

© 2010 IBM Corporation

WebSphere MQ V7.0.1

Reconnecting client

This unit explains the multi-instance queue manger feature introduced in WebSphere® MQ
version 7.0.1.

This unit assumes a reasonable understanding of how WebSphere MQ works.

iea_701_130_recon_client.ppt Page 1 of 21

After you complete this unit, you should be able to:

� Understand how the reconnecting client works in MQ version 7.0.1 and how it works with
the multi instance queue manager feature to increase the availability of MQ systems.

� Be able to define and configure a reconnecting client

Unit objectives

-

After you complete this unit, you should be able to:

� Understand how the reconnecting client works in MQ version 7.0.1 and how it works with
the multi-instance queue manager feature to increase the availability of MQ systems.

� Be able to define and configure a reconnecting client

2 Reconnecting client © 2010 IBM Corporation

After you complete this unit you should have some understanding of how existing
applications using the queued publish / subscribe mechanism is migrated to MQ version 7.

You will also be aware of some of the issues that need to be considered before migration.

This unit does not attempt to cover the full range of syntax and options available, for which
you should refer to the product information center.

iea_701_130_recon_client.ppt Page 2 of 21

© 2010 IBM Corporation3 Reconnecting client

MQ client - Reminder

� MQ applications can connect in “binding” or client mode
– Binding -> local to queue manager
– Client -> local or remote – over network

� Applies to MQ API and JMS

� Network failure breaks the MQ connection

MQ clientMQ client

ApplicationApplication

QMQM
Connection
IP address

WebSphere MQ applications need to be connected to a queue manager in order to
function. Basically two methods of connecting are supported:

Binding mode, only possible where the application is running on the same machine as the
queue manager, where the application issues IPA calls fairly directly with the queue
manager. And client mode where the application makes API calls to an MQ client which
conveys the commands to a queue manager over a communications link, typically TCP/IP.

This choice applies equally to applications written to the MQ API (the MQI) and to
applications using abstractions like the Java™ Messaging Service (JMS).

One issue with using client connections is that the MQ session is lost if the network fails or
if the queue manager fails. In this case the application program is notified and must
terminate or run other user written code to recover or circumvent the issue.

iea_701_130_recon_client.ppt Page 3 of 21

Automatic reconnecting client - Key features

� When network connection is lost, the MQ client code can attempt reconnection.

� Automatic reconnection can establish reconnection to the same or different queue manager

� Re-open all queues and other queue manager objects, re-establishes subscriptions

4 Reconnecting client © 2010 IBM Corporation

The new reconnecting client feature overcomes some of these problems by running
reconnect logic in the event of an unexpected loss of the network connection. This feature
is only available in the TCP/IP client.

The client configuration has been extended to allow a list of possible IP address and port
values to connect to. The reconnection attempt can be to ANY queue manager, or to only
the same queue manager, but note that this may mean another instance of the same
queue manager. This supports the case where a client is connected to the active instance
of a queue manager; this instance fails; the standby instance starts up on a different
address and the previously connected clients can automatically reconnect to this instance.

After reconnecting the MQ client code attempts to restore the client application to the
same state it was in when the connection failed by opening all the QUEUES, TOPICS and
so on that were in use at the point of failure.

When all this work is completed the application program continues.

iea_701_130_recon_client.ppt Page 4 of 21

© 2010 IBM Corporation5 Reconnecting client

Automatic reconnecting client

� Client library provides necessary reconnection logic on detection of a failure

QM1QM1

MQ clientMQ client

ApplicationApplication

QM2QM2Connection list
IP address A
IP address B

IP A

IP B

With the reconnecting client feature a switch can be made from one queue manager on
one IP address to another (or another instance of the same) queue manager on another
IP address.

For this the MQ client configuration date needs a list of the possible locations the client
may need to connect to.

When the MQ client code reconnects it will reopen the queues and topics in use and
renew subscriptions but you should be aware that some states are not restored. For
example cursor position if browsing a queue.

iea_701_130_recon_client.ppt Page 5 of 21

Using reconnect

� New MQCONNX options
– or

� Set in MQCLIENT.INI

Channels:

DefRecon = YES | NO | QMGR | DISABLED

� Applies to all connections which do not use reconnect options
– use with care since global

� Application can use reconnect
– without being changed even if using MQCON

6 Reconnecting client	 © 2010 IBM Corporation

Reconnect can be enabled either by using new options in the MQCONNX call or by adding
the information to the “channels” stanza in the MQCLIENT.INI file.

