1
“ll
“ll

Welcome to:
Unit 8
Advanced Data Transformation Mapping

‘|\u

\

This unit will address the use of commands,
functions, variables, and advanced mapping features.
A mapping exercise will follow.

Unit Objectives

« Create local and global variables

+ Use variables

« Code string and numeric literals in mapping commands

+ Use pre-defined special variables

+ Use “drag and drop” mapping

+ Create mapping commands

« Use any of the Data Transformation mapping functions

+ Apply mapping tools to satisfy data translation requirements
« Create Validation maps

« Create new and use existing Functional Acknowledgement
maps

This unit will address each of these objectives.

Variables

* Variable Types
= Local
= Global
= Special
« Data Types
= Character
= Integer
* Real
= Binary
= Boolean
* Scope
= Local — Transaction, Loop
= Global — Group, Interchange

Variable names can begin with “DI”, but it is not
ecommended.

Local variables are variables that are not known
outside the scope of the translation of a given
document.

A local variable “exists” only for the duration of a
Loop or Document. A Loop variable is created and
initialized at the beginning of each iteration of a
loop. Global variables exist for a Group of
interchanges, an Interchange of
transactions/messages, or for an entire session. A
session is defined as beginning when the Data
Interchange Services Translator is started and ending
when the translator terminates. For example, a global
variable might be used to accumulate totals for the

ARNTAT X7TAA LnANN — 1~ .. 1 e

Special Variable

+ DICUserData
= This value is stored in the TRCB (Translation Control Block) and
the “C” record when C&D records are created.

Special Variables are a group of predefined variables
used by Data Interchange Services. They function
much like Local Variables or Global Variables,
except they each have a special purpose. A user can
view properties of a Special Variable, but no changes
can be made. Special Variable names will always
start with “DI”. It is recommended that you do not
start Local Variables or Global Variable names with
“DI”. Currently DICUserData is the only Special
Variable available.

Literals

* Character Strings
= Enclosed in quotes (“Virtual Reality”) or apostrophes
(‘WebSphere’) or “don’'t” or ‘He said, “yes!™
* Numeric Values
= 3.141592737

=22

Literal strings are always enclosed in single or
double quotes. Remember that keywords like True
or False are not enclosed in quotes.

Keywords

* True
* False

Used to test and set Boolean Values

* This

References the current element

Mapping commands, logical operators, comparison operators,
and arithmetic operators are also considered keywords.

Note that these are keywords and not placed in
quotes.

Commands
+ Data Mapping « Error Handling
= Assignment = Error
= MapTo = FAError
= MapFrom * Hierarchical Loops
= SetProperty = HLLevel
= Create = HLAutoMapped
+ Loop Qualification + Invoking other maps
= Quality/Default = MapCall
= HLQualify/HLDefault = MapChain
= CloseOccurence = MapSwitch
* ForEach « Schema Support
+ Logic/Conditional Processing = SetNamespace
= If/Elself/EndIf = SetSchemalLocation
= SetNoNSSchemal ocation

Generally commands are selected from a list of
commands available at a particular point in the
mapping. Commands only appear in the command
pane of the mapping window.

Assignment Command

* targetpath = expression
+ Function: Establishes a value for a target path
where:
= targetpath — Path being mapped in the target document.
= expression — Source path or expression to be evaluated with the
result mapped to the target element.
* Note: Ensure that the target path is always on the left side of
the assignment statement and that the source path is on the
right side.

MapTo Command

» MapTo (targetpath, expression)
+ Function: Defines an expression and the target path to which
it is to be mapped
where:
= targetpath — Path being mapped in the target document.
= expression (optional) — Expression to be evaluated with the result
mapped to the target element.
» Note: The MapTo command is used only in source based
maps and is produced automatically when elements are
mapped via drag and drop.

When you drag a compound element onto a repeating
element in the source document definition and there
are no existing qualifications for the element, a
MapTo command will be inserted under the
corresponding repeating element in the Mapping
Command window pane. For target based maps, if
there are no existing qualifications for the element, a
ForEach command will be inserted under the
corresponding repeating source element in the
Mapping Command window pane.

MapFrom Command

» MapFrom (targetpath) - or -
MapFrom (targetpath, expression)
« Function: Defines an expression to be mapped to the current
target element
where:
= expression (optional) — Expression to be evaluated with the result
mapped to the target element.
* Note: The MapFrom command is used only in target-based
maps and is produced automatically when elements are

mapped via drag and drop.

You can use the MapFrom command in the following
ways:

- To move data from a repeating simple element in
the target document definition to a corresponding
repeating simple element in the source document
definition. When you use the MapFrom command on
a repeating target node, multi-occurrence mapping is
required, and the MapFrom command must be
included within a ForEach command.

- To move data from a non-repeating simple element
or variable in the target document definition to a
corresponding simple element in the source
document definition.

You cannot use the MapFrom command with
compound elements. 10

SetProperty Command

« SetProperty (PropertyName, PropertyValue)
« Function: Sets a Property such as EDI envelope element or
XML prolog to a value
where:
= PropertyName — Name of the property being set.

= PropertyValue — The value to which the named property is to be

set.

The PropertyName must be passed as a character

string. It may be in a variable or specified as a literal.

For example: SetProperty”’ISA057,701”).

The SetProperty command is used to set a
special processing property of the target
message.

Create Command

« Create (targetpath)

+ Function: Forces the creation of the specified compound
element in the target document
where:

= targetpath — Compound element defining the targetpath to be

created.

Typically this command is not needed as elements
are automatically created when data is inserted into
them. However, there are cases where an element
must be created whether or not data is inserted into it.

The Created function may be used to determine if the
path was created before executing this command.

Qualify/Default Command

* Qualify (boolean-expression)

+ HLQualify (boolean-expression)

« Function: Causes a series of commands to be executed
based on a Boolean expression being true
where:

= boolean-expression — A true value will cause the commands within
the qualification to be executed.

* The Default and HLDefault commands specify commands to
be executed if none of the Qualify expressions evaluate to
True.

The Qualify command is used on repeating
compound or repeating simple elements in the source
document definition. It is used to indicate that a
specific iteration or iterations of the elements are to
be handled differently than other iterations of the
element. For instance, you might want to say that the
first iteration of a loop is handled differently than all
other iterations of the loop.

The Default command is used to specify the
commands that should be executed if none of the
Qualify expressions evaluate to True.

CloseOccurrence Command

* CloseOccurrence (target-path)
 Function: Terminates an occurrence mapping
where:

= target-path — The repeating target element that is to be “closed” to
new elements in the current occurrence. Additional mappings to
this element or its children result in a new occurrence of the

targetpath element.

Use the CloseOccurrence command to close the
current occurrence of a repeating element and force
the creation of another instance of the element. This
command can be used for both source-based and
target-based maps. It is used when separate (non-
repeating) instances of source data are to be mapped
to repeating target data.

CloseOccurrence Example

@ Data Interchange Services - [Development - Data Transformation Map - X12EDIZXML2]
File

Actions Edi Navigale Yiew indow Help

16|
Database | Development =l @

&) il ol 5l Bl
——=
.. T30 0 N3 [Address Informatian] Il 5= ADDRESS (UNE+CITY STATE POSTAL (]]
: Do 1M 16B [Addiess Information] g LINE [[HFCDATA)]
= 20186 [Address Information o LIME.PCDATA [PCDATA] -
Al

. I
;I SER 24NN N IR eoneanhic |aration] _I;I - B EIT]’ [IHPCDATAN
Al » r

22 F00 N1 [Name] =]
T2 3200 N2 [Additional Name Information]
B 58 3300 N3 [ddress Information]
-] MapTo (\POANAME_ADDRESSMADDRESSALINESY)
B i 1M 188 [Adchess Information]
-~ 2D

ESSALINESLINE PCDATAN)
JRESSALINEL]

9] MapTo (\POANAME_ADDRESSYWADDRESSALINESLINE PCDATAN)
EE2% 340 0 N4 [Geographic Location]
@ M50 NX2 [Location 1D Component] =l

Ready |

In this example there are two separate elements
containing address line information in the EDI data.
However, in the XML data, the address information
is in a repeating element. If each of the two EDI
address elements were dragged to the repeating XML
target, the second address line would overlay the
first. To prevent this, a CloseOccurrence command
is issued between the two mappings.

ForEach Command

» ForEach (source-path)

« Function: Established a correspondence between the

recurring node and the source path specified
where:

= source-path — Identifies the source element corresponding to a

repeating target element.

» When source nodes are mapped in target-based maps.

ForEach commands are generated by the mapping editor.

Use the ForEach command to execute mapping
commands for each occurrence of the specified
source node. Each occurrence of the source results in
a new occurrence of the current target element.

