
WMB61_IEA_File_FTP_Nodes.ppt Page 1 of 30

®

IBM Software Group

© 2008 IBM Corporation

Updated January 14, 2008

WebSphere ® Message Broker Version 6.1

File and FTP nodes

This presentation will discuss the new File functions in WebSphere Message Broker
Version 6.1.

WMB61_IEA_File_FTP_Nodes.ppt Page 2 of 30

IBM Software Group

2

File and FTP nodes © 2008 IBM Corporation

Agenda

� Overview

� FileInput
�Basic algorithm

�Record detection

�FTP

� FileOutput
�Basic algorithm

�Append rules

�FTP

After an overview of the File support added in Version 6.1, this presentation will discuss in
greater detail the two new nodes that provide this capability – File Input and File Output.
For both nodes, the presentation will first cover the basic algorithm, then discuss how the
nodes provide support for multiple records in a single file. Finally for each node, it will
cover the enhancements that allow the node to communicate with FTP servers.

WMB61_IEA_File_FTP_Nodes.ppt Page 3 of 30

IBM Software Group

3

File and FTP nodes © 2008 IBM Corporation

File support - Overview

� FileInput node reads files from the local file system
or FTP server

� FileOutput node writes files to the local file system
or FTP server

� Focus on message processing rather than
message delivery

�Supported on all broker platforms

Support has been added in Message Broker version 6.1 for both inbound and outbound
file manipulation. It is possible for the broker to read files from the local file system and
write files back to the file system. It is also possible to read and write files to or from an
FTP server.

The focus of the file support in Message Broker is on message processing rather than
message delivery. To move files reliably, a product such as WebSphere PM4Data is
recommended.

Support for the File Nodes is available on all platforms. On z/OS, files will be resolved in
the HFS or ZFS file system, and file names treated in the case-sensitive UNIX manner.

While this is the first time that file support has been delivered as part of the core product
offering, it is not the first file capability to be available in the Message Broker. For example,
support for VSAM files on the z/OS platform has been possible for a while through a
category 3 SupportPac. Additionally, the Message Broker File Extender product is
available for Message Broker version 6.0. The file support discussed in this presentation is
not based on or connected with this product extension.

WMB61_IEA_File_FTP_Nodes.ppt Page 4 of 30

IBM Software Group

4

File and FTP nodes © 2008 IBM Corporation

File nodes

failure

out

catch

failure

out

in

End of Data End of Data

FinishFile

Here are the two nodes that provide file support in Message Broker version 6.1. Both
nodes have an out terminal (used after successful processing), and a failure terminal
(used after processing error occurs in the node). As an input node, File Input also has a
catch terminal that is used to flow caught errors that occur downstream of the node.

There are specific terminals, both on the File Input and File Output Nodes, for handling the
end of the file.

On the File Input Node, the “End of Data” terminal is given control when the Broker
detects that it has reached the end of the input file.

On the Output Node, the “Finish File” terminal is driven to indicate that the file should be
written out. Assuming this is completed successfully, the message sent to the “Finish File”
terminal is propagated to the “End of Data” terminal.

WMB61_IEA_File_FTP_Nodes.ppt Page 5 of 30

IBM Software Group

5

File and FTP nodes © 2008 IBM Corporation

FileInput node – Basic algorithm [1]

�Scans a pre-configured
directory for files that match
a given specification

� Locked files are ignored
until they become unlocked

/home

matt

messages

F1.txt F2.xml F3.txt

Input directory: /home/matt/messages
File name or pattern: *.txt

For example:

The next few slides describe the basic algorithm for file processing.

The File Input node is able to read through a pre-configured directory on the broker’s file
system. The directory name is configured on the Basic tab of the node and must be
entered in the format expected by the broker file system. This directory will be scanned by
the Broker for files. Subdirectories of this directory are not scanned. The files to be
processed must be present in the specified directory.

