
1

Welcome to:

2.1

Unit 8Unit 8

Advanced Data Transformation MappingAdvanced Data Transformation Mapping

This unit will address the use of commands,

functions, variables, and advanced mapping features.

A mapping exercise will follow.

2

Unit Objectives

• Create local and global variables

• Use variables

• Code string and numeric literals in mapping commands

• Use pre-defined special variables

• Use “drag and drop” mapping

• Create mapping commands

• Use any of the Data Transformation mapping functions

• Apply mapping tools to satisfy data translation requirements

• Create Validation maps

• Create new and use existing Functional Acknowledgement

maps

This unit will address each of these objectives.

3

Variables

• Variable Types

� Local

� Global

� Special

• Data Types

� Character

� Integer

� Real

� Binary

� Boolean

• Scope

� Local – Transaction, Loop

� Global – Group, Interchange

Variable names can begin with “DI”, but it is not

ecommended.

Local variables are variables that are not known

outside the scope of the translation of a given

document.

A local variable “exists” only for the duration of a

Loop or Document. A Loop variable is created and

initialized at the beginning of each iteration of a

loop. Global variables exist for a Group of

interchanges, an Interchange of

transactions/messages, or for an entire session. A

session is defined as beginning when the Data

Interchange Services Translator is started and ending

when the translator terminates. For example, a global

variable might be used to accumulate totals for the

ANSI X12 “980 - Functional Group Totals”

4

Special Variable

• DICUserData

� This value is stored in the TRCB (Translation Control Block) and

the “C” record when C&D records are created.

Special Variables are a group of predefined variables

used by Data Interchange Services. They function

much like Local Variables or Global Variables,

except they each have a special purpose. A user can

view properties of a Special Variable, but no changes

can be made. Special Variable names will always

start with “DI”. It is recommended that you do not

start Local Variables or Global Variable names with

“DI”. Currently DICUserData is the only Special

Variable available.

5

Literals

• Character Strings

� Enclosed in quotes (“Virtual Reality”) or apostrophes

(‘WebSphere’) or “don’t” or ‘He said, “yes!”’

• Numeric Values

� 3.141592737

� -22

Literal strings are always enclosed in single or

double quotes. Remember that keywords like True

or False are not enclosed in quotes.

6

Keywords

• True

• False

Used to test and set Boolean Values

• This

References the current element

Mapping commands, logical operators, comparison operators,

and arithmetic operators are also considered keywords.

Note that these are keywords and not placed in

quotes.

7

Commands

• Data Mapping

� Assignment

� MapTo

� MapFrom

� SetProperty

� Create

• Loop Qualification

� Quality/Default

� HLQualify/HLDefault

� CloseOccurence

� ForEach

• Logic/Conditional Processing

� If/ElseIf/EndIf

• Error Handling

� Error

� FAError

• Hierarchical Loops

� HLLevel

� HLAutoMapped

• Invoking other maps

� MapCall

� MapChain

� MapSwitch

• Schema Support

� SetNamespace

� SetSchemaLocation

� SetNoNSSchemaLocation

Generally commands are selected from a list of

commands available at a particular point in the

mapping. Commands only appear in the command

pane of the mapping window.

8

Assignment Command

• targetpath = expression

• Function: Establishes a value for a target path

where:

� targetpath – Path being mapped in the target document.

� expression – Source path or expression to be evaluated with the

result mapped to the target element.

• Note: Ensure that the target path is always on the left side of

the assignment statement and that the source path is on the

right side.

9

MapTo Command

• MapTo (targetpath, expression)

• Function: Defines an expression and the target path to which

it is to be mapped

where:

� targetpath – Path being mapped in the target document.

� expression (optional) – Expression to be evaluated with the result

mapped to the target element.

• Note: The MapTo command is used only in source based

maps and is produced automatically when elements are

mapped via drag and drop.

When you drag a compound element onto a repeating

element in the source document definition and there

are no existing qualifications for the element, a

MapTo command will be inserted under the

corresponding repeating element in the Mapping

Command window pane. For target based maps, if

there are no existing qualifications for the element, a

ForEach command will be inserted under the

corresponding repeating source element in the

Mapping Command window pane.

10

MapFrom Command

• MapFrom (targetpath) - or -

MapFrom (targetpath, expression)

• Function: Defines an expression to be mapped to the current

target element

where:

� expression (optional) – Expression to be evaluated with the result

mapped to the target element.