You can include multiple ForEach command blocks
within a single target element. The target element
can be either a repeating node or a non-repeating
node, and can be either a simple or a compound
node.

If the target node is not repeating, you might need to
use the Qualify command or conditional logic
(If/Then/Else) so that only one occurrence of the
source value is written to the target. If the target is
not repeating and multiple values are written to it,
later values will overwrite the earlier values.

Conditional Commands

If (condition)
commands

Elseif (condition)
commands

Elseif (condition)
commands

Else
commands

Endif

The If command marks the beginning of the If
condition block. EndlIf is used to mark the ending of
the If condition block.

When the If command is encountered by the
translator, the condition will be evaluated. When the
If condition evaluates to True, the mapping
commands immediately following the If command
will be executed. When the If condition evaluates to
False, the translator will look for an Elself statement
within the If condition block. If an Elself statement is
found, its associated condition will be evaluated.
When condition evaluates to True, the mapping
commands immediately following the Elself
statement will be executed. When the If condition

evaluates to False, the translator will look for the
next FleoIf ctatement within the If caonditinn hlack

Error Command

« Error (level, code, message)

« Function: Issues an error message and sets the return code
based on a condition occurring during translation
where:

= level — severity 0, 1, 2, or 3 (extended error code and JCL

condition code)
= code — unique error code 5000 to 5999

* message — text message — message to be written as a TR0026

message.

Use the Error command to issue an error condition.
This command allows you to establish your own
errors for a translation. Typically, the error is issued
from within an If conditional block.

FAError Command

» FAError (level, code, facode, message, error type, segment
ID, element position, subelement position)

« Function: Used only in Validation Maps to define an EDI
Functional Acknowledgement error based on a mapping
condition
where:

= level — severity 0, 1, or 2 (none, element, segment)

= code — unique error code 5000 to 5999

= facode — the EDI standard functional acknowledgement code
= message — text message

= error type (optional) — I, G, T, S, or E, indication Interchange,
Group, Transaction, Segment or Element error

= seglD (optional) — ID of the segment in error
= element position (optional) — position of the element in error
= subelement position (optional) — position of the subelement in error

Use the FAError command to set a functional
acknowledgement code. You can only use this
command in validation maps.

Use this command at any point at which you want to
identify an error condition. This command allows

you to establish your own error codes for translation.

Typically, the error is issued from within an If
conditional block.

HLLevel and AutoMapped Command

* HLLevel (level)
+ Function: Defines an HL loop within an EDI ANSI X12 map

where:

= level — The hierarchical level code defined for this mapping in the

hierarchy.

» HLAutoMapped

= Produced when an HLLevel command is created within an HL

qualification

Use the HLLevel command to create an HL loop
within an EDI source or target based map.

If you are working with a source-based map:

-Drag a structure or record from the target window

and drop it on to the HL loop in the source window.

A MapTo command is created under the loop.

- To create the underlying HL nesting levels or
children for this HL level, right-click the HL loop
and select AddChild, or select AddPeer to create a
sibling.

If you are working with a target-based map:

- Right-click the HL loop again and select the
ForEach command

- Drag and drop the source path to the command

20

AddChild and AddPeer Menu Actions

+ AddChild and AddPeer will appear as choices when you add
an HL qualification to a hierarchical loop.
+ AddChild
= Inserts an HL loop as the child of the current loop within an HL
qualification.
* AddPeer

= Inserts an HL loop as a peer to the current loop within an HL

qualification.

- To create a child node, select the “AddChild”
command.

After selection of AddChild, select an HL level code
from the drop-down list. The list contains valid codes
from the code list for HLO3 (element 735). The HL
loop is inserted as a child of the current HL loop with
an HLLevel command. The HL segment is
automatically selected and all elements mapped with
an HLAutoMapped command. This command can
not be removed or modified. Additional mapping for
these elements can be accomplished using normal
mapping methods.

- To create a sibling node, select the “AddPeer”
command.

After selection of AddPeer, select an HL level code

21

MapCall Command

» MapCall (sourcepath, mapname, targetpath)

« Function: Causes the document to be translated by another
map with control returned to the current map following
translation by the second map
where:

= sourcepath — The source element to be used as the root of the
source tree for the imbedded map.

* mapname — The name of the second map by which the current
document is to be processed.

= targetpath — The target element identifying the destination of the
output of the imbedded map.

Use the MapCall command to indicate that a new
map must be used to process the data within the
current source element (for source-based maps) or

the specified source element (for target-based maps).

When this command is encountered, a new copy of
the translator is loaded. It receives the data from the
current element to use as its input document. The
element can be a simple element (for example, the
BINO2 element in a BIN segment) or it can be a
compound element (a subtree or subset). The copied
translator shares global variables with the parent
translator.

When the copied translator has completed
translation, it terminates, and control is returned to
the parent translator. The parent translator checks if

1 . 1 111 . ~ o 1 0

22

MapChain Command

* MapChain (mapname)
+ Function: Causes the document to be translated by another
map following successful completion of the current

translation
where:

* mapname — The name of the second map by which the current

document is to be processed.

Use the MapChain command to indicate that the
document needs to be translated by another map after
the current translation has completed. The
subsequent translation only occurs if the current
translation is successful.

Each MapChain command encountered during
translation of a map indicates that the document will
be translated an additional time using the newly
specified map. This process stops if an error is
encountered in any one translation. The output from
a translation is independent from the other
translations.

23

MapSwitch Command

* MapSwitch (mapname)

« Function: Causes the document to be translated by another
map instead of the current map
where:

= Mapname — The name of the second map by which the current

document is to be processed.

Use the MapSwitch command to indicate that the
document needs to be translated by another map
instead of the current map. Any translation
performed by the current map is terminated and the
document is translated by the map specified in the
MapSwitch command.

Use this command when data in the document must
be inspected before it can be determined which map
to use. It allows you to switch the map dynamically
based on the data that is contained in the document.
You can create a map that will initially examine the
data in the document. Only the compound and simple
elements necessary to make a mapping decision are
mapped. The map that should be used to translate the
document is determined based on the mapped

elemente Then nee conditinnal mannino commandc

24

SetNamespace Command

» SetNamespace (URI)
« Function: Creates an attribute in the target XML
document that associates a prefix to a namespace.

« If this command is included, an attribute of the following form
will be created on the root element of the XML output:

= xmins:prefix="URI

Namespace objects are generally created
automatically when XML schemas are imported into
WebSphere Data Interchange Client. WebSphere
Data Interchange Client scans the schema looking for
“xmlns” attributes while a schema is being imported.
The “xmlns” attribute identifies a namespace. When
the attribute is encountered, WebSphere Data
Interchange determines if a corresponding
Namespace object exists within the same XML
Dictionary. If one does not exist, a corresponding
Namespace object is created within the XML
Dictionary. The prefix and other information
associated with Namespace objects may be changed
later.

A Universal Resource Identifier (URI) is a member

of thic inivercal cot nf namec in recictered name

25

SetSchemalLocation Command

+ SetSchemalocation (URI)

« Function: Creates an attribute in the target XML document
that provides information as to where the schema is located.
This command is used to generate an attribute that
associates the schema with a namespace.

« If this command is included, an attribute of the following form
will be created on the root element of the XML output:

= xsi:schemalocation="URI location”

» The Namespace object representing the specified URI will be
obtained. The location value is filled in based on the
information in the Namespace object.

The “xsi” prefix will be changed if you have a
Namespace object defined for URI
“http://www.w3.0rg/2001/XMLSchema-instance”
with a different prefix. If you do not have a
Namespace object defined for this URI, the default
prefix “xsi” will be used. An appropriate
“xmlns:prefix=http://www.w3.org/2001/XMLSchem
a-instance” attribute will automatically be generated
when this command is used.

This command may be specified multiple times in
the map. If there is more than one occurrence of this
command, then a namespace/location pair will be
created for each occurrence of the command.

26

SetNoNSSchemalLocation Command

» SetNoNSSchemalocation (location)

« Function: Creates an attribute in the target XML document
that provides hints as to where the schema is located. This
command is used to generate an attribute that does not
associate the schema with a namespace.

* Location — A character expression that indicates the schema
location for the target XML document. This can be a string
constant, a path identifying a simple element in the source
document definition, a variable, or any expression that
evaluates to a character string.

The “xsi” prefix will be changed if you have a
Namespace object defined for URI
“http://www.w3.0rg/2001/XMLSchema-instance”
with a different prefix. If you do not have a
Namespace object defined for this URI, the default
prefix “xsi” will be used. An appropriate
“xmlns:prefix=http://www.w3.org/2001/XMLSchem
a-instance” attribute will automatically be generated
when this command is used.

If there is more than one occurrence of this
command, only the last value is used.

27

Properties

« Properties represent values that may be retrieved or set
during translation.