The DefRecon (Default reconnection) value can be: YES – reconnect is enabled unless
an MQCONNX call indicates do not use, NO – reconnect is disabled unless an
MQCONNX call indicates it should be used, QMGR – like yes but only connect to the
same queue manager (possibly a different instance), DISABLED – regardless of
MQCONNX options, do not enable the reconnect feature.

Note that the option applies to all connections from this client, and this means that existing
programs can use the reconnect feature without any modification or recompiling.

iea_701_130_recon_client.ppt	 Page 6 of 21

Connection name list

� All current channel configuration mechanisms supported
– MQSERVER
– MQCONNX MQCD
– Client channel table

� Connection name augmented
– Lists of connection addresses supported

• DEF CHL(x) ……CONNAME(host1:port1, host2:port2, host3:port3)
• MQSERVER=CHL1/TCP/host1,host2,host3

– Treated as though ‘n’ definitions of same channel

� Client channel attributes honored
– CLNTWGHT

7 Reconnecting client © 2010 IBM Corporation

As mentioned earlier one requirement to make the reconnecting client function is a list of
possible connection addresses.

These lists can be specified in all the ways a current connection can be specified. he
MQSERVER environment variable, the MQCONNX MQCD option and the Client Channel
Definition Table.

Effectively where channels had a connection name that identified a single IP address as
the network address a list of such IP addresses is now allowed. Connection to any of
these addresses would be valid for this channel.

The client weight attribute is still honored. This is used when a client definition table is
used to allow connection to a range of possible queue managers to determine the ratio of
connections to specific hosts. The weights will still apply to the channel which could lead to
connecting to any of the connection names.

iea_701_130_recon_client.ppt Page 7 of 21

Reconnect process

� Reconnect intervals
– Delay consists of fixed and random part
– Can be changed in mqclient.ini

• ReconDelay = (1000,200) (2000,200) (4000,1000)

� Maximum reconnect interval
– Default value 30 minutes

• controlled by mqclient.ini setting

8 Reconnecting client © 2010 IBM Corporation

When the connection is lost and the reconnection process begins the reconnection
process is tried repeatedly until reconnection is made or until the maximum reconnect
interval occurs.

In order to stop all the clients attached to a failed queue manager reconnecting at once the
reconnects are delayed by intervals which are part fixed and part random.

The default values should be appropriate in most cases, but can be overridden in the
MQCLIENT.INI. The example shown would indicate an initial delay of 1 second plus a
random element up to 200 milliseconds, the next delay would be 2 seconds plus a random
interval up to 200 milliseconds, all subsequent delays would be 4 seconds plus a random
delay up to 1000 milliseconds. Reconnect would then be attempted at this interval for the
max interval (default 30 seconds), after this time the connection failure is reported to the
application.

iea_701_130_recon_client.ppt Page 8 of 21

Event handler

� Has the ability to change the reconnect attempt delay

struct tagMQCBC

{

MQCHAR4 StrucId; /* Structure identifier */

MQLONG Version; /* Structure version number */

MQLONG CallType; /* Why Function was called */

MQHOBJ Hobj; /* Object Handle */

MQPTR CallbackArea; /* Callback data passed to the function */

MQPTR ConnectionArea; /* MQCTL Data area passed to the function */

MQLONG CompCode; /* Completion Code */

MQLONG Reason; /* Reason Code */

MQLONG State; /* Consumer State */

MQLONG DataLength; /* Message Data Length */

MQLONG BufferLength; /* Buffer Length */

MQLONG Flags; /* Flags containing information about this consumer */

/* Ver:1 */

MQLONG ReconnectDelay; / * Number of milliseconds before

reconnect attempt */

/* Ver:2 */};

� On input contains the expected delay before reconnect

� On return can indicate new delay
– 0 Indicating no delay – reconnect as soon as possible
– MQRD_NO_RECONNECT – end reconnect sequence

9 Reconnecting client © 2010 IBM Corporation

When using the client reconnect feature application programs would normally be unaware
of reconnects that occur. However if an application needs to be informed of reconnection
activities it is possible to use an Event Handler. Event handlers were introduced in version
7.0 along with the asynchronous message consume feature.