• Note: The MapFrom command is used only in target-based

maps and is produced automatically when elements are

mapped via drag and drop.

You can use the MapFrom command in the following

ways:

- To move data from a repeating simple element in

the target document definition to a corresponding

repeating simple element in the source document

definition. When you use the MapFrom command on

a repeating target node, multi-occurrence mapping is

required, and the MapFrom command must be

included within a ForEach command.

- To move data from a non-repeating simple element

or variable in the target document definition to a

corresponding simple element in the source

document definition.

You cannot use the MapFrom command with

compound elements.

11

SetProperty Command

• SetProperty (PropertyName, PropertyValue)

• Function: Sets a Property such as EDI envelope element or

XML prolog to a value

where:

� PropertyName – Name of the property being set.

� PropertyValue – The value to which the named property is to be

set.

The PropertyName must be passed as a character

string. It may be in a variable or specified as a literal.

For example: SetProperty”ISA05”,”01”).

The SetProperty command is used to set a

special processing property of the target

message.

12

Create Command

• Create (targetpath)

• Function: Forces the creation of the specified compound

element in the target document

where:

� targetpath – Compound element defining the targetpath to be

created.

Typically this command is not needed as elements

are automatically created when data is inserted into

them. However, there are cases where an element

must be created whether or not data is inserted into it.

The Created function may be used to determine if the

path was created before executing this command.

13

Qualify/Default Command

• Qualify (boolean-expression)

• HLQualify (boolean-expression)

• Function: Causes a series of commands to be executed

based on a Boolean expression being true

where:

� boolean-expression – A true value will cause the commands within

the qualification to be executed.

• The Default and HLDefault commands specify commands to

be executed if none of the Qualify expressions evaluate to

True.

The Qualify command is used on repeating

compound or repeating simple elements in the source

document definition. It is used to indicate that a

specific iteration or iterations of the elements are to

be handled differently than other iterations of the

element. For instance, you might want to say that the

first iteration of a loop is handled differently than all

other iterations of the loop.

The Default command is used to specify the

commands that should be executed if none of the

Qualify expressions evaluate to True.

14

CloseOccurrence Command

• CloseOccurrence (target-path)

• Function: Terminates an occurrence mapping

where:

� target-path – The repeating target element that is to be “closed” to

new elements in the current occurrence. Additional mappings to

this element or its children result in a new occurrence of the

targetpath element.

Use the CloseOccurrence command to close the

current occurrence of a repeating element and force

the creation of another instance of the element. This

command can be used for both source-based and

target-based maps. It is used when separate (non-

repeating) instances of source data are to be mapped

to repeating target data.

15

CloseOccurrence Example

In this example there are two separate elements

containing address line information in the EDI data.

However, in the XML data, the address information

is in a repeating element. If each of the two EDI

address elements were dragged to the repeating XML

target, the second address line would overlay the

first. To prevent this, a CloseOccurrence command

is issued between the two mappings.

16

ForEach Command

• ForEach (source-path)

• Function: Established a correspondence between the

recurring node and the source path specified

where:

� source-path – Identifies the source element corresponding to a

repeating target element.

• When source nodes are mapped in target-based maps.

ForEach commands are generated by the mapping editor.

Use the ForEach command to execute mapping

commands for each occurrence of the specified

source node. Each occurrence of the source results in

a new occurrence of the current target element.

You can include multiple ForEach command blocks

within a single target element. The target element

can be either a repeating node or a non-repeating

node, and can be either a simple or a compound

node.

If the target node is not repeating, you might need to

use the Qualify command or conditional logic

(If/Then/Else) so that only one occurrence of the

source value is written to the target. If the target is

not repeating and multiple values are written to it,

later values will overwrite the earlier values.

You can only use the ForEach command in a target-

17

Conditional Commands

If (condition)
commands

Endif

Else
commands

Elseif (condition)
commands

Elseif (condition)
commands

The If command marks the beginning of the If

condition block. EndIf is used to mark the ending of

the If condition block.

When the If command is encountered by the

translator, the condition will be evaluated. When the

If condition evaluates to True, the mapping

commands immediately following the If command

will be executed. When the If condition evaluates to

False, the translator will look for an ElseIf statement

within the If condition block. If an ElseIf statement is

found, its associated condition will be evaluated.

