generated when a message set is added to a .bar file in version 6.1.

WMB61_IEA_Message_modeling.ppt Page 13 of 31

IBM Software Group

13

Message modeling © 2008 IBM Corporation

Adding a message set to a .bar file in version
6.1

MRM or IDOC
causes .dictionary
to be generated

SOAP, XMLNSC
or DataObject

causes .xsds to be
generated and
zipped into a

.xsdzip

SOAP additionally
causes .wsdls to
be added to the

.xsdzip

New ‘Supported
message domains’

property
determines what is

generated and
added to .bar file

In version 6.1 the SOAP, DataObject, MRM, XMLNSC and IDOC domains are model-
driven. Each domain requires its model to be deployed to the message broker runtime in
an appropriate form.

Hence, the MRM and IDOC domains require message dictionaries, as in version 6.0.

The XMLNSC and DataObject domains each require an XML Schema.

The SOAP domain requires an XML Schema and WSDL.

When a message set is added to a .bar file, it is the new ‘Supported message domains’
property that determines which runtime models are generated and added to the .bar.

For MRM and IDOC domains a .dictionary file is generated from the message set as a
whole and added to the .bar, as in version 6.0.

For XMLNSC, DataObject and SOAP domains, a .xsd file is generated from each
message definition file. The .xsd’s are archived into a single .xsdzip file, and the .xsdzip is
added to the .bar file.

Additionally for SOAP, all .wsdl files are added to the .xsdzip.

Depending on the supported domains, a message set can therefore generate a .dictionary,
a .xsdzip, or both.

WMB61_IEA_Message_modeling.ppt Page 14 of 31

IBM Software Group

14

Message modeling © 2008 IBM Corporation

Creating and using Message Sets in version 6.1

Generators

Message
set

WSDL

Message Message
Brokers Brokers
ToolkitToolkit

Message Message
Broker Broker
RuntimeRuntime

Mapper Model Model

MRM
Parser

XMLNSC

Parser

Domain: MRM

Set: Person Defs

Type: Person

Format: COBOL1

Domain: XMLNSC

Set: Person Defs

Type:

Format:

Importers

COBOL C XSD WSDL Adapter

ESQL

Message
dictionary

WSDLs
Zip of

XSDs and
WSDLs

Message
dictionary

XSDs

How does this increased use of models affect creating and using message sets?

The most important difference is that you are now deploying real XML Schema and real
WSDL files to the broker runtime. If the message set is flagged as supporting XMLNSC or
SOAP or DataObject domains, then when the message set is added to the .bar file, a
.xsdzip file is created. This holds the generated XML Schema and the original WSDL files.
This is extracted on the broker and saved on the broker’s file system according to
message set.

When you specify that a message flow is to use XMLNSC or SOAP or DataObject as the
message domain, you must also supply the name of the message set. The parser for the
domain loads the XML Schema or WSDL and uses it appropriately.

WMB61_IEA_Message_modeling.ppt Page 15 of 31

IBM Software Group

15

Message modeling © 2008 IBM Corporation

New function in version 6.1New function in version 6.1

Section

This section covers the new function introduced in Message Broker version 6.1 for
Message Modeling.

WMB61_IEA_Message_modeling.ppt Page 16 of 31

IBM Software Group

16

Message modeling © 2008 IBM Corporation

XMLNSC - New internal high-speed parser

�Xerces replaced by XLXP
�New high performance XML parser

�Direct functional replacement for Xerces

�No external difference
�It just goes quicker

�Only for XMLNSC domain

�Also applies to SOAP parser
�Uses XMLNSC parser for SOAP header and body

There have been several important changes to the way that the XMLNSC domain
operates.

First, a faster XML parser called XLXP has replaced IBM’s Xerces parser. The XMLNSC
domain has switched to use XLXP with a consequent improvement in performance. This
switch has no external impact, and version 6.0 message flows that specify XMLNSC will
operate unchanged when migrated to version 6.1. Note that this change has only been
made to XMLNSC, not to XML, XMLNS or MRM XML, which continue to use Xerces. The
new SOAP parser uses the XMLNSC parser internally.