If an event handler is setup it will be invoked during reconnect activity and has the
opportunity to change the delay interval by setting RecconnectDelay.

iea_701_130_recon_client.ppt Page 9 of 21

MQI considerations

� New MQCONNX options
– MQCNO_RECONNECT
– MQCNO_RECONNECT_Q_MGR
– MQCNO_RECONNECT_DISABLED
– MQCNO_RECONNECT_AS_DEF

� Options not supported
– MQPMO_LOGICAL_ORDER
– MQGMO_LOGICAL_ORDER

� MQPUT of PERSISTENT message outside of sync point
– May return MQRC_CALL_INTERRUPTED

� Event handler notified of reconnection ‘events’

� MQSTAT can return reconnection status

10 Reconnecting client © 2010 IBM Corporation

Now take a look at the implications for the WebSphere MQ API.

The makor change is an additional set of connection options for the MQCONNX call.
MQCNO_RECONNECT means that reconnecting client is preferred for this connection.
The MQCNO_RECONNECT_Q_MGR means the same but reconnect is only allowed the
same queue manager, including other instances of a queue manager.
MQCNO_RECONNECT_DISABLED inhibits the use of the reconnecting client. The
default value is MQCNO_RECONNECT_AS_DEF, which means that the reconnecting
client is used if it is configured for this client, the default value if no specification is made
for the client definition is not to use reconnect.

Certain MQGET and PUT options are not compatible with reconnect, full details can be
found in the product information center.

New reason code of MQRC_CALL_INTERRUPTED might be returned if the client
connection reconnects “within” an MQPUT call and may need coding for. As mentioned
earlier the asynchronous event handler can be notified of reconnection events and the
MQSTAT call is extended to return reconnection information.

iea_701_130_recon_client.ppt Page 10 of 21

MQI considerations

� Reconnect ‘during’ transaction
–	 Transaction is ‘doomed’ – final MQCMIT will always backed out

•	 MQRC_BACKED_OUT returned to application

–	 Non-transactional operations are allowed to complete

� XA and reconnection are mutually exclusive
–	 The XA interface is too restrictive to guarantee data integrity between multiple resource

managers if a connection to MQ is re-established silently

11 Reconnecting client	 © 2010 IBM Corporation

The final considerations relate to activity within a sync point.

The major point is that if a client reconnect occurs within a unit of work, the unit of work is
DOOMED. Although work can continue after the reconnect the final commit operation will
result in the transaction being backed out.

Also limitation on the XA interface means that XA transactions – such as those
coordinated WebSphere Application Server – are incompatible with the reconnecting
client.

iea_701_130_recon_client.ppt	 Page 11 of 21

What is a reconnect attempt made ?

� Only explicit ends or failures
– Communications failure
– Queue manager or listener failure
– STOP CONN
– endmqm –s or endmqm –r

� The following will not cause reconnect
– STOP CHANNEL
– Any other endmqm

12 Reconnecting client © 2010 IBM Corporation

The question now arises as to under what circumstances the reconnecting client will in
fact attempt to reconnect.

These are summarized on this slide.

Failure of the communications network so that the client can no longer reach the queue
manager. A failure of a queue manager or listener process, or of course the machine they
are running on. A stop connection command. An endmqm command BUT ONLY if it has
one of the two new options “-r” explicitly requesting a reconnect, or “-s” which explicitly
requests a switch to a standby instance.

Any other endmqm will not cause a reconnect to be attempted, nor will a stop of the
channel.

iea_701_130_recon_client.ppt Page 12 of 21

Requirements

� MQ V7.0.1 server and client
– MQRC_ENVIRONMENT_ERROR

� SHARECNV non-zero
– That is, full duplex communication with server
– MQRC_ENVIRONMENT_ERROR

� Threaded client
– MQRC_ENVIRONMENT_ERROR

13 Reconnecting client © 2010 IBM Corporation

Some remarks about the prerequisite requirements for the reconnecting client.

First and foremost is that both client and server code must be at version 7.0.1 or better.
The channel must be running in full duplex mode, this means that the SHARECONV value
must be 1 or greater.