When condition evaluates to True, the mapping

commands immediately following the ElseIf

statement will be executed. When the If condition

evaluates to False, the translator will look for the

next ElseIf statement within the If condition block.

18

Error Command

• Error (level, code, message)

• Function: Issues an error message and sets the return code

based on a condition occurring during translation

where:

� level – severity 0, 1, 2, or 3 (extended error code and JCL

condition code)

� code – unique error code 5000 to 5999

� message – text message – message to be written as a TR0026

message.

Use the Error command to issue an error condition.

This command allows you to establish your own

errors for a translation. Typically, the error is issued

from within an If conditional block.

19

FAError Command

• FAError (level, code, facode, message, error type, segment
ID, element position, subelement position)

• Function: Used only in Validation Maps to define an EDI
Functional Acknowledgement error based on a mapping
condition

where:
� level – severity 0, 1, or 2 (none, element, segment)

� code – unique error code 5000 to 5999

� facode – the EDI standard functional acknowledgement code

� message – text message

� error type (optional) – I, G, T, S, or E, indication Interchange,
Group, Transaction, Segment or Element error

� segID (optional) – ID of the segment in error

� element position (optional) – position of the element in error

� subelement position (optional) – position of the subelement in error

Use the FAError command to set a functional

acknowledgement code. You can only use this

command in validation maps.

Use this command at any point at which you want to

identify an error condition. This command allows

you to establish your own error codes for translation.

Typically, the error is issued from within an If

conditional block.

20

HLLevel and AutoMapped Command

• HLLevel (level)

• Function: Defines an HL loop within an EDI ANSI X12 map

where:

� level – The hierarchical level code defined for this mapping in the

hierarchy.

• HLAutoMapped

� Produced when an HLLevel command is created within an HL

qualification

Use the HLLevel command to create an HL loop

within an EDI source or target based map.

If you are working with a source-based map:

-Drag a structure or record from the target window

and drop it on to the HL loop in the source window.

A MapTo command is created under the loop.

- To create the underlying HL nesting levels or

children for this HL level, right-click the HL loop

and select AddChild, or select AddPeer to create a

sibling.

If you are working with a target-based map:

- Right-click the HL loop again and select the

ForEach command

- Drag and drop the source path to the command

wizard window.

21

AddChild and AddPeer Menu Actions

• AddChild and AddPeer will appear as choices when you add

an HL qualification to a hierarchical loop.

• AddChild

� Inserts an HL loop as the child of the current loop within an HL

qualification.

• AddPeer

� Inserts an HL loop as a peer to the current loop within an HL

qualification.

- To create a child node, select the “AddChild”

command.

After selection of AddChild, select an HL level code

from the drop-down list. The list contains valid codes

from the code list for HL03 (element 735). The HL

loop is inserted as a child of the current HL loop with

an HLLevel command. The HL segment is

automatically selected and all elements mapped with

an HLAutoMapped command. This command can

not be removed or modified. Additional mapping for

these elements can be accomplished using normal

mapping methods.

- To create a sibling node, select the “AddPeer”

command.

After selection of AddPeer, select an HL level code

from the drop-down list. The list contains valid codes

22

MapCall Command

• MapCall (sourcepath, mapname, targetpath)

• Function: Causes the document to be translated by another

map with control returned to the current map following

translation by the second map

where:

� sourcepath – The source element to be used as the root of the

source tree for the imbedded map.

� mapname – The name of the second map by which the current

document is to be processed.

� targetpath – The target element identifying the destination of the

output of the imbedded map.

Use the MapCall command to indicate that a new

map must be used to process the data within the

current source element (for source-based maps) or

the specified source element (for target-based maps).

When this command is encountered, a new copy of

the translator is loaded. It receives the data from the

current element to use as its input document. The

element can be a simple element (for example, the

BIN02 element in a BIN segment) or it can be a

compound element (a subtree or subset). The copied

translator shares global variables with the parent

translator.

When the copied translator has completed

translation, it terminates, and control is returned to

the parent translator. The parent translator checks if

the imbedded translation was successful, and if so,

23

MapChain Command

• MapChain (mapname)

• Function: Causes the document to be translated by another

map following successful completion of the current

translation

where:

� mapname – The name of the second map by which the current

document is to be processed.

Use the MapChain command to indicate that the

document needs to be translated by another map after

the current translation has completed. The

subsequent translation only occurs if the current

translation is successful.