The file name can be specified as a wildcard. Acceptable wildcards on the file name
pattern are ‘asterisk*’ which matches multiple characters, and ‘question mark’, which
matches a single character.

The value for the directory must either be a fully qualified directory path, or as a directory
relative to $MQSI_WORKPATH/file. For example, in a Windows® environment the default
is C:\ Documents and Settings \ All Users \ Application Data \ IBM \ MQSI \ file.

If there is an operating system lock on a file it will not be read until the lock is removed.

WMB61_IEA_File_FTP_Nodes.ppt Page 6 of 30

IBM Software Group

6

File and FTP nodes © 2008 IBM Corporation

FileInput node – Basic algorithm [2]

�Upon successful
processing, file is either
deleted or moved to an
mqsiarchive subdirectory

�Dealing with files with
duplicate names:
�Option to include timestamp

in archived file name

�Option to replace any
existing file

/home

matt

messages

F1.txt

F2.xml

F3.txt

mqsiarchive

Once the file is read and parsed, an option on the node specifies the action to take; either
the input file is deleted, or moved into an archive subdirectory of the input directory. If the
archive directory does not exist, it will be created.

The archive directory will be named “mqsiarchive”

If an archive file already exists with the same name, an option exists on the node to
overwrite it. If you do not set this option, the node will throw an exception if it tries to move
a successfully-processed file with the same name into the archive sub-directory.

Alternatively, you can opt to rename the file to include a timestamp value as it is moved
into the archive directory, which will prevent duplicate files in the directory. The timestamp
includes the time to a millisecond granularity, ensuring uniqueness of file names in the
archive directory.

When the file is placed into the archive directory, the contents of the file will not be altered.

WMB61_IEA_File_FTP_Nodes.ppt Page 7 of 30

IBM Software Group

7

File and FTP nodes © 2008 IBM Corporation

FileInput node – Basic algorithm [3]
� Once the directory is parsed, the algorithm repeats

� If no files are found during the directory scan, the
node waits for a configurable amount of time before
trying again

Once the file is processed, the next file in the directory is processed.

Once all files have been processed, the directory is rescanned. If any files that were
previously locked are now unlocked, they will be processed by the Broker.

If a directory scan yields no matches, the node waits for a preconfigured amount of time
before rescanning. The default value for this interval is 5 seconds.

WMB61_IEA_File_FTP_Nodes.ppt Page 8 of 30

IBM Software Group

8

File and FTP nodes © 2008 IBM Corporation

Environment
� Upon propagation, the FileInput node stores this information inside the

message tree (LocalEnvironment.File)

Date and time the input node started processing this file, in the UTC time
zone, as a character string. This is the data used to make any time-stamp
on the input file

CHARACTERTimeStamp

Date and time the file was last modified.TIMESTAMPLastModified

File name and extensionCHARACTERName

Absolute directory path. It will use the path separator character ('/' or '\')
according to the operating system on which the flow is executing. The
final path separator character is suppressed. On Windows, the directory
will start with the drive letter prefix (such as “C:”).

CHARACTERDirectory

Element AttributesElement
Data Type

Element Name

� Additionally, LocalEnvironment.Wildcard.WildcardMatch is used to store
any string matched by wildcards from the file name specification

Each time the contents of a file are propagated, the File Input node stores additional
information on the file inside the Local Environment, and this table describes those fields.

For example, the Local Environment Directory element contains the absolute directory
name that contains the file that is being processed.

Other element values are as shown in the table on this slide.

Also, the File Input node copies the characters in the file name matched by wild cards,
together with any intermediate characters, to the Properties tree “WildcardMatch” element.
So if the match expression was “file*.txt” and the file read was “file02.txt”, then the value of
WildcardMatch would be “02”. Or if the match expression was “file??type.*”, and the file
read was “file02type.xml”, the value of WildCardMatch would be “02type.xml”. This
information can be used by an output node, where the output name can be derived from
the input name.