Finally the application must be compiled using the threaded client libraries, not the older
unthreaded libraries sometimes used in UNIX® systems.

iea_701_130_recon_client.ppt Page 13 of 21

© 2010 IBM Corporation14 Reconnecting client

JMS reconnecting clientJMS reconnecting client

Section

So far you have seen the reconnecting client in terms of MQ API applications, but the full
benefit is also available to applications using the Java Messaging Service (JMS) APIs.

iea_701_130_recon_client.ppt Page 14 of 21

Overview

� Brings reconnect functionality to the JMS client
–	 Transparent to the client application

� Set by properties of the MQConnectionFactory:
–	 setClientReconnectStatus(WMQConstants.WMQ_CLIENT_RECONNECT_ENABLED)
;
or

–	 setIntProperty(WMQConstants.WMQ_CLIENT_RECONNECT_STATUS,
WMQConstants.WMQ_CLIENT_RECONNECT_ENABLED);

15	 © 2010 IBM Corporation

The full functionality of the reconnecting client is made available to JMS applications. It
requires no changes to the application programs.

It is enabled by either using the explicit method “setClientReconnectStatus” or by using
the more general setIntProperty method to the appropriate value.

iea_701_130_recon_client.ppt	 Page 15 of 21

Setting options

setClientReconnectOptions(options);

or
setIntProperty(WMQConstants.WMQ_CLIENT_RECONNECT_OPTIONS, options);

Values (from WMQConstants):
– WMQ_CLIENT_RECONNECT

• Reconnect to any queue manager
– WMQ_CLIENT_RECONNECT_Q_MGR (default)

• Reconnect to the same queue manager only

16 © 2010 IBM Corporation

Options can be set using the “setClientReconnectOptions” method, or again the
setIntProperty method. In this call it is possible to specify reconnect to only the same
queue manager (including another instance) or to any queue manager.

iea_701_130_recon_client.ppt Page 16 of 21

© 2010 IBM Corporation 17

Specifying host list

setClientReconnectHosts(namelist);
or
setStringProperty(WMQConstants.WMQ_CLIENT_RECONNECT_HOSTS,
namelist);

String value:
– Connection name list

• host1(1414),host1(1412),host2(1414)...

The list of possible hosts to reconnect to is specified using the method”
setClientReconnectHosts” to a list of host addresses.

iea_701_130_recon_client.ppt Page 17 of 21

Reason code changes

� Should no longer see:
– MQRC_CONNECTION_BROKEN

� New codes nested within a JMSException.
– MQRC_RECONNECT_FAILED

• MQ failed while attempting to reconnect your connection
– MQRC_RECONNECT_QMID_MISMATCH

• MQ reconnected your connection, but did not find the queue manager it was expecting

18 © 2010 IBM Corporation

New reason codes may be returned nested inside the JMS exception. The first one shown
indicates that a reconnect attempt failed for some reason. The second is the case where a
reconnect to the same queue manager was specified, but the queue manager found at the
host address was not that queue manager.

iea_701_130_recon_client.ppt Page 18 of 21

Unit summary

After you complete this unit, you should be able to:

� Understand how the reconnecting client works in MQ version 7.0.1 and how it works with
the multi-instance queue manager feature to increase the availability of MQ systems.

� Be able to define and configure a reconnecting client

19 Reconnecting client	 © 2010 IBM Corporation

Now that you have completed this unit, you should have some understanding of how MQ
7.0.1 reconnecting client function works and how it is configured in both an MQ API
environment and for JMS.

This unit did not attempt to cover the full range of syntax and options available, for which
you should refer to the product information center.

iea_701_130_recon_client.ppt	 Page 19 of 21

Feedback

Your feedback is valuable

You can help improve the quality of IBM Education Assistant content to better meet your
needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_iea_701_130_recon_client.ppt

This module is also available in PDF format at: ../iea_701_130_recon_client.pdf

20 Reconnecting client © 2010 IBM Corporation

You can help improve the quality of IBM Education Assistant content by providing
feedback.

iea_701_130_recon_client.ppt Page 20 of 21

 Trademarks, copyrights, and disclaimers

IBM, the IBM logo, ibm.com, and the following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

WebSphere

If these and other IBM trademarked terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S. registered or common law
trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of other IBM
trademarks is available on the Web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java, and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any statements regarding IBM's future direction
and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or services does not imply
that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program Product in this
document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be
used instead.

THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products
are warranted, if at all, according to the terms and conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License
Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other
publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other claims related
to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2010. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

21 © 2010 IBM Corporation

iea_701_130_recon_client.ppt Page 21 of 21