Each MapChain command encountered during

translation of a map indicates that the document will

be translated an additional time using the newly

specified map. This process stops if an error is

encountered in any one translation. The output from

a translation is independent from the other

translations.

24

MapSwitch Command

• MapSwitch (mapname)

• Function: Causes the document to be translated by another

map instead of the current map

where:

� Mapname – The name of the second map by which the current

document is to be processed.

Use the MapSwitch command to indicate that the

document needs to be translated by another map

instead of the current map. Any translation

performed by the current map is terminated and the

document is translated by the map specified in the

MapSwitch command.

Use this command when data in the document must

be inspected before it can be determined which map

to use. It allows you to switch the map dynamically

based on the data that is contained in the document.

You can create a map that will initially examine the

data in the document. Only the compound and simple

elements necessary to make a mapping decision are

mapped. The map that should be used to translate the

document is determined based on the mapped

elements. Then use conditional mapping commands

25

SetNamespace Command

• SetNamespace (URI)

• Function: Creates an attribute in the target XML

document that associates a prefix to a namespace.

• If this command is included, an attribute of the following form

will be created on the root element of the XML output:

� xmlns:prefix=”URI

Namespace objects are generally created

automatically when XML schemas are imported into

WebSphere Data Interchange Client. WebSphere

Data Interchange Client scans the schema looking for

“xmlns” attributes while a schema is being imported.

The “xmlns” attribute identifies a namespace. When

the attribute is encountered, WebSphere Data

Interchange determines if a corresponding

Namespace object exists within the same XML

Dictionary. If one does not exist, a corresponding

Namespace object is created within the XML

Dictionary. The prefix and other information

associated with Namespace objects may be changed

later.

A Universal Resource Identifier (URI) is a member

of this universal set of names in registered name

26

SetSchemaLocation Command

• SetSchemaLocation (URI)

• Function: Creates an attribute in the target XML document

that provides information as to where the schema is located.

This command is used to generate an attribute that

associates the schema with a namespace.

• If this command is included, an attribute of the following form

will be created on the root element of the XML output:

� xsi:schemaLocation=“URI location”

• The Namespace object representing the specified URI will be

obtained. The location value is filled in based on the

information in the Namespace object.

The “xsi” prefix will be changed if you have a

Namespace object defined for URI

“http://www.w3.org/2001/XMLSchema-instance”

with a different prefix. If you do not have a

Namespace object defined for this URI, the default

prefix “xsi” will be used. An appropriate

“xmlns:prefix=http://www.w3.org/2001/XMLSchem

a-instance” attribute will automatically be generated

when this command is used.

This command may be specified multiple times in

the map. If there is more than one occurrence of this

command, then a namespace/location pair will be

created for each occurrence of the command.

27

SetNoNSSchemaLocation Command

• SetNoNSSchemaLocation (location)

• Function: Creates an attribute in the target XML document

that provides hints as to where the schema is located. This

command is used to generate an attribute that does not

associate the schema with a namespace.

• Location – A character expression that indicates the schema

location for the target XML document. This can be a string

constant, a path identifying a simple element in the source

document definition, a variable, or any expression that

evaluates to a character string.

The “xsi” prefix will be changed if you have a

Namespace object defined for URI

“http://www.w3.org/2001/XMLSchema-instance”

with a different prefix. If you do not have a

Namespace object defined for this URI, the default

prefix “xsi” will be used. An appropriate

“xmlns:prefix=http://www.w3.org/2001/XMLSchem

a-instance” attribute will automatically be generated

when this command is used.

If there is more than one occurrence of this

command, only the last value is used.

28

Properties

• Properties represent values that may be retrieved or set

during translation.

• Source document properties are retrieved using the

GetProperty function.

• Target document properties are set using the SetProperty

command.

• Property values include envelope elements for EDI data or

the XML declaration for XML data:

� DIProlog – XML Prolog

� Positional envelope element designations ISAnn, GSnn, STnn,

UNBnn, and generic properties such as IchgCtlNum, IchgSndrld,

GrpCtlNum, and TrxCode to access envelope elements.

Properties can be accessed using the SetProperty

command and GetProperty function.

29

Source Document Properties

• Alphanum - Inbound alphanumeric data Code List

• BegEnv - Set to “Y” when the document is the first document in an
interchange envelope. Otherwise set to “N”.