WMB61_IEA_Message_modeling.ppt Page 17 of 31

IBM Software Group

17

Message modeling © 2008 IBM Corporation

XMLNSC – Validation against XML Schema

� MRM dictionary validation not always sufficient
�Does not exactly match XML Schema rules

�This is a problem for users wanting true XML Schema validation

� Drive XLXP in validating mode by passing it an XML
Schema
�Existing ‘Validate’ node option switches on this behavior

�Default behavior still to parse ‘programmatically’, for compatibility

� XML Schemas deployed in .bar file
�If the message set supports XMLNSC domain, adding it to a .bar file

generates XML Schema into a file with extension .xsdzip

�The broker makes these XML Schema available to XLXP

�‘Message Set’ node property must be set to locate the .xsdzip

Second, validation against real XML Schema. Because the MRM validates against its own
dictionary model, it does not 100% faithfully reproduce XML Schema validation semantics.
This requirement is addressed in version 6.1, as the XMLNSC domain can now validate
against real XML Schema. Whether to validate is controlled by the existing node ‘Validate’
option, just like the MRM. If validation is selected, then you must also supply the name of
the message set which is used to locate the XML Schema on the broker’s file system.
XMLNSC validation considerably out-performs MRM validation too, as the architecture of
the XLXP parser is optimized for the model-driven scenario.

It’s important to note that XMLNSC therefore operates in one of two modes. The default
for version 6.0 compatibility is to operate in non-validating mode. If validation is selected
then it operates in validating mode and expects a Message Set property to be supplied.
The Message Type property is not needed as the name of the root element in the
document is used. Message Format property is not needed as only the logical model is
used by XMLNSC.

WMB61_IEA_Message_modeling.ppt Page 18 of 31

IBM Software Group

18

Message modeling © 2008 IBM Corporation

XMLNSC – Correct Data Types in Tree

� In version 6.0, can only create CHARACTER data in tree
�Without a model the parser does not reliably know the data type

� In version 6.1, if validating, the XML Schema is available!
�The broker reliably knows the data type and can create the correct data type

in the tree (INTEGER, DECIMAL, etc)

�New ‘XMLNSC Parser Options’ node property to switch this on
� ‘Build tree using XML Schema data types’

�Property only enabled if validation enabled

�Default behavior still to create just CHARACTER data, for compatibility

In version 6.0, XMLNSC never used a model and so had to assume that all XML data it
encountered was of character data type. Accordingly all syntax elements it created in the
tree were of ESQL data type CHARACTER. In version 6.1, if XMLNSC is operating in
validating mode, it has the XML Schema and therefore knows the XML Schema data type
of the XML data. This enables syntax elements to be built that have a data type that
matches the XML Schema data type, in the same way as the MRM builds its tree.

The default for version 6.0 compatibility is to build a tree with CHARACTER data types
only. If a new option called ‘Build tree using XML Schema data types’ is selected then the
tree will be built with appropriate data types. This new option can be found under
‘XMLNSC Parser Options’ and is only enabled in validating mode.

WMB61_IEA_Message_modeling.ppt Page 19 of 31

IBM Software Group

19

Message modeling © 2008 IBM Corporation

XMLNSC – ‘Opaque’ Parsing

� ‘Opaque’ parsing is a performance technique
�Certain, named, XML elements are not fully parsed, but instead are

skipped and the raw bit stream inserted into the tree as a Unicode
string

�Externalized in version 6.0 fix pack for XMLNS domain only, from
ESQL only, for a single named element only

� Fully externalized in XMLNSC in version 6.1
�New ‘Parser Options’ node complex property

� ‘Opaque elements’

�Allows multiple ‘opaque’ elements to be specified using XPath

�Property only enabled when validation disabled

�Not yet available from ESQL

Opaque parsing is a term used to describe a performance enhancement, where named
XML elements are not fully parsed, but instead are skipped and the raw bit-stream
inserted into the tree as a Unicode string. It’s available in version 6.0, but only exposed in
a limited way. In version 6.1 it has been fully externalized through a new option called
‘Opaque elements', which allows you to specify the XPaths of the elements you want to
parse opaquely. This new option can be found under ‘XMLNSC Parser Options’, and is
only enabled in non-validating mode, because by definition validation involves fully
expanding all elements.

The SOAP domain uses XMLNSC domain internally to parse SOAP XML, so all these
capabilities apply to SOAP domain too.