WMB61_IEA_File_FTP_Nodes.ppt Page 9 of 30

IBM Software Group

9

File and FTP nodes © 2008 IBM Corporation

FileInput node – File parsing

� Extra CCSID and Encoding options on the Input Message Parsing
tab

� Enables the Parser to process files that originated on different
systems than the one where the flow is executing.

Before covering how the file information is parsed, note that the Input Message Parsing
tab on the File Input Node has two non-standard fields (CCSID and encoding). This is
similar to the equivalent properties on an MQ Input Node.

The File Input node reads raw bytes from the file system before passing on to the parser.
These parameters make it possible to parse information from a system other than the one
in which the broker is running. This system may have a different Character Set than the
one hosting the Broker, and this property allows these files to be processed correctly.

WMB61_IEA_File_FTP_Nodes.ppt Page 10 of 30

IBM Software Group

10

File and FTP nodes © 2008 IBM Corporation

Record detection

� The FileInput node can split each file up into separate records, which
causes the message flow to be invoked multiple times

� Handling options (on the Records and Elements tab):
�Whole file
�Fixed Length
�Delimited

�Parsed Record Sequence

� Only requires one record to be in memory at any one time
�Allows very large files to be streamed efficiently
�Streaming possible with MRM (CWF and TDS) and XMLNSC parsers only

� If connected, the ‘End Of Data’ terminal is triggered after all the
messages in a file have been processed.
�Empty BLOB message and a LocalEnvironment.File structure

The File Input node allows you to split up each file into multiple records that are
propagated separately, and the next few slides discuss the various options available for
record parsing.

One particular benefit of record detection is that, depending on which parser you’re using,
the File Input node does not need to store the whole file in memory at any one time. Only
the records currently being processed are stored in memory. This streaming allows for
very large files to be processed. Such files could be several gigabytes in size. The
capability is supported by the MRM and XMLNSC parsers.

Record detection allows files to be split into individual parts using several techniques.
Alternatively, the whole file can be processed in one go. When processing records
individually, the maximum size of an individual record is 100MB, which is the same as the
maximum size of an MQ message. Note however, that processing records of this size will
need careful planning of the Broker environment and in particular the size of the Broker
Java Virtual Machine.

Note that a file can only be processed by a single thread within the Broker. Therefore,
individual records can only be processed sequentially, not in parallel.

WMB61_IEA_File_FTP_Nodes.ppt Page 11 of 30

IBM Software Group

11

File and FTP nodes © 2008 IBM Corporation

Record detection

� Whole File
�Each file propagates a single message

� Fixed Length:
�Specify length of each record in bytes (up to 100Mb)

� Delimited
�Broker system line-end or custom delimiter
�Infix versus Postfix

� Parsed record sequence
�The file contains one or more structures that can be parsed by the

parser specified on the Inbound Message Parser properties.
�The FileInput node will propagate each matching structure as a

separate message.

This slide describes the five options available for record detection.

“Whole File” reads the entire file’s contents into memory and parses it in its entirety
according to the Inbound Message Parsing options. If this option is used, then you must
be sure that the available memory in the Broker is sufficient to accommodate the whole
file.
“Fixed Length” breaks the file up into a set number of bytes and propagates each chunk as
a separate message. The last message in any file may be of a size smaller than the
specified length. If you use this option, you specify the record size on the File Input Node

“Delimited” allows you to specify a delimiter that is used to break up the records in a file. In
this case, you can specify a standard DOS or UNIX “end of line” delimiter, or you can
specify you own custom delimiter. This is done by specifying the hexadecimal characters
which indicate the end of line for the particular file.

If you specify Delimiter type=Infix and the last data in the file ends with a delimiter, the
FileInput node will propagate an empty record to indicate the delimiter's presence.
However, if you specify Delimiter type=Postfix the FileInput node will not propagate an
empty record, whether the last data in the file ends with a delimiter or not.