• BegGrp - Set to “Y” when the document is the first document in an
group envelope. Otherwise set to “N”.

• Charset - Inbound character data Code List

• EndEnv - Set to “Y” when the document is the last document in an
interchange envelope. Otherwise set to “N”.

• EndGrp - Set to “Y” when the document is the last document in an
group envelope. Otherwise set to “N”.

• GrpLvlFA - Group level functional ack only flag

• Process - The process value from the trading partner profile

• ServSegVal - The service segment validation level

• Thandle - The transaction handle (yyyymmddhhmmssnnnnnn)

• ValLevel - Inbound validation level

• ValErrLevel - Inbound acceptable error level

• ValMap - Inbound validation map name

30

• ACField – Specifies the application control field

• AckReq - Overrides the acknowledgement expected setting

• Alphanum - Overrides the outbound alphanumeric data Code List

• Charset - Overrides the outbound character data Code List

• CtlNumFlag - Overrides the control numbers by transaction id flag

• DIDocId - Value to appear in the PRTFILE message when the output is
written to a file or queue

• DIProlog - Used to override the default XML prolog in the target
document

• EdiDecNot - Overrides the EDI decimal notation character from the
trading partner profile

• EdiDeDlm - Overrides the EDI data element delimiter from the trading
partner profile

• EdiDeSep - Overrides the EDI repetition separator from the trading
partner profile

Target Document Properties

The EDI envelope standard generic properties allow

you to get or set information in the EDI envelope

standard segments. They have generic names that can

apply to any of the EDI standard types. For example,

IchgSndrId is used for the interchange sender ID,

regardless of the EDI standard type.

These properties are available when the source

document is received within an EDI envelope

standard. The properties can be obtained using the

GetProperty function. If you request a property that

is not present, an empty string is returned.

These values can also be set for the target EDI

document using the SetProperty command. If set,

they will override the values specified in the

envelope profile.

31

Target Document Properties (cont.)

• EdiRlsChar - Overrides the EDI release character from the trading
partner profile

• EdiSeDlm - Overrides the EDI subelement delimiter from the trading
partner profile

• EdiSegDlm - Overrides the EDI segment delimiter from the trading
partner profile

• EdiSegSep - Overrides the EDI segment id separator from the trading
partner profile

• EnvProfName - Overrides the envelope profile name

• EnvType - Overrides the envelope type

• NetProfId - Overrides the network profile id from the trading partner
profile

• SegOutput - Overrides the segmented output flag from the trading
partner profile

• ValLevel - Overrides the outbound alphanumeric data Code List

• ValErrLevel - Overrides the outbound acceptable error level

• ValMap - Overrides the outbound alphanumeric data Code List

32

Functions

• Char

• Concat

• Created

• Date

• DateCnv

• Exit

• Find

• Found

• GetProperty

• HexEncode

• HexDecode

• IsEmpty

• Left

• Length

• Lower

• Number

• NumFormat

• Occurrence

• Overlay

• Right

• Round

• StrComp

• StrCompl

• StrCompN

• StrCompNI

• SubString

• Time

• Translate

• TrimLeft

• TrimRight

• Truncate

• Upper

• Validate

All functions take zero or more arguments as input

and return a value. The data type of the return value,

as well as the number and data types of the

arguments varies from one function to the next.

Appropriate type conversions are done implicitly if

needed (and possible), just as they are done for the

expressions. Some functions have optional

parameters. If the optional parameters are omitted

from the function call, a default value is used for that

argument.

33

Using Functions

• A Function returns a value based on arguments provided an

input

• Arguments are specified in parenthesis following the function

name:

Char (value)

• Function names are not case sensitive

• Function arguments may be expressions

• The Function reference is replaced with the result returned

by the function.

Most functions can take an expression as an

argument, as long as the result of the expression is

(or can be converted to) the correct data type.

The only time you cannot use an expression as an

argument is when the argument is identified as a

source or target path. For example, you cannot pass

an expression to the Created function.

The input arguments for a function are never

modified by the function.

The function names are not case sensitive.

34

Character Processing Functions

• Char (argument) – Converts a numeric value or expression to a
string.

• Concat (argument1, argument2) – Concatenates two character
string.

• Substring (string, position, length) – Returns a portion (substring) of
the string passed, beginning at “position” for a length of “length.”