« Source document properties are retrieved using the
GetProperty function.

« Target document properties are set using the SetProperty
command.

* Property values include envelope elements for EDI data or
the XML declaration for XML data:

= DIProlog — XML Prolog

= Positional envelope element designations ISAnn, GSnn, STnn,
UNBnNN, and generic properties such as IchgCtINum, IchgSndrld,
GrpCtINum, and TrxCode to access envelope elements.

Properties can be accessed using the SetProperty
command and GetProperty function.

Source Document Properties

» Alphanum - Inbound alphanumeric data Code List

* BegEnv - Set to “Y” when the document is the first document in an
interchange envelope. Otherwise set to “N”.

*» BegGrp - Set to “Y” when the document is the first document in an
group envelope. Otherwise set to “N”.

* Charset - Inbound character data Code List

* EndEnv - Set to “Y” when the document is the last document in an
interchange envelope. Otherwise set to “N”.

» EndGrp - Set to “Y” when the document is the last document in an
group envelope. Otherwise set to “N”.

* GrpLVIFA - Group level functional ack only flag

* Process - The process value from the trading partner profile

» ServSegVal - The service segment validation level

* Thandle - The transaction handle (yyyymmddhhmmssnnnnnn)
« VallLevel - Inbound validation level

« ValErrLevel - Inbound acceptable error level

» ValMap - Inbound validation map name

29

Target Document Properties

» ACField — Specifies the application control field

» AckReq - Overrides the acknowledgement expected setting

« Alphanum - Overrides the outbound alphanumeric data Code List

« Charset - Overrides the outbound character data Code List

» CtINumFlag - Overrides the control numbers by transaction id flag

« DIDocld - Value to appear in the PRTFILE message when the output is
written to a file or queue

* DIProlog - Used to override the default XML prolog in the target
document

» EdiDecNot - Overrides the EDI decimal notation character from the
trading partner profile

» EdiDeDIm - Overrides the EDI data element delimiter from the trading
partner profile

« EdiDeSep - Overrides the EDI repetition separator from the trading
partner profile

The EDI envelope standard generic properties allow
you to get or set information in the EDI envelope
standard segments. They have generic names that can
apply to any of the EDI standard types. For example,
IchgSndrld is used for the interchange sender ID,
regardless of the EDI standard type.

These properties are available when the source
document is received within an EDI envelope
standard. The properties can be obtained using the
GetProperty function. If you request a property that
is not present, an empty string is returned.

These values can also be set for the target EDI
document using the SetProperty command. If set,
they will override the values specified in the
envelope profile.

30

Target Document Properties (cont.) =4

+ EdiRIsChar - Overrides the EDI release character from the trading
partner profile

+ EdiSeDIm - Overrides the EDI subelement delimiter from the trading
partner profile

+ EdiSegDIm - Overrides the EDI segment delimiter from the trading
partner profile

» EdiSegSep - Overrides the EDI segment id separator from the trading
partner profile

» EnvProfName - Overrides the envelope profile name
* EnvType - Overrides the envelope type

« NetProfld - Overrides the network profile id from the trading partner
profile

» SegOutput - Overrides the segmented output flag from the trading
partner profile

« ValLevel - Overrides the outbound alphanumeric data Code List
« ValErrLevel - Overrides the outbound acceptable error level
« ValMap - Overrides the outbound alphanumeric data Code List

31

Functions

* Char * IsEmpty * StrCompl
+ Concat * Left + StrCompN
+ Created * Length + StrCompNI
+ Date * Lower * SubString
+ DateCnv * Number » Time

« Exit * NumFormat * Translate
* Find » Occurrence * TrimLeft

+ Found * Overlay « TrimRight
* GetProperty * Right * Truncate
» HexEncode * Round * Upper

» HexDecode » StrComp + Validate

All functions take zero or more arguments as input
and return a value. The data type of the return value,
as well as the number and data types of the
arguments varies from one function to the next.
Appropriate type conversions are done implicitly if
needed (and possible), just as they are done for the
expressions. Some functions have optional
parameters. If the optional parameters are omitted
from the function call, a default value is used for that
argument.

32

Using Functions

* A Function returns a value based on arguments provided an
input

» Arguments are specified in parenthesis following the function
name:
Char (value)

+ Function names are not case sensitive

 Function arguments may be expressions

» The Function reference is replaced with the result returned

by the function.

Most functions can take an expression as an
argument, as long as the result of the expression is
(or can be converted to) the correct data type.

The only time you cannot use an expression as an
argument is when the argument is identified as a
source or target path. For example, you cannot pass
an expression to the Created function.

The input arguments for a function are never
modified by the function.

The function names are not case sensitive.

33

Character Processing Functions

+ Char (argument) — Converts a numeric value or expression to a
string.

« Concat (argument1, argument2) — Concatenates two character
string.

* Substring (string, position, length) — Returns a portion (substring) of
the string passed, beginning at “position” for a length of “length.”

» Find (string, search string, starting position) — Searches a string for a
search string, returning the position of the search string in the string
searched. Returns 0 if the search string is not found.

* Length (argument) — Returns the length of a character string.

* Left (string, length) — Returns the leftmost n characters from a string.

* Right (string, length) — Returns the rightmost n characters from a
string.

* Overlay (string1, string2, position, length) — Overlays string1 (or a
portion of strin%1) with string2. Position indicates the position in
string2 at which string1 is to be overlaid.

* Lower (argument) — Converts a string to lower case characters.
* Upper (argument) — Converts a string to upper case characters.

Char - This function is not normally needed, since
the conversion is generally done implicitly.
However, it can be used to force the conversion to a
character value, or to clarify when the conversion is
done.

Substring - Only available characters from the string
value will be copied. Therefore, the substring will
contain length characters unless string has less than
position plus length minus one characters.

Left - Only available characters from “string” will be
copied. Therefore, the returned string will contain
“length” characters unless “string” has fewer than
“length” characters.

Right - Only available characters from “string” will
be copied. Therefore, the returned string will contain

34

String Comparison Functions

» Format: StrComp (string1, string2)

+ Function: Compares two character strings, returning a 0 if
the strings are equal. If string1 is less than string2, a -1 is
returned. If string2 is less than string1, a 1 is returned.

» Example: StrComp (alpha, omega)

= If variable alpha has a value of ‘ABC’ and omega has a value of
‘XYZ, a -1 will be returned.
« Function
= StrCompl - Compares two string Ignoring the case
= StrCompN - Compares the first N characters of two strings

= StrCompNI - Compares the first N characters of two strings
ignoring the case

StrComp - The syntax “If (X = “123’)” may NOT be
used for string comparison. The StrComp function
must always be used.

String cannot be compared using an expression such
as(stringl = string2)

35

String Trimming Functions

+ Format: TrimLeft (string, trim-string)

« Function: Removes characters (typically blanks) from the left
of a string. Characters in the (optional) trim-string are
removed from the string. If trim-string is not specified,
leading whitespace characters (blanks, tabs, line-feeds,
carriage-returns) are removed.

+ Examples:

= TrimLeft (name) - If variable name contains “ Julie,” the string
“Julie” is returned.

= TrimLeft (address, “0123456789) - If variable address contains
“9010 Lake Sunset Drive,” the string “Lake Sunset Drive” is
returned.

= TrimRight - Provides the same function for trailing blanks or
specified characters.

TrimLeft - All characters contained in trim-string
will be removed from the beginning of the value
string. The operation ends when the first character
not contained in trim-string is encountered. If trim-
string is omitted, whitespace is removed from the
beginning of the value string. Whitespace includes
blanks, carriage returns, line feeds and tab characters.

TrimRight - All characters contained in trim-string
will be removed from the end of the value string. The
operation ends when the first character not contained
in trim-string is encountered. If trim-string is
omitted, whitespace is removed from the end of the
value

string. Whitespace includes blanks, carriage returns,
line feeds and tab characters.

36

Date and Time Functions

« Date() — Returns the system date in the format yyyymmdd.

« DateCnv (source, source mask, target mask) — Converts a
date from one format to another.

= Example: DateCnv(TODAY, ‘ccyymmdd,’ ‘tm dd, ccyy’)*

* Time() — Returns the system time in the format hhmmss.

*A complete list of date code may be found in Appendix C of the
WebSphere Data Interchange User's Guide

Use the right click popup values menu to get a list on
common values and a complete list if substitution
values that can be used to construct any specific
format.

37

Hex Character Processing Functions

» HexEncode (argument) — Converts a binary value or

expression to a hex character string.

» HexDecode (argument) — Converts a hex character string

representing a hex value to the equivalent binary value.
« Example:

= HexEncode (number)
+ The function returns a character string representing the hex code for the
binary value in variable number.

+ If the variable number has a value of 255, the HexEncode function will
return a character string of “FF.”