There is a more advanced option for record detection.
“Parsed Record Sequence” breaks the file into messages, each of which conforms to a
single structure as defined on the Inbound Message Parsing options. For example, this
could be used to process a file which contains multiple instances of a piece of XML data.

WMB61_IEA_File_FTP_Nodes.ppt Page 12 of 30

IBM Software Group

12

File and FTP nodes © 2008 IBM Corporation

Record detection

RecordParser used to
extract record

nnParsed record
sequence

RecordDelimiter used
to extract
record

nnDelimited

RecordFixed length
used to extract
record

nnFixed length

Whole fileMessage is
whole file

11Whole File

Input Message
Parsing
describes

Detection
method

Messages
propagated

Records per
file

Record
detection

This slide summaries the differences between the four options in tabular form.

WMB61_IEA_File_FTP_Nodes.ppt Page 13 of 30

IBM Software Group

13

File and FTP nodes © 2008 IBM Corporation

Record detection examples [1]

� Whole file (input message parsing = ‘|’ delimited file)
�Propagates one message:

� “Belgian Bun|10|Jam tart|9|Gingerbread man|8|”

� Fixed length (size = 10 bytes)
�Propagates five messages:

� “Belgian Bu”, “n|10|Jam t”, “art|9|Ging”, “erbread ma”, “n|8|”

� Delimited (character = ‘|’)
�Infix: propagates 7 messages

� “Belgian Bun”, “10”, “Jam tart”, “9”, “Gingerbread man”, “8”, “”

�Postfix: propagates 6 messages
� “Belgian Bun”, “10”, “Jam tart”, “9”, “Gingerbread man”, “8”

Belgian Bun|10|Jam tart|9|Gingerbread man|8|

Using the contents of a simple file as an example, this slide describes how the different
options affect what is propagated.

This example file is shown in the yellow box at the top of the slide. The file can be
processed in different ways.

The first way is to process the file as “Whole File”. In this case, the entire file is passed to
the message flow as a single piece of data in the message tree.

The second way is to break the file into sections of 10 bytes each. In this case, the File
Input node will propagate 5 messages to the flow. The first 4 messages will have 10 bytes
each. The last message will have 4 bytes.

The third way is to treat the file with a Delimited Parser, using the vertical bar as a
delimiter. In this case, if the “Delimiter Type” is set to “In-Fix”, 7 messages will be
propagated, where the last record is an empty record. If the “Delimiter Type” is set to
“Post-Fix”, 6 messages will be propagated.

WMB61_IEA_File_FTP_Nodes.ppt Page 14 of 30

IBM Software Group

14

File and FTP nodes © 2008 IBM Corporation

Record detection examples [2]

� Parsed record sequence

�Parser set to XMLNSC

�Propagates three messages:

<cakes><cake name=“belgian bun” rating=“10”></cakes>
<cakes><cake name=“jam tart” rating=“9”></cakes>
<cakes><cake name=“gingerbread man” rating=“8”></cak es>

These examples show how the two Parser-based options propagate messages.

For the “Parsed Record Sequence” example, note that the input file contents is not a
single valid XML document, but rather three distinct XML documents which are
propagated separately. On its own, the contents of the file would not pass a validation test
of the XML, but when split into multiple instances of XML, then each single instance would
be valid.

In this case, if the parser is set to XMLNSC, then three messages will be propagated to
the message flow.

WMB61_IEA_File_FTP_Nodes.ppt Page 15 of 30

IBM Software Group

15

File and FTP nodes © 2008 IBM Corporation

Record detection – Environment

Element AttributesElement Data TypeElement Name

The characters used to separate this record from the
subsequent record, if the record detection mode is
Delimited. The last record may have an empty delimiter.
The delimiter may be one or two bytes, <CR> or <CR><LF>,
or custom user bytes.

CHARACTERDelimiter

Number of the record within the file. The first record is
number 1.

INTEGERRecord

Start of the record within the file. The first record starts at
offset 0.