• Find (string, search string, starting position) – Searches a string for a
search string, returning the position of the search string in the string
searched. Returns 0 if the search string is not found.

• Length (argument) – Returns the length of a character string.

• Left (string, length) – Returns the leftmost n characters from a string.

• Right (string, length) – Returns the rightmost n characters from a
string.

• Overlay (string1, string2, position, length) – Overlays string1 (or a
portion of string1) with string2. Position indicates the position in
string2 at which string1 is to be overlaid.

• Lower (argument) – Converts a string to lower case characters.

• Upper (argument) – Converts a string to upper case characters.

Char - This function is not normally needed, since

the conversion is generally done implicitly.

However, it can be used to force the conversion to a

character value, or to clarify when the conversion is

done.

Substring - Only available characters from the string

value will be copied. Therefore, the substring will

contain length characters unless string has less than

position plus length minus one characters.

Left - Only available characters from “string” will be

copied. Therefore, the returned string will contain

“length” characters unless “string” has fewer than

“length” characters.

Right - Only available characters from “string” will

be copied. Therefore, the returned string will contain

“length” characters unless “string” has fewer than

35

String Comparison Functions

• Format: StrComp (string1, string2)

• Function: Compares two character strings, returning a 0 if

the strings are equal. If string1 is less than string2, a -1 is

returned. If string2 is less than string1, a 1 is returned.

• Example: StrComp (alpha, omega)

� If variable alpha has a value of ‘ABC’ and omega has a value of

‘XYZ,’ a -1 will be returned.

• Function

� StrCompI - Compares two string Ignoring the case

� StrCompN - Compares the first N characters of two strings

� StrCompNI - Compares the first N characters of two strings

ignoring the case

StrComp - The syntax “If (X = ‘123’)” may NOT be
used for string comparison. The StrComp function
must always be used.

String cannot be compared using an expression such
as(string1 = string2)

36

String Trimming Functions

• Format: TrimLeft (string, trim-string)

• Function: Removes characters (typically blanks) from the left

of a string. Characters in the (optional) trim-string are

removed from the string. If trim-string is not specified,

leading whitespace characters (blanks, tabs, line-feeds,

carriage-returns) are removed.

• Examples:

� TrimLeft (name) - If variable name contains “ Julie,” the string

“Julie” is returned.

� TrimLeft (address, “0123456789 “) - If variable address contains

“9010 Lake Sunset Drive,” the string “Lake Sunset Drive” is

returned.

� TrimRight - Provides the same function for trailing blanks or

specified characters.

TrimLeft - All characters contained in trim-string

will be removed from the beginning of the value

string. The operation ends when the first character

not contained in trim-string is encountered. If trim-

string is omitted, whitespace is removed from the

beginning of the value string. Whitespace includes

blanks, carriage returns, line feeds and tab characters.

TrimRight - All characters contained in trim-string

will be removed from the end of the value string. The

operation ends when the first character not contained

in trim-string is encountered. If trim-string is

omitted, whitespace is removed from the end of the

value

string. Whitespace includes blanks, carriage returns,

line feeds and tab characters.

37

• Date() – Returns the system date in the format yyyymmdd.

• DateCnv (source, source mask, target mask) – Converts a

date from one format to another.

� Example: DateCnv(TODAY, ‘ccyymmdd,’ ‘tm dd, ccyy’)*

• Time() – Returns the system time in the format hhmmss.

*A complete list of date code may be found in Appendix C of the

WebSphere Data Interchange User’s Guide

Date and Time Functions

Use the right click popup values menu to get a list on

common values and a complete list if substitution

values that can be used to construct any specific

format.

38

Hex Character Processing Functions

• HexEncode (argument) – Converts a binary value or

expression to a hex character string.

• HexDecode (argument) – Converts a hex character string

representing a hex value to the equivalent binary value.

• Example:

� HexEncode (number)

� The function returns a character string representing the hex code for the

binary value in variable number.

� If the variable number has a value of 255, the HexEncode function will

return a character string of “FF.”

HexEncode - Each byte of the binary value will be

encoded as two characters in the resulting string. For

example, if the input is a 4 byte binary value:

0x01020A0B, the result would be the 8-character

string: “01020A0B”.

HexDecode - Each byte of the binary value will be

derived from two characters in the encoded string.