HexEncode - Each byte of the binary value will be
encoded as two characters in the resulting string. For
example, if the input is a 4 byte binary value:
0x01020A0B, the result would be the 8-character
string: “01020A0B”.

HexDecode - Each byte of the binary value will be
derived from two characters in the encoded string.
For example, if the input is the 8-character string:
“01020A0B”, the result would be a 4 byte binary
value: 0x01020A0B.

38

Mapping Query Functions

* Created (argument)
« Determines if a path was created in the target data.
* Returns Boolean true or false.
» Found (argument)
« Determines if data exists in the source element.
« Returns Boolean true or false.
* IsEmpty (argument) —

* Returns a Boolean True if the string is empty (null - not
blank), otherwise returns a False.

* Occurrence (sourcePath) —

« Provides the occurrence number of a repeating simple or
composite element.

Created - This function can only be used with paths
in the target document definition. If the element is
within a repeating compound element (such as a
repeating loop or segment), then only the current (or
most recent) iteration is searched for the targetPath.

Found - This function can only be used with paths in
the source document definition. If the element is
within a repeating compound element (such as a
repeating loop or segment), then only the current
iteration is searched for the sourcePath.

IsEmpty - If the argument contains a value other than
an empty string, the mapping command is executed
by the translator.

Occurrence - Use the Occurrence function to obtain
the current occurrence number of: 39

Exit Function

 Format: Exit (exitname, parameter1, parameter2,
parameter3, parameter4)

« Function: Converts a value to a string that will be passed to
the field exit in the User Exit profile. Up to 4 parameters can
be passed to the Exit function

where:

+ exitname - The name of a User Exit profile that is used as a
logical name for the user-provided program or exit routine in
the translator.

« parameters - Optional string values that are passed to the field
exit.

Exit is used to invoke a field exit and returns a string
value. Results that are returned can be used to update
a variable or target a simple element in an
assignment statement. The name that contains the
function information to be executed.

You must define field exits in the User Exits profile.
If the exit is not properly defined, an error is issued.
Zero to four parameters can be passed to the exit and
it is the job of the field exit to determine how many
parameters to expect.

40

GetProperty Function

» Format: GetProperty (argument)

« Function: Returns the value of the Property Name specified
(such as an envelope element).

= Example:

+ GetProperty (“ISA06”) - Returns the value from ISA06 in the X12

Interchange Control Header.

The GetProperty function is used to get a property of
the source message. This can be used to retrieve
information such as EDI envelope header elements.

41

Numeric Processing Functions

» Number (argument) - Converts a character string to a real
numeric value.

» NumFormat (value, num-decimals, flag) - Converts a
numeric value to a character string. The flag is optional. “R”
indicates round (default). “T” indicates truncate.

* Round (real number, number of decimal positions) - Rounds
a numeric value to a specified number of decimal positions.

* Truncate (real number, number of decimal positions) -
Truncates a numeric value to a specified number of decimal
positions.

Number - This function is not normally needed, since
the conversion is generally done implicitly.
However, it can be used to force the conversion to a
numeric value, or to clarify when the conversion is
done.

NumFormat - The flag indicates whether unused
digits are rounded or truncated. Specify “ROUND”
to round unused digits or “TRUNCATE” to truncate
unused digits. If no flag is specified, the value
defaults to “ROUND”.

Round - Round returns a numeric (real) value. If the
return value will be assigned to a character string and
trailing zeros are to be removed, the NumFormat
function should be used.

Truncate - This function returns a numeric (real)

42

Translate Function

» Format: Translate (table-name, direction, value, error,
default)
where:
= table-name - Translation Table

= direction - “SOURCE” or “S” to search the Source column of the
table, or “TARGET” or “T” to search the Target column of the table.

= value - The search value (character or real)

= error - Boolean true or false. If true, a warning message will be
issued if the search value is not found.

= default (optional) - Value to be returned if search value is not
found.

If the table specified does not exist, a warning will be
issued and it will be treated as a not found condition.

A translation table contains two values for each entry
in the table, one called the Source Value and the
other called the Source Value. When direction is
specified as “SOURCE”, an attempt is made to find
the search value in the Source Value column in the
table. If it is found, the value from the corresponding
Target Value column is returned by the function.
When direction is specified as “TARGET”, an
attempt is made to find the search value in the Target
Value column in the table. If it is found, the value
from the corresponding Source Value column is
returned by the function.

43

Validate Function

» Format: Validate (table-name, value, error)
where:
= table-name - Code list
= value - the search value
= error
+ Boolean true or false.

+ If true, a warning message will be issued if the value is not found in the
table.

+ Function: Performs a Code List lookup, returning a Boolean
true if the value is found in the table or a false if the value is
not found.

« Example:
= Validate (“CODELIST”, cust_code, False) Code List table
“CODELIST” will be searched to locate the value cust_code. If
found, a true is returned by the function. If not found, no message
will be issued (false) and the value false will be returned.

If the value is found in the Code List, the mapping
command will be executed. If the value is not found
in the Code List, an error is issued with error code
5001.

Applied Mapping

* You've looked at the mapping tools
» Now to apply them
» Next you will learn to:

= Use variable to perform arithmetic operations, mapping a
computed result

= Map envelope data

= Create an XML Prolog

= Convert date formats

= Use Code Lists

= Use Translation Tables

= Manipulate character string data

= Map hierarchical loops

= Map conditionally based on inbound qualifying elements

45

Using Variables

* You have been asked to calculate the total monetary amount
for all line items of an inbound purchase order and compare
that amount to the amount in the AMT segment.

 To calculate the amount for each line item, it will be
necessary to multiply the quantity by the amount.

« If the amount calculated does not match the amount in the

AMT segment, you are to issue an error message.

46

Fie Actions Edt

Havigals Yiew indow Help

Database |Development

) e I I 1 = 5

-

Create New Local Variable

*Name

Desciiption

Scop
’V ' Document

Data Type
Maimum Length

Inital Yakee

Insert
Cancel

| E

Ready

[7

47

Elements to Be Processed

Eile Havigals Yiew indow Help

Edit

Actions

Database |Development

b IR T e =]

oop [Feterence 52 | e AR A L S [P
‘ _>|_|4 T B

=--E3@ 10 M P01 [Baseline ltem Data] B I Local Yariable Name
—d# 1N TN ecinnad donkificatinn] |ml—
=@ 2T 330 [Quantity Ordered] in:
T e e N T AN 1 |
% 4C212 [Unit Price] Lme
=@ DU bJd |Bask of UNCETIce Lods| ‘

=# &L 235 [Product/Service 1D Qualifier]
=@ 7234 [Product/Service 0]

8 235 [Product/Service 1D Qualier]
% 3C 234 [Product/Service D]

10 C 235 [Product/Service 1D ualiier]
=% 11 C 234 [Product/Service D]

12 C 235 [Product/Service 1D Dualifier]
13 € 234 [Product/Service 1D]

14 C 236 [Pioduct/Service D Dualifier]

|
Ready |

48

Creating an Assignment Statement

=

@ 10MFO1 Baseine lem Daia)] a
] 110 350 [Assigned | dentification]

% =@ 2330 (Quanilty Drdered]
G i@ 30 355 Uk or Basic for Messursment Code]
o
S InseitBetore ¥ | o)
=7 N im0l
=A% 70234
of 8025 g Conmand
B @ 80234 Commert.
b T o] Comment Gioup...

=f% 11023 Fid.