INTEGEROffset

� When dealing with records, the LocalEnvironment.File structure
contains additional fields that relate to the current record:

When parsing multiple records in a file, extra properties are stored in the
LocalEnvironment, in the File part of that tree.

When using record detection = parsed embedded records, a
LocalEnvironment.MessageContext element is also created. In this scenario, the FileInput
node builds a tree in LocalEnvironment.MessageContext so that you can locate data from
preceding headers, and check data in trailing footers, such as checksums and totals. The
message context contains all the elements resulting from parsing the file up to and
including the current record, except that preceding instances of the Propagated record
elements are deleted, and the current element is empty. On the last element in the file,
the message context is completed to the end of file.

You can consider the FileInput node as progressively parsing the whole file, building a tree
under LocalEnvironment.MessageContext. Each time it reaches the Propagated record
element, it moves its contents to the last child of Root, to create a message body, and
propagates the result to its Out terminal. When the flow completes, the node deletes that
message body, and the element (now empty) from the message context, and continues to
parse for the next propagated message element. On the last occurrence, the parser
completes the message context tree to the end of file.

WMB61_IEA_File_FTP_Nodes.ppt Page 16 of 30

IBM Software Group

16

File and FTP nodes © 2008 IBM Corporation

Transactionality

� The File Nodes are not transactional like
WebSphere MQ messages

� The ‘Transaction Mode’ property on the FileInput
node defines whether the message flow outputs
messages under a coordinated transaction

�Completed writes are not backed out if a failure
occurs

When you include a File Input node in a message flow, the value that you set for
Transaction Mode defines whether messages are sent under sync point. The File Input
node is not transactional, and does not itself process files under sync point.

If you set “Transaction Mode” to Yes, the message is received under sync point (that is,
within a WebSphere MQ unit of work). Any messages subsequently sent by an output
node in the same instance of the message flow are put under sync point, unless the output
node has explicitly overridden this. If the File Input node backs-out the transaction, all
changes made under sync point are backed out.

If you set “Transaction Mode” to No, the file is not received under sync point. Any
messages subsequently sent by an output node in the flow are not put under sync point,
unless an individual output node has specified that the message must be put under sync
point. Changes not made under sync point will not be backed-out if the File Input node
backs out the transaction.

WMB61_IEA_File_FTP_Nodes.ppt Page 17 of 30

IBM Software Group

17

File and FTP nodes © 2008 IBM Corporation

FileInput node - If things go wrong

� Node will attempt to retry failures a configurable number of times

� If processing still fails, option to move to mqsibackout subdirectory
or delete the file

� If the input node fails before the message is propagated to the Out
flow, (such as a message validation failure), the message is sent to
the failure terminal.

� If an attempt to write to mqsibackout fails, the message flow stops

Each FileInput node has a configurable retry mechanism. There are three options for
“Retry Mechanism” .

The first option is Failure, which is the default action. If the file could not be read, then it
should be processed as a failure.

The second option is Short Retry. In this case, the Broker retries several times before
processing as a failure. The number of times to retry is given by “Retry threshold” and
the “Short retry interval” specifies the length of time to wait between failures, in
seconds.

The third option is “Short retry then Long retry”. In this case, once short retries have been
exhausted, the node will continue to retry indefinitely, waiting for the Long retry interval
period between retries.

Failure processing is determined by the “Action on failing file” option. This provides three
options.

The first option is “Move to Backout Subdirectory”. In this case, the file is written to a back
out subdirectory, which is named “mqsi-backout”. This directory is created as a
subdirectory of the input directory. This is created automatically if it doesn’t already
exist. If a file of that name already exists in the back out directory, the message flow
fails; the failure will be reported in the normal manner, for example using the Event Log
in a Windows environment.

The second option is “Delete”. In this case, the input file is deleted and the next file is
processed.

WMB61_IEA_File_FTP_Nodes.ppt Page 18 of 30

IBM Software Group

18

File and FTP nodes © 2008 IBM Corporation

FileInput node – using FTP

� When active, FTP settings cause the node to periodically
transfer files on a remote server to the local directory for
input.