WMB61_IEA_Message_modeling.ppt Page 20 of 31

IBM Software Group

20

Message modeling © 2008 IBM Corporation

XMLNSC – Configuring nodes
Select XMLNSC domain

and message set

If validating, can
build tree with

correct data types

If not validating, can
parse named

elements ‘opaquely’

Switch on validation to
parse & validate against

XML Schema

These screen captures illustrate how all these new XMLNSC capabilities can be
configured on a node.

WMB61_IEA_Message_modeling.ppt Page 21 of 31

IBM Software Group

21

Message modeling © 2008 IBM Corporation

XML Parsing - Recommendations

� In version 6.1 the enhancements to XMLNSC make it the
recommended domain for XML parsing for the majority of
circumstances.

� Use XMLNS domain if you need to create a logical tree that
conforms to the XML data model, or if you want to preserve
in-line DTDs

� Use MRM XML if you have non-XML data parsed by MRM
CWF or TDS and which you just want to render as XML
with no further transformation

� Do not use XML domain

This slide summarizes the recommendations for XML parsing in Message Broker version
6.1.

First, for all new applications, you should use the XMLNSC parser if possible.

Second, the XMLNS domain can be used to create a logical tree conforming to the XML
data model. It can also be used to preserve inline DTDs.

The MRM domain can be used for non-XML data, where you want to change the data to
an XML format, but perform no further processing.

The XML domain is deprecated, and should not be used for new applications.

WMB61_IEA_Message_modeling.ppt Page 22 of 31

IBM Software Group

22

Message modeling © 2008 IBM Corporation

MRM – Automatic truncation

� In version 6.0 oversize fixed length data is a problem on
output
�Undersize data is padded automatically using pad character

�But oversize data must be manually trimmed else an exception occurs

�The length of the element is not available to the programmer!

� In version 6.1 oversize fixed length strings can be trimmed
automatically
�New message set properties to trim fixed length strings

� CWF: ‘Truncate fixed length strings’

� TDS: ‘Truncate on output’

This slide discusses automatic truncation of fixed length data. When you write flow logic to
create output data destined to be written out as a CWF or TDS fixed length field, then if
the data is too long it will cause an exception to be thrown. If you are happy for the data to
be truncated to fit the field, you must code additional logic to do so. Further, this must use
hard-coded lengths as there is no API available to access the model to obtain the length.

In version 6.1, new CWF and TDS options are available to truncate oversize output data
before being written. These options are message set properties, CWF ‘Truncate fixed
length strings’ and TDS ‘Truncate on output’. They apply to all fixed length fields in all
message definition fields in the message set.

WMB61_IEA_Message_modeling.ppt Page 23 of 31

IBM Software Group

23

Message modeling © 2008 IBM Corporation

MRM – Improved support for CSV messages

� In version 6.0 CSV messages have to created manually
�Awkward to model, especially if fields are quoted

�Samples shipped as a guide

� In version 6.1 CSV modeling is made easier
�Allow quotation marks to be used as a TDS escape mechanism

�Support for TDS ‘repeat references’ where number of repeats is given by an
integer field earlier in the message

�New TDS ‘Messaging Standard’ of ‘CSV’
� Presets the defaults for various TDS properties

�IBM-supplied simple CSV message
� Add using New Message Definition File From…IBM Supplied Message

� Includes TDS annotations

32,172.5,”Joe Bloggs, Jr”

2007-06-30, 2

40,200.0,Fred Flintstone

32,172.5,”Joe Bloggs, Jr”

Comma Separated Values, or CSV messages are very common and have been supported
by TDS for several releases. To make modeling CSV messages easier, several features
have been added to the TDS parser in version 6.1.

Starting and ending quotation marks can be used as an escape mechanism. A new TDS
message set property ‘Quote Character’ is provided. When parsing, quotation marks
cause all enclosed characters to be treated as data and not potentially as markup, and the
quotation marks are always stripped before data is added to the tree. On output quotation
marks are added when certain characters are found in the data, the characters being
those listed in the TDS ‘Reserved Characters’ property.

It is now possible to allow the number of repeats of an element to be indicated by an
integer field in the message. A new TDS element property ‘Repeat Reference’ is provided,
which works like the existing CWF property of the same name.