-d 12023 ‘Quaiifier]

=f 130234 (Product/Service ID]

—& 14235 [Produck/Service ID Duaifierl
Feady

_

49

Drag to Create Command

= T N S =T

General Detads | Comments

=4 2C 33 [Quanity Ordered)
- =@ 30355 Unik or Basis for Measurement Code]
A& 4022 (U Price]

& 5063 [Bax's of Urit Price Code]

=4 &C 235 [Product Service | Bua‘f.slj

@ 7 T2 ProductService 10}

=@ 8C 235 Product/s-, .meu.- Tualifier]

=@ 9C 23 [Product/Servin: D]

=4® 10C 230 [Product Servie ID Qualifier]

L AN e e N - Y n\

[Mapping Command E:

Eter a commanr*

& Source: ROD Document Denna.m\swaam—l Targe't EDI Document Definilion' 1241850 =]
e Table 1 =l

= 50 700 FOT [Baseine ltem Data] _I anlv., 7 D

=€ 10350 [Ascigned Identiication] HASHTOTAL Fe
LINENUMBEH Inl

TOTALAMOUNT Doc.. R

[TOTALAMOUNT ~TOTALAMOUNT+\Table 2110 M PO1 Loop!10 M POT\2 C 3301 * \Table 2110 M POT Loop\10 M PO14 C 2121\

e T

W

50

File Actions Edt Navigale Wiew ‘window Help

Database [Development

=1 N 2 M=

[General Detai

Comments

2 Sowse: ROD Document Delimlmn\SWS}iZ%‘

Table 1

S Target EDI Documert Defintionts{ 2/4R14650 =]

]

53¢ 10M PD1 [Baselne Item Data]
=% 10350 [Assigned Identification]
‘=% 2 C 330 [Quantiy Ordered]
& 30355 [Unit or Basis for Measurement Code]
=@ 4C 212 Unit Price]
(] 70 OUMNT = TOTS
o] MapFrom (TEMSMINIT-PRICERS
‘=% 50633 [Basis of Uit Prics Code]
=% BC 235 [Product/Service 1D Qualfier]
‘=i 7 C 234 [Product/Service D]
=% 8 C 235 [Product/Service 1D Qualifier]

KT}

Ready

[

51

Create If Statement for AMT Mapping

: Mapping Command

[x]
Erter the parameters of the cammand:
If |(\Table 3\10 O CTT Loop\20 O AMT\2 M 782\ NE TOTALAMOUNT) ;I

oK. ;\ | Insert | Cancel |

T T TTEare.
=@ 14354 [Number of Line ltems]

Enor.
% 20347 [Hash Tata]
3C 81 Weigh]
MapFi
4C 355 (Uit or Basic ForEach] apriom
MapChain
5C 193 Molume] et Befors ¥ i
60385 Uritor Bagiy oo oot P apLal
70 352 [Descrpton], Ingert At 3 MapSwitch,
SetPrapery..

ommand Giaup
Comment
Conment Growp

Note that the Mapping Command Editor can be
resized if necessary.

52

If Command Mapped

Data Transformal

7 Ele Actons Edt Navigste View Window Help _1a] x|
' Database |Development = ﬁ
D | ==
oo I 2 =
= TTITIaRsaChon T okals] ;I

=% 1 M 354 [Number of Line ltems)

7% 20347 [Hash Total]

3C81 [weight]

4T 355 [Unit or Basis for Measurement Code]
5C 193 Wokume]

6 C 355 [Unit or Basis for Measursment Cods]
= 70352 Deseiption]

0 AMT [Monetary Amount]

=% 1M 522 [mount Qualifier Corlel

=7 7 752 onetay Amounl]

sLLLLL

™ Endf
=f 30478 [Credi/Uenn riay Cuic

«

Ready

53

Creating the Error Command

es - [Development - Data Transformation Maj

e Navigate View ‘Window Help

=181 x|

Ty

Mapping Command Editor

Entera cormrmant:

Rl K
% IError (1,5555,'Computed total amount does not match AMTO01’)

oK Blepeat Cancel

N

= 5C355 [Urit or Basis for Measurement Code]
wef 700352 [Desciiption]
£ -8 200 AMT [Monetary Amouni]
@ 11522 [Amount Bualfier Cade]
Bl 2M 782 [Monetay Amouni]
4

Open.

=f 30 478 [Credt/Debit

Inseit Before »

ﬂ —_— InsEnAfter
Assignment...
4| Command Gro Closelceunence.
Delete
Ready " Comment Create

Find. Comment Group,

54

Mapping EDI Envelope Elements

« Frequently there is a requirement to map envelope elements
to XML or application data.

« Data Transformation mapping provides the GetProperty
function to extract envelope data from an inbound
interchange.

* Although envelopes are produced automatically, it may be
necessary to map data to an envelope.

+ Data Transformation mapping provides the SetProperty
command to create envelope data for an outbound
interchange.

+ Next, you will look at an example of each type of mapping.

55

Database [Development

= N EA N E e

General Detals | Comments

| Mapping Command Editor

Entera command

2 Souce HnnDucumemDehmnnn\cmss-;l| i 20M BEG [Beginning Segment for Pu =
A5 HF&NFR-RFCMIRN [Mass Puichass H - w5 400 CUR [Currencyl

L |denification]

srence ldentificati

ience dentiicati
v

o

4 Bepest | el

= |\H EADER-RECORD\TRADING-PARTNER\ = GetProperty(‘GS02');

iable Name | Scoy

= T T
=f TRADING-PARTNER [Class Purchase Order ADF Solution] | I |

4

Ready

I Doe,

el Doc.
ol

| Y7

56

Mapping an Outbound Envelope Element &4

§ Data Interchange Services - [Development - Data Transformation Map - CLASSMAP o]
Fie Actions Edt Navigate View Window Help METE]

Database [Development | i
|
= e N N N

General Detals | Comments

2 Souce AOD Dogument DefiniionhCLAS 5+ ;l | i £ 20M BEG [Beginning Segment for Fux
m B HF&NFR-RFIRN [Mass Puichas: F-f 400 CUR [Cunency] Ll
Mapping Command Editor ce |dentification]
eference Identiicai
Enter & camrmand eference Identficati
“ v
—_ | SetProperty (‘GS02’,’MegaMicro’)
= Jatiable Name: SCDE
| stal Dox.
unter Do
oK Bepeat | Cancel
T TCCCYC IR OO R
= TRADING-PARTNER [Clss Purchase Order ADF Solution] | I |
d e e : _'_I

Ready | 7

Creating an XML Prolog

Data Interchange Services - [Development - Data Transformation Map - CLASSMAP1]

Ele Actons Edit Navigale View Window Help

Databass [Development

T I T =

f|Mapping Command Editor

= Enteracommand: —
) Segment for Pur =

I SetProperty ('DIProlog’,'<?xml version="1.0"?>’) . Identfication]

&
: ~rence |dentficati
H rence |dentificati ¥
| Bepeat | Cancel
=af

HashTotal Dac.

= 3% HEADER-RECORD [Class Purchase Order ADF Solution]
H LineCounter Doc

RECID-HDR [Class Purchase Order A0F Solution]
SENDER-QUAL [EDI Qualifier]

SENDER-ID [EDI Sender 1D]

RECEIVER-QUAL [EDI Qualifier]

=1 TRADING-PARTNER [Class Purchase Order ADF Solution]

Ready | 7

LLELE

In this example, Prolog is a variable that will contain
the text for the XML Prolog statement.

Converting Date Formats

ata Transformation Map - CLASSMAP1

7 File Actions Edt MNavigate View Window Help

—
Database |Development
b

= I 2 = |

General Detals | Comments

TRADING-PARTNER [Class Purchass Ord |
PURPOSE-CODE [Class Purchase Order &
CUST-PURCH-ORDR [Chass Purchase Ore_
H CUST-PO-DATE [Class Purchase Ordsi AL =

‘- f RELEASENUMEER [Class purchase Drde= || = 801013 (Inveice Tupe Code]

Enler a command:

—-=fl 40 328[Release Number]
= 5M373(Date]
o4 50 367 [Conmact Number]

LLLLL

710 587 [fcknowledgment Type]

Table 1120 M BEG\5 M 373\\ =DateCnv(HEADER-RECORD\CUST-PO-DATE\, TM DD, CCYY', ‘CCYYMMDD')

= =

FELEWER-GIUAL [EUT U3 v
TRADING-PARTNER [Class Purchase Order ADF Solution] | I |

gl e -l

Ready | >

Remember - TM stands for Textual Month.

59

Date Masks

CC Century

YY Year

MM Month of year
DD Day of month

D Day of month as a single
character, if possible*

HH Hour of day
MM Minute of hour**

Il Minute of hour

SS Second of minute

WW Week of Year (1 through 52)

K Day of Week
(Monday=1, Tuesday=2, etc.)

JJJ Julian day of year
Q Quarter (1,2,3,4)

E Semester

ZZZ Time zone

TM Textual month
(i.e., January, February, etc.)

*D can be used if it immediately follows WW as in WWD; however, if you want day of week followed by week, you
must use KWW, because DWW would be interpreted to be day of month and Week of year.

“*MM can be used for minutes when it immedately follows HH as in HHMM; however, if you want minute followed
by hour, you must use IIHH, because MMHH would be interpreted as month of year and Hour of day.