� Security Identity ‘UserMapping’ set using runtime command:
� mqsisetdbparms BROKER –n ftp::UserMapping –u ftpUser –p

ftpPassword

It is possible to use the File Input to read files from an FTP server. FTP support is enabled
through a single Boolean flag on the FTP tab of the File Input node. When using the FTP
function, the Broker operates in a similar way to normal file processing. The FTP server
directory is scanned for new files, and any files that are detected are moved into the local
file directory specified on the File Input Node. These files are then processed by the
Broker as a local file.

The security authorization for the FTP server can be specified using the “Security Identity”
value of the FTP tab. The value specified in here should match the parameter that is
specified on the “mqsi-set-db-parms” command.

When using the “mqsi-set-db-parms” command, note the format of the “ftp” parameter.
This must be followed by a double colon, and then the name of the Security Identity
property, which is used on the FTP tab of the File Node.

IPv6 format addresses can be used as the FTP server address, although the address
must be enclosed in square brackets.

WMB61_IEA_File_FTP_Nodes.ppt Page 19 of 30

IBM Software Group

19

File and FTP nodes © 2008 IBM Corporation

FileInput node – Algorithm with FTP enabled

� FileInput node scans a pre-configured directory for files that
match a given specification. Upon successful processing,
file is either deleted or moved to an mqsiarchive
subdirectory

� If no files are found during the directory scan, the node
transfers files from the configured FTP server to the local
directory being used for file input. Transferred files are
deleted from the FTP server.

� Transferred files are processed in the usual way.

� If no files are found on the FTP server, the node waits for
the period of time configured on the FTP server panel “scan
delay” before trying again.

Typically, FTP connections require a longer poll interval than local directory scans. The
use of separate interval properties for FTP and local files makes it possible to enable and
disable FTP function through a single “Enable FTP” property, rather than reconfiguring the
node’s interval property each time the capability is enabled or disabled.

The changes to the basic algorithm for the FTP scenario are shown in red on this slide.
So, the FTP Node will scan the local file directory as before. If no files are found, it will use
the FTP function to connect to the specified FTP server, and retrieve all files in the target
FTP directory.

Note that transferred files are deleted from the FTP server once they have been
transferred to the local directory. This is to avoid re-processing of files from the FTP
server. However, if you need to keep a copy of the transferred file, this can be copied into
the local archive directory, using normal File processing.

If no files are found, the FTP “scan delay” is activated, before the directory is rescanned.
This FTP Scan Delay overrides the polling interval that can be specified for local files. This
is a separate property because it is likely that you would want to wait for a longer interval
when using FTP, compared to a delay for a scan of a local file system.

Message Broker Version 6.1 supports both Active and Passive FTP Transfers.

WMB61_IEA_File_FTP_Nodes.ppt Page 20 of 30

IBM Software Group

20

File and FTP nodes © 2008 IBM Corporation

Additional instances handling

� Each file is processed by at most one instance and node

� Additional instances and nodes can concurrently process other files in
the same directory.

� Option to allocate threads from a node-specific pool rather than the flow
pool

� Additional instances tuning is particularly important when FTP is
involved

Several input nodes now have an Instances tab which allows you to enable the use of a
dedicated thread pool for the node. This is useful in message flows that have multiple
input nodes, as the flow’s pool of threads can lead to starvation of one or more input
nodes.

In particular, FTP transfers may take a significant amount of time to complete, during
which time the thread is busy. For this reason it is important to tune the additional
instances parameter in order to maximize throughput rates.

WMB61_IEA_File_FTP_Nodes.ppt Page 21 of 30

IBM Software Group

21

File and FTP nodes © 2008 IBM Corporation

FileOutput – Basic algorithm

� In the simplest scenario, the received message body is
written to the pre-configured file:

� When writing to the output file, the wildcard (if present) is
replaced with the value of
LocalEnvironment.Wildcard.WildcardMatch
�Allows you to preserve elements of a file name during processing

The following slides discuss the File Output node.