A new setting call ‘CSV’ is available, which presets the values of TDS properties like ‘Data
Element Separation’, ‘Quote Character’ and ‘Delimiter’ to values suitable for CSV
messages.

Finally, a pre-built TDS model of a simple CSV message is available. This can be added to
a message set using the “New Message Definition File From … IBM Supplied Message”
wizard.

Note that quotation mark escaping and repeat reference support can be used when
modeling any message format, not just CSV.

WMB61_IEA_Message_modeling.ppt Page 24 of 31

IBM Software Group

24

Message modeling © 2008 IBM Corporation

MRM – Hexadecimal characters in markup

� In version, 6.0 all TDS markup must be text
�Cannot model messages where hex is used in markup

� In version, 6.1 hex markup allowed
�New mnemonic syntax <0xNN> provided to indicate char is hex

�Hex allowed in TDS delimiters, tag/data separators, group indicators, group
terminators, repeating element delimiters

�Not allowed in TDS escape character, quote character, reserved characters,
decimal separator.

�Unicode and hex mnemonics allowed in TDS tags

� In version, 6.1 hex allowed in TDS data patterns
�New syntax \xNN provided to match pattern against hex rather than text

This slide discusses Hexadecimal characters in TDS markup. “Markup” is the term used to
describe those characters in a message format that are not data values. TDS delimiters,
tag/data separators, group indicators, group terminators and repeating element delimiters
are all examples of markup. In version 6.1, hex characters, in addition to text characters,
are permitted to occur in the markup listed. The syntax for specifying a single hex
character is mnemonic “0xNN”, as shown on this slide, where NN is a hex character in the
range 00 to FF. Such hex characters are not subject to code page conversion.
TDS tags can now contain Unicode character “U+NNNN” and hex character “0xNN”
mnemonics. In earlier versions of Message Broker, mnemonics were not been allowed in
tags.
Hex characters are now permitted to occur in TDS data patterns, used when parsing using
regular expressions. The syntax for specifying a single hex character is \xNN where NN is
a hex char in the range 00 to FF. Such hex characters are not subject to code page
conversion during matching of the regular expression.

WMB61_IEA_Message_modeling.ppt Page 25 of 31

IBM Software Group

25

Message modeling © 2008 IBM Corporation

MRM – Support mixed binary & text messages

� In version 6.0 it is often not possible to model messages
containing a mixture of text and binary data
�Example: a message that contained binary data types but text markup

� In version 6.1 TDS extended to support wide range of
physical types
�TDS ‘Physical Type’ property extended to match CWF

�TDS properties for elements now look very similar to those for CWF

�New TDS ‘Messaging Standard’ of ‘User Defined Mixed’

� Differences remain between CWF and TDS
�TDS does not support byte alignment rules

�C/COBOL import does not always fully populate a TDS model
� But defaults sometimes get you most of the way there!

Because of the historical split of the MRM’s non-XML model into binary and text physical
formats, it is often not possible to model message formats containing a mixture of binary
data and text markup. Most kinds of binary data are only handled by CWF, while markup
is only handled by TDS. In version 6.1 this changes, as the TDS parser is extended to
handle a wider range of binary data types.
Key to this change is to add more capability to existing TDS element property ‘Physical
Type’. The existing settings ‘Characters’ and ‘Messaging Standard Alternate’ have been
renamed ‘Text’ and ‘TLOG Specific’. New general purpose settings have been added,
which behave just like their CWF equivalents. These new settings are ‘Null Terminated
String’, ‘Length Encoded String 1’, ‘Length Encoded String 2’, ‘Packed Decimal’, ‘External
Decimal’, ‘Integer’, ‘Float’, ‘Time Seconds’, ‘Time Milliseconds’ and ‘Binary’ .
To go along with the new physical types, extra TDS element properties such as ‘Length
Units’ have been added, while others such as ‘Sign Orientation’ have been extended.
There are also new TDS message set properties to match CWF equivalents.
The net result is that TDS matches CWF except for two things:

TDS does not support byte alignment rules. There are no equivalent to CWF element
properties ‘Byte Alignment’, ‘Leading Skip Count’, and ‘Trailing Skip Count’.
The C and COBOL importers do not always fully populate a TDS model. These
importers set logical properties and CWF physical format properties, but not TDS
physical format properties. However, in conjunction with new TDS ‘Messaging
Standard’ setting ‘User Defined Mixed’, the TDS physical format derives many defaults
from the logical model. These include TDS ‘Physical Type’, ‘Justification’, ‘Length’ and
‘Sign Orientation’, which are sometimes enough to fully model the message.