60

Using a Code List =4

Data Interchange Services - [Development - Data Transformation Map - CLASSMAP1]

Fle Actons Eci Mavigate View Window Help METET]

Database |Development LI €

General Detalls | Comments
—] A55IGNEDD [Class Purchass Order ADF. 2] =d 400328 [Release Mumber] -
= DRDR-QTY [Class Purchase Order ADF Sc = 5M 373 Date] =
el UNIT-OF-MEAS [Class Purchase Order AD o] 60 367 [Contract Number]
=4 UMIT-PRICE [Class Purchase Dider ADF & | =4 70 687 [hcknowledgment Type]
1L To validate :
*] UNIT-OF-MEAS before mapping it L=
to element 355 (Unit or Basis for Doc
Measure), you will build a custom code
list ‘UOM’ with the following entries:
g EA, DZ, BX, GS. : _IJ
Ready |]

61

Using the Validate Function

a Interchange Services - [Development - Data Transformation Map - CLASSHAP1]

File

Actions Edit Navigale View Window Help

Database [Development

Enter the parameters of the commandt

If |l (validate(“UOM" ITEMS\UNIT-OF-MEAS\\ True))

oK. Insert | B

=@ ASSIGMED-ID [Class Purchase Order ADF Solutior]
=@ ORDR-OTY [Class Purchase Order ADF Sohution]

The mapping could then be completed by mapping the UNIT-OF-MEAS
element to element 355 (Unit or Basis for Measurement) by inserting an
assignment statement with in the /f statement. Instead of the custom

‘UOM' code list, you could have used the standard code list ‘355X41".

Ready

62

Using a Translation Table =4

ata Interchange Services - [Development - Data Transformation Map - CLASSMAP1]
Fie Actions Edi Navigale View Window Help ETE|

Database |Development LI €

Comments

General Details

] A55IGNEDD [Class Purchass Order ADF. &[] = 40328 [Release Humber] -
To convert UNIT-OF-MEAS before mapping it to i
element 355 (Unit or Basis for Measure), you will ol
41| build a Translation Table to convert as follows: b
5 Source Value Target Value =i
1EACH EA oo
DOZEN Dz
BOX BX
GROSS GS
=% MFG-PART-NUMBER [Class Purchase Order ADF Suolution) -
I i | ol
Ready | el

63

Using the Translate Function

a Interchange Services - [Development - Data Transformation Map - CLASSMAP1]
Fie Actions Edi Navigale View Window Help ETE|

Database |Development LI €

General Detals | Comments

-] ASSIGNEDAD [Class Purchase Order ADF 4 |
= ORDR-QTY [Class Purchase rder ADF S¢

HIMIT.OF-MFAS [Tlazs Purchass rder A0
[Mapping Command Edor

o] 410 326 [Release Mumber]
= GM373[Date]
_# A0 IRT ICaniact Humherd

(B

Erler a command:

[iTable 2110 M PO1 Loop\10 M PO1\3 O 355\\ = Translate(‘’XUOM','S' ITEMS\UNIT-OF-MEAS\\ False ,EA’)

g

Using translation table XUOM, this command will translaté the value in
UNIT-OF-MEAS with the result stored in element 355. ‘S’ indicates that
the “Source” side is the table is to be searched. ‘False’ indicates that no
message is to be produced if the value is not found in the table. ‘EA’is

o the default value to be used if the value is not found in the table. _'Ij
Ready r v

“T” would indicate that the Target side of the table is
to be searched.

Dealing with Character Strings

* This example has names in the application data in the form:
= Firstname Lastname
* You need to convert those names to XML data in the form:
= Lastname, Firsthame
* You will enclose those commands in a “Command Group.”
« Creating a Command Group will provide you with an
opportunity to describe the Command Group.
* You will then insert the group of related commands under
this description.

* You also need to create some Character and Integer local
variables to assist with this mapping.

65

File Actions Edi Mavigate View ‘window Help METET]

General

Database |Development LI €

Details

ASSTGNED-\D [Class Purchase Order ADF Solution]

ORDR-QTY [Class Purchase Order ADF Solution] - I

NEME [Class Purchase Order ADF Solution]
=i CUST-ENTITY-ID [Class Purchase O

der ADF S olution]

=i - [Class F__InseitAfter % hifinnl

€ HDDITIGNALMAME | Command v
=& ADDRESS [Class Purchase C Evpand 1

S ITEWS [Class Purchase Oider ADF 5 Commen

RECIDATM [Clsss Purchass | Co1aPse & Comment Broup

1 ASSIGNEDAD [Class Pucha) Find,.

=& ORDR-QTY [Class Puichase

=/ UNIT-OF MEAS [Class Puichase Dider ADF Solution]
P P4 | INIT-PRICF [Cass Purhase Mider ADF Saltinnl 52

66

Character Manipulation in a Command Group

General [Details | Comments

2 Source: Data Format\COMMON\PO_DATA V3 & Target: DTD\XMLSAMPLDIC\XMLSHIP -
428 PO_INFO [PO Number, Date] = Ttems [(Header?,ShipTo+ Itemin=)])|
=% DF2XML Local Variable Name

= Items [(Header?,ShipTo+ ltemin+]] BLANKPOS
Header [EMPTY] LAST
-0 ShpTo [(#PCDATA) NAMELENGTH
==& Shio™s.PCDATA [PCOATA] LASTLENGTH
S« Convert name from "First Last" to "Last, First” FIRSTLAST
%1 FIRSTLAST = \SHIPTO\NAME, i
s BLANKPOS = Fnd(FIRSTLAST,"" 1) LASTRRST
w0 FIRST = Left(FIRSTLAST, BLANKPOS-1)
s NAMELENGTH = Length(FIRSTLAST) ol
s LAST = Rght(FIRSTLAST NAMELENGTH-BLANKPOS)
%l LASTFIRST = Concat(LAST,',)
% LASTFIRST = Concat(LASTFIRST,FIRST)
&l \rems\ShipTo\ShipTo.PCDATAN = LASTFIRST -
! | of
Ready [w4

67

Hierarchical Loops

* Hierarchical Loops (HL loops) or “Self-defining loops” allow
the user to define the looping structure or hierarchy
« Hierarchical Loops are defined by the HL segment in the
ANSI X12 EDI standard
* The HL Segment:
= |dentifies the start of each loop in the hierarchy
= Assigns an ID number to the loop
= |dentifies the parent (next outer) loop
= Indicates the nesting level of the loop
= Indicates whether the loop has inner loops (children)
+ HL Qualification is available when the map is based on the
EDI standard — target based for inbound, source based for
outbound.

68

The HL Segment

HL #4725 *0~

» HLO1 - Unique loop ID — Usually sequential

» HLO2 - Loop ID of parent loop

» HLO3 - Code indicating level of the loop

—> HL04 - Child indicator — 0 — no children
1 — children (subordinate loops)

A hierarchical loop is similar to an organization
chart. Just as an organization chart shows you the
various groups of people and their relationships to
the whole, a hierarchical loop shows you each group
of data and its relationship to the whole.

Hierarchical loops define different levels of data,
which can be used in any sequence and skipped when
appropriate. This allows you to place the loop
anywhere in your data.

69

Mapping Hierarchical Loops E4
=

Selectthe HL level code thatidentifie s this hierarchical lewvel. This is the HLO3 elemeant

value. Walues for the hierarchical level code are obtained fram the code listidentified by the: 4

1735 elernent
Bepeal

T | Cocel

l |—
=29 SAMPLESSEIN || | Local Varible Name Scope
B Tabel
B E29 Tabe2
B R0 mﬁw‘
&5 10 M HL [Hie\ghical Lev
Eo 200N [ftem Kertfcat_ Ay VN
300 SN1 [Item Detal (sr Insert Before N
% 40 OSLN[Sublne Ttem D oot agrer b ||
B 500 PRF [Purchase Orde oo N
& 600PO4 [ltem Physical |
& 70 0PD [Product/item [Expand al
=88 R0 0 MFA Mesarements Colapseal M|
Ready —— [o[

HLO1 (ID number) - A unique number that identifies
the occurrence of the HL segment. This data element
is alphanumeric and has a maximum length of 12
characters. This field usually contains a sequential
number that is incremented for each occurrence of
the HL segment.

HLO2 (Parent ID) - The HLO1 value of the HL

segment that is the parent of the current HL. segment.

HLO3 (Level Code) - A code that indicates the level
of the HL segment in the current HL loop. For
example, the level code could refer to the shipment,
order, or item level information in the ANSI X12
Shipping Notice transaction set.

HLO4 (Child code) - A code that indicates if the
segment has subordinate segments: 1 for subordinate

70

HL Qualification

HL Qualification
Selectthe HLlevel code thatidentiies this hierarchicel level. Thisis the HLO3 element m
value. Yalues for the hierarchical level code are obtained from the code listidentified by the \
735" element Y
PRepest
Cancel

BN~ Foom
"RP" - Report

- shi
Hggn B éﬁgg‘kt % & WebSphere Data Interchange for Multiplatforms V3.2 - [Produd
"SCY- Subcontrs 7 Fle Actions Edit Navigate View Window Help

"SD" - Support DY z
"SE" - Sybexhibi i General Details | Comments

"SH" - Shest

=ewlE
=--E3@ 10 M HL [Hierarchical Level]
- ={® 1M 628 [Hierarchical ID Number]
w1 HLAutoMapped
E=f® 2 0734 [Herarchical Parent ID Number] L
w1 HLAutoMapped
E=f® 3 M 735 [Herarchical Level Code]
%l HLAutoMapped
E=f® 40 736 [Hierarchical Chid Code]

% HLAutoMapped
PR J—I
<

Mapping a Child or Peer

Data Transformation Map - ASH

Eli Developmen
=) 2] s

Comments

Details

General

S Target EDI Docur

Table 1
Table 2

%_ Source: ROD Document DefinitionhShw 3342DICH 5w 3342 4
-2 HEADER-RECORD

Select the HL level code that identifies this hierarchical level This is the HLO3
element value. Walues far the hierarchical level cods are obtained from the code list
identifed by the 735" element,

Insert

—lg‘*"“e‘

72

Mapping Qualified Inbound Elements

* You have seen that, for outbound maps, you can map
qualifiers from fields or specify literal values.