The File Output Node is similar to the File Input node, in that in its simplest form you can
specify the directory to which files are placed and a file name expression that describes
the file name.

The file name expression can include a single wildcard character ‘*’, which will be replaced
with the value of the LocalEnvironment.Wildcard.WildcardMatch element in the tree.

For example, in a File Input to File Output scenario, the Wildcard-Match element is set up
during the File Input node processing. This allows you to preserve the name of the input
file on the File Output node. You can also use standard tree manipulation logic to set the
value of the Wildcard-Match element to whatever you want, regardless of whether you
used a File Input node or not. For example, this could be used to specify the name of the
output file.

WMB61_IEA_File_FTP_Nodes.ppt Page 22 of 30

IBM Software Group

22

File and FTP nodes © 2008 IBM Corporation

Overriding properties

� It is possible to provide file location information from
inside the message tree:

� If present, they override any properties configured in
the Basic tab

The tree element that is serialized to the output file is obtained from the value of the ‘Data
location’ property on the Request tab. The default value is $Body.

It is also possible to override the target directory and file name information. By default, this
information is obtained from the local environment, although this can be any place in the
message tree. These parameters will override any hard-coded values that you may have
specified on the “Basic” tab.

WMB61_IEA_File_FTP_Nodes.ppt Page 23 of 30

IBM Software Group

23

File and FTP nodes © 2008 IBM Corporation

Options if the file already exists

� Replace the existing file

� Create (Fail if already exists – go down Failure terminal)

� Archive previous file
�Optionally replacing any existing file in the archive

� Archive previous file, with timestamp

This slide describes the options that are available when writing to a file of a name that
already exists in the output directory.

The first option is to Replace the existing file. This will over-write the existing file, with no
further warning.

The second option is to Create the file normally, but fail if the file already exists. Control
would be passed to the Failure output terminal in this instance.

The third option is to Archive any existing file, before over-writing it. In this case, the
original file would be copied to the archive directory.

The final option is the same as the third option, but you can also change the name of the
original file by adding a Time Stamp to the file name. As with the Input Node options, this
will avoid over-writing an existing file, since the time-stamp will be unique.

WMB61_IEA_File_FTP_Nodes.ppt Page 24 of 30

IBM Software Group

24

File and FTP nodes © 2008 IBM Corporation

Appending records
� “Records and Elements” tab defines how multiple writes to the same file are

handled

� Record definition options:
�Record is Whole File – close file automatically after first write
�Record is Unmodified Data – the message bit-stream appended to file
�Record is Fixed Length Data – specify length in bytes and padding character
�Record is Delimited Data – specify delimiter and infix/postfix option

� Unless “Record is Whole File” is selected, the file will be closed when the
“Finish File” terminal is triggered
�The Finish File message is propagated on to the FileOutput’s “End Of Data” terminal

� The mqsitransit subdirectory holds all files that have not yet been closed

If append record is enabled, a separate set of options (on the “Records and Elements” tab)
define how the record is appended and this slide describes those options.

For the delimited record option, infix states that the last record in a file will be followed by a
delimiter.

WMB61_IEA_File_FTP_Nodes.ppt Page 25 of 30

IBM Software Group

25

File and FTP nodes © 2008 IBM Corporation

Appending records example
out in

end of data finish file

DECLAREmsgCount SHARED INTEGER0;
CREATE COMPUTE MODULEFile_Compute

CREATE FUNCTIONMain () RETURNS BOOLEAN
BEGIN
SET msgCount = msgCount + 1;
-- every three messages propagate
-- to the Finish File terminal
IF msgCount = 3 THEN

SET msgCount = 0;
RETURN TRUE;

ELSE
RETURN FALSE;

END IF;
END;

END MODULE;

This example shows how to append records to a file that is being processed by a File
Input Node, and written using a File Out put Node.