Therefore, use CWF for pure COBOL and C modeling.

WMB61_IEA_Message_modeling.ppt Page 26 of 31

IBM Software Group

26

Message modeling © 2008 IBM Corporation

MRM – New TDS Element property sheet

Full range of text
and binary physical

types

Properties
extended to

closely match
CWF

New mnemonic
syntax for hex in

markup

Repeat reference
support

New syntax for
hex in data

patterns

Some of these properties are shown on this screen capture.

WMB61_IEA_Message_modeling.ppt Page 27 of 31

IBM Software Group

27

Message modeling © 2008 IBM Corporation

MRM – Support for SAP text IDocs

� In version 6.1, use MRM TDS for Text IDocs
�IDOC domain deprecated

� Supports both ALE and File IDocs

� Two IBM-supplied IDoc messages
�Add using New Message Definition File From…IBM Supplied Message

�Include TDS annotations

� C importer has new option for IDocs which does the same
adjustment as the IA0F utility

� C importer creates logical model and correct TDS model!

The IDOC domain has some limitations, the main one being that it is incompatible with the
Mapping node. The import step is not straight-forward, and requires some pre-processing
and post-processing of the C header files using a utility program. Finally, while ALE IDocs
are supported, File IDocs, which have DC and DDs separated by a Line-Feed, are not.

Rather than enhance the IDOC parser to cope with these problems, in version 6.1 the
MRM TDS parser now has all the capability to parse both ALE and File IDocs. So in
version 6.1, text IDocs should be parsed using MRM TDS, and the IDOC domain is
deprecated. The procedure for modeling such IDocs has these steps:

First, import a pre-built TDS model of an IDoc into your message set using the “New
Message Definition File From … IBM Supplied Message” wizard. There are pre-built
models for ALE and File flavors. This will create a TDS physical format called
‘Text_IDoc’ if none exists.

Second, ensure your TDS physical format has the ‘Messaging Standard’ property set
to ‘User Defined Text’.

Finally, import the user structure C header files using the “New Message Definition File
From … C” wizard, and select the new option for ALE or File IDocs. No pre-processing
is needed, as the utility logic is now in the wizard. The user structures are linked to the
DD using MRM multipart messaging.

Conveniently, the default TDS model created by the C importer correctly models the
user structure without any manual editing, because IDoc data is all fixed length strings.

WMB61_IEA_Message_modeling.ppt Page 28 of 31

IBM Software Group

28

Message modeling © 2008 IBM Corporation

MRM – C importer support for Text IDocs

Select pre-
process option
for IDoc style

This screen capture shows the process for creating a message definition from a text IDoc.

WMB61_IEA_Message_modeling.ppt Page 29 of 31

IBM Software Group

29

Message modeling © 2008 IBM Corporation

Summary

Parsing is more
model-driven in 6.1

�Review of parsing and modeling in 6.0

�How this changes in 6.1

�New function in 6.1

In summary, this presentation provided a review of message modeling techniques in
Message Broker version 6.0.

It then discussed how these have changed in version 6.1, and finally discussed the new
function in version 6.1 to assist with message modeling.

WMB61_IEA_Message_modeling.ppt Page 30 of 31

IBM Software Group

30

Message modeling © 2008 IBM Corporation

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_WMB61_IEA_Message_modeling.ppt

This module is also available in PDF format at: ../WMB61_IEA_Message_modeling.pdf

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WMB61_IEA_Message_modeling.ppt Page 31 of 31

IBM Software Group

31

Message modeling © 2008 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM WebSphere

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include
technical inaccuracies or typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any
statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this
document to IBM products, programs, or services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM
operates or does business. Any reference to an IBM Program Product in this document is not intended to state or imply that only that program product may be used.
Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY
WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and
conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License Agreement, etc.) under which
they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly
available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other
claims related to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding
patent or copyright licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented
as illustrations of how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will
experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration,
and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements equivalent to the
ratios stated here.

© Copyright International Business Machines Corporation 2008. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule
Contract and IBM Corp.