For example, if the input is the 8-character string:

“01020A0B”, the result would be a 4 byte binary

value: 0x01020A0B.

39

Mapping Query Functions

• Created (argument)

• Determines if a path was created in the target data.

• Returns Boolean true or false.

• Found (argument)

• Determines if data exists in the source element.

• Returns Boolean true or false.

• IsEmpty (argument) –

• Returns a Boolean True if the string is empty (null - not
blank), otherwise returns a False.

• Occurrence (sourcePath) –

• Provides the occurrence number of a repeating simple or
composite element.

Created - This function can only be used with paths

in the target document definition. If the element is

within a repeating compound element (such as a

repeating loop or segment), then only the current (or

most recent) iteration is searched for the targetPath.

Found - This function can only be used with paths in

the source document definition. If the element is

within a repeating compound element (such as a

repeating loop or segment), then only the current

iteration is searched for the sourcePath.

IsEmpty - If the argument contains a value other than

an empty string, the mapping command is executed

by the translator.

Occurrence - Use the Occurrence function to obtain

the current occurrence number of:

40

Exit Function

• Format: Exit (exitname, parameter1, parameter2,

parameter3, parameter4)

• Function: Converts a value to a string that will be passed to

the field exit in the User Exit profile. Up to 4 parameters can

be passed to the Exit function

where:

• exitname - The name of a User Exit profile that is used as a

logical name for the user-provided program or exit routine in

the translator.

• parameters - Optional string values that are passed to the field

exit.

Exit is used to invoke a field exit and returns a string

value. Results that are returned can be used to update

a variable or target a simple element in an

assignment statement. The name that contains the

function information to be executed.

You must define field exits in the User Exits profile.

If the exit is not properly defined, an error is issued.

Zero to four parameters can be passed to the exit and

it is the job of the field exit to determine how many

parameters to expect.

41

GetProperty Function

• Format: GetProperty (argument)

• Function: Returns the value of the Property Name specified

(such as an envelope element).

� Example:

� GetProperty (“ISA06”) - Returns the value from ISA06 in the X12

Interchange Control Header.

The GetProperty function is used to get a property of

the source message. This can be used to retrieve

information such as EDI envelope header elements.

42

Numeric Processing Functions

• Number (argument) - Converts a character string to a real

numeric value.

• NumFormat (value, num-decimals, flag) - Converts a

numeric value to a character string. The flag is optional. “R”

indicates round (default). “T” indicates truncate.

• Round (real number, number of decimal positions) - Rounds

a numeric value to a specified number of decimal positions.

• Truncate (real number, number of decimal positions) -

Truncates a numeric value to a specified number of decimal

positions.

Number - This function is not normally needed, since

the conversion is generally done implicitly.

However, it can be used to force the conversion to a

numeric value, or to clarify when the conversion is

done.

NumFormat - The flag indicates whether unused

digits are rounded or truncated. Specify “ROUND”

to round unused digits or “TRUNCATE” to truncate

unused digits. If no flag is specified, the value

defaults to “ROUND”.

Round - Round returns a numeric (real) value. If the

return value will be assigned to a character string and

trailing zeros are to be removed, the NumFormat

function should be used.

Truncate - This function returns a numeric (real)

value. If the return value will be assigned to a

43

Translate Function

• Format: Translate (table-name, direction, value, error,

default)

where:

� table-name - Translation Table

� direction - “SOURCE” or “S” to search the Source column of the

table, or “TARGET” or “T” to search the Target column of the table.

� value - The search value (character or real)

� error - Boolean true or false. If true, a warning message will be

issued if the search value is not found.

� default (optional) - Value to be returned if search value is not

found.

If the table specified does not exist, a warning will be

issued and it will be treated as a not found condition.

A translation table contains two values for each entry

in the table, one called the Source Value and the

other called the Source Value. When direction is

specified as “SOURCE”, an attempt is made to find

the search value in the Source Value column in the

table. If it is found, the value from the corresponding

Target Value column is returned by the function.

When direction is specified as “TARGET”, an

attempt is made to find the search value in the Target

Value column in the table. If it is found, the value

from the corresponding Source Value column is

returned by the function.

44

Validate Function

• Format: Validate (table-name, value, error)

where:
� table-name - Code list

� value - the search value

� error
� Boolean true or false.

� If true, a warning message will be issued if the value is not found in the
table.