The slide shows the properties of both the input and output nodes, together with the ESQL
code that is contained in the intermediate Compute Node.

When the end of the input file is reached, the “End of Data” terminal is activated, and the
message flow continues to the Compute Node. The Compute Node appends three records
to the file, which are then propagated to the Output Node.

WMB61_IEA_File_FTP_Nodes.ppt Page 26 of 30

IBM Software Group

26

File and FTP nodes © 2008 IBM Corporation

FileOutput - FTP support

� If enabled, whenever a complete file is closed an FTP transfer of
the file is attempted to the supplied FTP server

� File is optionally deleted from the local file system when the transfer
completes

� Transfer is synchronous
�Use additional instances if throughput rate is an issue

As with the File Input node, FTP support is configurable on a single ‘FTP’ tab and enabled
through the use of a single check box on the FTP Properties tab.

FTP transfer only happens after a file is closed on the local file system. After the file is
transferred to the FTP server, it can be retained locally, or deleted from the local file
system.

The FTP process happens synchronously, and can take an extended time, depending on
the available network bandwidth, and the size of the file to be transferred. As with the FTP
Input function, you should make use of the “additional instances” property, to make sure
that thread starvation does not occur.

WMB61_IEA_File_FTP_Nodes.ppt Page 27 of 30

IBM Software Group

27

File and FTP nodes © 2008 IBM Corporation

File input and output – Hiding FTP user names and pa sswords

� ‘Server identification’ may be an alias to a service already configured on the broker
�mqsisetdbparms BROKER –n ftp::UserMapping –u USER –p PASS
�mqsicreateconfigurableservice BROKER –c FtpServer –o MYSERVER

�mqsichangeproperties BROKER –c FtpServer –o MYSERVER –n serverName –v
IPADDRESS

�mqsichangeproperties BROKER –c FtpServer –o MYSERVER –n securityIdentity –v
UserMapping

� This done, a server identification of MYSERVER on the node will cause the pre-
configured service definition to take precedence over the node properties

Specification of the FTP Security parameters is configured in the same way as on the
Input Node. The FTP user ID and password are not stored within the message flow, but in
the Broker runtime, using the “mqsi-set-db-parms” command.

It is also possible to specify the target FTP server using the “mqsi-create-configurable-
service” command. One of the parameters on this command refers to the security
identification created earlier.

Using a combination of these commands enables an FTP service to be fully configured
outside the message flow. This can then be referenced in the File Output Node properties,
as shown on this slide.

WMB61_IEA_File_FTP_Nodes.ppt Page 28 of 30

IBM Software Group

28

File and FTP nodes © 2008 IBM Corporation

Summary

� FileInput and FileOutput nodes provide a
convenient and flexible way of reading and writing
files on the file system

�Uses local environment for additional configuration
and information options

�Support for large files
�Advanced record detection

�Communication with FTP servers
�Including pre-configuration of usernames and passwords

This slide summarizes the capability provided by the file nodes in Message Broker version
6.1.

The File Input and File Output Nodes provide capability to process both local and remote
files. These files can be very large, and files can be processed using normal Message
Broker parsing capability.

WMB61_IEA_File_FTP_Nodes.ppt Page 29 of 30

IBM Software Group

29

File and FTP nodes © 2008 IBM Corporation

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:
mailto:iea@us.ibm.com?subject=Feedback_about_WMB61_IEA_File_FTP_Nodes.ppt

This module is also available in PDF format at: ../WMB61_IEA_File_FTP_Nodes.pdf

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WMB61_IEA_File_FTP_Nodes.ppt Page 30 of 30

IBM Software Group

File and FTP nodes © 2008 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

WebSphere

Windows, and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries, or both.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any statements regarding IBM's future direction
and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or services does not imply
that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program Product in this
document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may
be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER
EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall
have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and conditions of the agreements (for example, IBM Customer Agreement,
Statement of Limited Warranty, International Program License Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2008. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