AN

593331112377

In this example the ‘UP’ in the first
element indicates that the second
element contains a UPC code.

» Now you will look at receiving that qualified data and
inspecting the qualifier to determine where the qualified

element is to be mapped.

* In the example, if the qualifier is ‘UP,” you want to map the
qualified element to the UPC code field in the target data.

73

Qualifier Based Inbound EDI Mapping

General Details | Comments

S

B8 Table1
=] Table 2

&

LLL: L

Source: EDI Standard Transaction\X12V4R11856

E-@ 10 M HL Loop [Herarchical Level]
& 10 MHL [Hierarchical Level]
B3 200LUN[Iem ™]

* 0 350 [Assigned Identification;

2 M 235 [Product/Service ID Qualfier;
3 M 234 [Product/Service ID]

4 C 235 [Product/Service ID Qualfier]
5 C 234 [Product/Service ID]

6 C 235 [Product/Service ID Qualifier]
7 C 234 [Product/Service ID]

- P

Target: Data Format\CLASS-ADF_DIi 4|
& HEADER-RECORD [Class Purch
& REF [Class Purchase Order ADF
& NAMEADDRESS [Class Purchast
& ITEMS [Class Purchase Order Al
RECID-ITM [Class Purcha
ASSIGNED-ID [Clss Purc
ORDR-QTY [Class Purcha
UNIT-OF-MEAS [Class Pur.

LULLLLL

BUYERS-ITEM-NUM [Class

= 2" 235 [Product/Service ID Q™" er] — _UPC-CODE [Cass Purcha ™,
4 I 4 J 1
== SAMPLE-SOURCEBAS
Table 1
Table 2 =
Table 3 =
Ready [hom[

74

Conditional Inbound Element Mapping

General Details | Comments

& source: EDI Standard Transaction\X12V4R1\856 il
. Tahls 1

2 Target: Data Format|CLASS-ADF_DIl ;‘
[#..8 _HFADFR-RECORD [(lass Pure

Mapping Command E

Enter the parameters of the commandt

[{lexpression]

% fil Insert Cancel

=] 7C234 Product/Servige D] Comman < ‘CloseOccurrence...

4 Bczgs[pmduwkwm(Comment... Error...

= 9234 [Product/Service ID] _Comment Group...

=f 10 C 235 [Product/Service ID Quaifier] MapTo...

=f 11 C234 [Product/Service ID] MapChain...

f 12 C 235 [Product/Service ID Qualfier] MapCal.. RalN
MapSwitch.. M

SetProperty...

Conditional Inbound Element Mapping - If 4

: Mapping Command E ditor =]
Enter the parameters of the command
If |(StrComp(\Table 2110 M HL Loop\20 O LIN\2 M 235\\,'MG')=0) =l
oK Insert Concel |
S
=f 2 M 235 [Product/Service ID Qualfier] B
=
v
o acaus| Insetbeloe }Aa\f\er] [|
o sc24] Insert After *
;q JPRY, st vitin Assignment...
o 7234 [Product/Service ID] Command Group... CloseOccurrence...
! 8235 [Product/Service D ¢ COmment.
=f 9C234[Product/Service ID] __COmmMent Group...
=f 10 C 235 [Product/Service ID Qualfier] MapTo.
=f 11C234 [Product/Service ID] MapChain...
12 C 235 [Product/Service ID Qualfier] MapCal.. RalN
MapSwitch... |
SetProperty...

76

Conditional Inbound Element Mapping Command

neral Details

Comments

/5 Source: EDI Standard Transaction\X12V4R1\856 :”% Target: Data Format\MEG-PO\PO-DATA =

|

[-=f@ 3 M 234 [Product/Service ID]
[h-4] Check for Qualfiers 'MG', V', 'UP
LR T (StrComp(\Table 210 M HL Loop\20 O

)

[

LIN\? M 235\, MG')=0);

i Open.. \
o 4C23P—ifer]
- oJ@ 5C234[p InsetBefore
o 6C235[P Tnsert After ¥ Lier
- S IR T T
= 8C235[P - Command Group..\ CloseOccurrence.
=l 9C234[P Comment... Error...
=f 10C235[Expandal Comment Group... I.. —
=f 11C234[Colapseal MapTo...
=l 12 C 235 [Progquctservice 1D Qualfier] MapChain...
=/ 13234 [Product/Service ID] MapCal...
ﬂ 8140 938 [Product/Service N Oualfier] Mapswitch... g J
SetProf =
Ready perty. y

71

Conditional Mapping Based on ‘MG’ Qualifier

=

Table 1
Table 2

8
=& 20 O LN [ltem

= 3M234,

Mapping Command Editor

§ Source: EDI Standard Transaction\X12V4R1\856
E-& 10 MHL Loop [Hierarchical Leve]]
& 10 MHL [Hierarchical Level]

= 10350 [Assigned Identfication]
= 2M235]]

Identification]

LLLLLL 5

Product/Service ID Qualfier]
groduct/Service ID]

-

1S [Class Purchase Order AT,

RECID-ITM [Class Purcha’
ASSIGNED-ID [Class Purc
ORDR-QTY [Class Purcha
UNIT-OF-MEAS [Class Pur
UNIT-PRICE [Class Purch:
UNIT-PRICE-BASIS [Class
FG-PART-NUMBER [Clas™
BUYERS-TTEM-NUM [Clase

UPC-CODE [Class Purcha =

General Details | Comments

Ready

Entera command:
\ITEMS\M*G-PART-NUMBER\\ = \Table 2\|0m HL Loop\20 O LIN\3 M 234\\
34y
]ﬂ Bepeat] | LH
T Ihow]

VA

78

Conditional Element Mappings

6§ Source: EDI Standard Transaction\X12V4R1\856 4 || Target: Data Format\CLASS-ADF_DICTIONARY\CLASS
=B Tabe1 %@ HEADER-RECORD [Chss Purchase Order ADF Sc.
E-E8 Tabe2 # - REF [Class Purchase Order ADF Solution]

E-@ 10 M HL Loop [Hierarchical Leve] #-& NAMEADDRESS [Class Purchase Order ADF Solut
f-@ 10 MHL [Herarchical Leve] %@ ITEMS [Chss Purchase Order ADF Solution]

F @ 20 0 LIN Item Identfication]
o[el | Bl
538 20 O LIN [Item Identficaton] A

=f 10350 [Assigned Identiication]

2 220 (mooucyService ID Qualfier] J

=@ 3 M 234 [Product/Service ID]

Bt TF (StrComp({Table 2\10 M HL Loop\20 O LIN\2 M 2351\, 'MG) = 0)
\ITEMS\MFG-PART-NUMBER\\ = \Table 2\10 M HL Loop\20 O LIN\3 M 2341\
i Eself (StrComp(\Table 2\10 M HL Loop\20 O LIN2 M 235, 'INY) = 0)
\ITEMS\BUYERS-ITEM-NUM\\ = \Table 2\10 M HL Loop\20 O LIN\3 M 234\\
= iy Elself (StrComp(\Table 2110 M HL Loop\20 O LIN2 M 2351\ UP') = 0)
\ITEMS\UPC-CODE\\ = \Table 210 M HL Loop\20 O LIN\3 M 234\
sty Endlf B
ol AL cuw ot Sanice T Oualfer]

Ll N
Ready [how[

Additional Mappings

* You have just completed the mapping for the first 235-234
element pair, checking for any of three qualifiers.

» However, there are nine more potential pairs of qualifiers
and IDs that may need to be mapped.

+ The Client allows you to shift and drag mappings from one
element to another element.

* You can drag the mappings from the first element 234
mappings to the next.

« To facilitate this, you can first create a group and copy those
mappings as a group.

+ Then you can update the path references by opening the
mapping editor and dragging the appropriate qualifier and ID
elements to the new copies.

* This provides function similar to &SAMEAS with
Send/Receive maps.

80

Completed Conditional Element Mappings

&% 200 LIN [Ttem Identiication] A
“ff 10350 [Assigned Identiication]
tef! 2 M 235 [Product/Service ID Qualfier]
B-=49 3 M234 [Product/Service ID]
i B Checkfor Qualfiers MG, 'IN', 'UP'

: 1--wd# If (StrComp(\Table 2110 M HL Loop\20 O LIN\2 M 235\\.'MG")=0)
% Check for Qualfiers 'MG', TN', 'UP*
=1 wi# I (StrComp(\Table 2\10 M HL Loop\20 O LIN\2 M 235\\,'MG')=0)
=i \Table 2\10 M HL Loop\20 O LIN\3 M 234\\ = \ITEMS\MFG-PART-NUMBER\\
) =¥y Elself (StrComp(\Table 2110 M HL Loop\20 O LIN\2 M 235\\'IN')=0)
% \Table 2\10 M HL Loop\20 © LIN\3 M 234\\ = \ITEMS\BUYERS-ITEM-NUMBER\\
sify Ekelf (StrComp(\Table 2\10 M HL Loop\20 O LIN\2 M 235\\,'UP)=0)
s \Table 2110 M HL Loop\20 O LIN\3 M 234\\ = \ITEMS\UPC-CODE\\
wi&y EndIf
i El-l# T (StrComp({Table 2110 M HL Loop\20 O LIN4 C 235\\,'MG')=0)
il \Table 2110 M HL Loop\20 O LIN\S C 234\\ = \ITEMS\MFG-PART-NUMBER\}
-5 Elself (StrComp(\Table 2110 M HL Loop\20 O LINW4 C 2354\ IV)=0)
| \Table 210 M HL Loop\20 O LIN\S C 234\\ = \]TEMS\BUYERSV]TEM—NUMBElkl\’ﬂ

<] >

Compile the Map, Producing the Control String

[Production - Data Transformation Maj
SN E N

General {Defails || Comments

AMPLE

MAP

> Source: Data Format\COMMON\PO_DATA V2
PO_INFO1

LT T TEhin o Pt

= 1
Execution Status Window

Compiling control string(s)...
SAMPLEDT-MAP
Reading map database tables

Compiling Map control string for SAMPLE-DT-MAP
Compiling ADF control string for COMMONIPO_DATA_V2
Contral string compilation completed successfuily.

B Target: DTD\XMLSAMPLDICYXM
B Ttems [(Header? ItemIn+)]

Cancel

82

Validation Maps

+ Source based
* There is no target document
» FAError may be used

» Many standard mapping techniques may be applied such as
the IF and Error commands and the Validate function.
* Code Lists for EDI ID-type elements are included with the
distribution materials.
* The following Validation Maps are used to perform service
segment validation during data transformation processing:
= &WDI_E99AENV_VAL-UN/EDIFACT based on E99A service
segments and code lists
= &WDI_UCSENV_VAL-UCS based on UCS 4050 service
segments and code lists

= &WDI_X44ENV_VAL-X12 based on X12 4040 service segments
and code lists

Validation maps are only used in conjunction with
Data Transformation maps. If the target data is EDI,
the Validation map is run after the translation defined
by the Data Transformation map is complete. If the
source data is EDI the Validation map first validates
the inbound EDI data. The Data Transformation then
only runs if the validation did not fail.

83

Validation Map Layout =4

Fie Actons Edt Mavigale View Window Help METET]

Database [Development =] €
I = €
= 2 =

General Detals | Comments

=g EWDI_XHENY VAL Global Variable Name | Scope [Data Type [
The Transaction set used in this validation ma {77, Count Ses. | Inieger
il Vallevel = NUMBER (SetProperty ["ServSegh
w1 Vallevel =)

il Sy Endlt
® If SHComp(RetPropetty [BeaEr), 1> 0
i E?{ prenComelGetPrepers (Begtm L") O | ol Vatabl Nae | Seape] DataType| =
) e DateLength Doc.. Ineger -
E::ﬁ !n[sd‘t:c”mplﬁe":'”“e"" [BegBip'). ") > DAN o takie Doc.. | Character
Codelist Doc.. | Character
-y I [EnorCade EQ 0) CarwFlementl encth | Mo Real 1
‘5\ ol Special Varizble Name | Scope | Data Type |
&8 Tabkl DICUs=iData Doc... Charscter
T .) : _'IJ
Roady 7

A validation map is used to handle extended
validation requirements, and to call an extended error
function to report the information needed to create a
functional acknowledgment. A validation map can
also copy to local variables, and use most other
mapping functions. A Validation map cannot
produce an target file.

84

Functional Acknowledgement Maps

+ Source or target based
* Source document is:
$FUNC_ACK_META
* Source document uses dictionary:
$FUNC_ACK_METADATA_DICTIONARY
« Target document is defined by an EDI standard
+ Target documents provided include:
= $DT99724 — For X12 997 Version 2 Release 4 and lower
= $DT99735 — For X12 997 Version 3 Release 5 and lower
= $DT99737 — For X12 997 Version 2 Release 7 and lower
= $DT99933 — For UCS 999 Version 3 Release 3 and lower
= $DTCTL — For UN/EDIFACT earlier than Version 94B

= $DTCTL21 — For UN/EDIFACT version 94B (Version 2, Release
1) and later.

Typically you would select the appropriate map
provided for your version and release of the EDI
standard. However, if you have special functional
acknowledgement requirements, you may wish to
write your own Functional Acknowledgement map.

85

Functional Acknowledgment Maps Provided

Data Interchange Services - [Development (Mapping) - Query: All]

e Actions Wiew Window Help =TS
&) 5] B =] = =]
Contl Stings Global Vaiiables Translation T ables Code Lists User Exits
Dsta Transformation Maps | Validation Maps Functionsl Acknowledgement Maps
Map Mame Description Updated Date and Time |
I £DT_FASGTVZRA Functional Acknowledgment 337 - X122R4 B24/2004 10:06:35 AM
2 EDT_FAYGTVIRS Functional Acknawledgment 397 - ¥12V2Rd4 B/4/2004 10:06:37 AM
B DT_FAISTVIRT Functional Acknowledgment 397 - X12v2R4 8/4/2004 10:06:38 AM
i EDT_FAS39W3R3 Functional &cknowledgment 933 - UCSW3R3 B/4/2004 10:06:39 A
B EDT_FACONTRL Functional Acknowledgment COMTRL - Prior to D348 B/4/2004 10:06:40 AM
F tDT_FACONTAL34B |Functional Acknowledgment CONTRL - V2R [DS4E) | B/4/2004 10:05:41 AM
it EWDI_TAT_ACK WDl TA1 mapping 10/4/2004 1:33:47 PM
4 | »

A functional acknowledgement map is a data
transformation map that allows you to create a
functional acknowledgment to be returned to your
trading partner. Both source and target based
mapping are available for mapping functional
acknowledgments.

86

Sample Functional Acknowledgment Map 4

ta Interchange Services - [Development - Functianal Acknowledgement Map - DT_FA

Fle Actons Eci Mavigate View Window Help

g S =

General Detals | Comments

.
=) INTERCHANGE_RESPONSE [Interchant
i = RECORD_D [Raw Data Fiecord |

. INTERCHAMGE CONTROL FEi;I
4 ¥

4 Target: EDI Document Defintion'&D TCTLACONT

Table 1

I

= Z3@ INTERCHANGE_RESPONSE [Interchangd]
i f=ff RECORD_ID [Raw Data Record Id
Wi \Table TN3DCFTXV M 48174 =
s \Tabls 14130 C X5 C 45104
Lowd \Table 1VI30CFTXAE C 45T0M =
=i INTERCHANGE_CONTROL_REF |
“ %l MapTo[\Table 1420 C UK
=@ SENDER_ID [Sender Identfication]
=& SENDER_PARTNER_ID [Partner |
=% REVERSE_ROUTING [Address for
=@ RECENVER_ID [Recipient ldentica
=% RECEIVER_PARTNER_ID [Partner

MR OOTIRE GRRACCR e 6

Global Yariable Nz

Local Yarishle M

Special Varizhl

TraCourt

GipEmar
TrEmor
ACode
GrpLewelOnly

ode
NUMGROUPS

DICUzerData

87

Unit Summary

* Local and global variables are defined in the lower right pane

+ Variables may be used in mapping commands

« String literals are coded in single or double quotes

+ Special variables are provided by IBM

* Mapping commands MapFrom and MapTo are produced
with drag and drop mapping

» Mapping commands may be entered manually

+ Data Transformation mapping functions provide for data
interrogation and manipulation

» Mapping tools are applied to satisfy special mapping
requirements

+ Validation maps are always used in conjunction with Data
Transformation maps

+ Functional Acknowledgement maps are provided, but
custom maps may be created

88