• Function: Performs a Code List lookup, returning a Boolean
true if the value is found in the table or a false if the value is
not found.

• Example:
� Validate (“CODELIST”, cust_code, False) Code List table

“CODELIST” will be searched to locate the value cust_code. If
found, a true is returned by the function. If not found, no message
will be issued (false) and the value false will be returned.

If the value is found in the Code List, the mapping

command will be executed. If the value is not found

in the Code List, an error is issued with error code

5001.

45

Applied Mapping

• You’ve looked at the mapping tools

• Now to apply them

• Next you will learn to:

� Use variable to perform arithmetic operations, mapping a
computed result

� Map envelope data

� Create an XML Prolog

� Convert date formats

� Use Code Lists

� Use Translation Tables

� Manipulate character string data

� Map hierarchical loops

� Map conditionally based on inbound qualifying elements

46

Using Variables

• You have been asked to calculate the total monetary amount

for all line items of an inbound purchase order and compare

that amount to the amount in the AMT segment.

• To calculate the amount for each line item, it will be

necessary to multiply the quantity by the amount.

• If the amount calculated does not match the amount in the

AMT segment, you are to issue an error message.

47

Create Local Variable TOTALAMOUNT

48

Elements to Be Processed

49

Creating an Assignment Statement

50

Drag to Create Command

path = expression \Table 2\10 M PO1 Loop\10 M PO1\2 C 330\\ \Table 2\10 M PO1 Loop\10 M PO1\4 C 212*TOTALAMOUNT = expression TOTALAMOUNT+

51

Completed Assignment Command

52

Create If Statement for AMT Mapping

(\Table 3\10 O CTT Loop\20 O AMT\2 M 782\\ NE TOTALAMOUNT)

Note that the Mapping Command Editor can be

resized if necessary.

53

If Command Mapped

54

Creating the Error Command

Error (level, code, msgtext)Error (1,5555,’Computed total amount does not match AMT01’)

55

Mapping EDI Envelope Elements

• Frequently there is a requirement to map envelope elements

to XML or application data.

• Data Transformation mapping provides the GetProperty

function to extract envelope data from an inbound

interchange.

• Although envelopes are produced automatically, it may be

necessary to map data to an envelope.

• Data Transformation mapping provides the SetProperty

command to create envelope data for an outbound

interchange.

• Next, you will look at an example of each type of mapping.

56

Mapping an Inbound Envelope Element

path = expression\HEADER-RECORD\TRADING-PARTNER\\ = GetProperty(‘GS02’)

57

Mapping an Outbound Envelope Element

SetProperty (propertyName, propertyValue)SetProperty (‘GS02’,’MegaMicro’)

58

Creating an XML Prolog

path = expressionSetProperty ('DIProlog',’<?xml version=“1.0”?>’)

In this example, Prolog is a variable that will contain

the text for the XML Prolog statement.

59

Converting Date Formats

\Table 1\20 M BEG\5 M 373\\ = expressionDateCnv(\HEADER-RECORD\CUST-PO-DATE\\,'TM DD, CCYY', 'CCYYMMDD')

Remember - TM stands for Textual Month.

60

Date Masks

CC Century

YY Year

MM Month of year

DD Day of month

D Day of month as a single

character, if possible*

HH Hour of day

MM Minute of hour**

II Minute of hour

*D can be used if it immediately follows WW as in WWD; however, if you want day of week followed by week, you
must use KWW, because DWW would be interpreted to be day of month and Week of year.

**MM can be used for minutes when it immediately follows HH as in HHMM; however, if you want minute followed
by hour, you must use IIHH, because MMHH would be interpreted as month of year and Hour of day.

SS Second of minute

WW Week of Year (1 through 52)

K Day of Week

(Monday=1, Tuesday=2, etc.)

JJJ Julian day of year

Q Quarter (1,2,3,4)

E Semester

ZZZ Time zone

TM Textual month

(i.e., January, February, etc.)

61

Using a Code List

To validate
UNIT-OF-MEAS before mapping it
to element 355 (Unit or Basis for

Measure), you will build a custom code
list ‘UOM’ with the following entries:

EA, DZ, BX, GS.

62

Using the Validate Function

The mapping could then be completed by mapping the UNIT-OF-MEAS
element to element 355 (Unit or Basis for Measurement) by inserting an
assignment statement with in the If statement. Instead of the custom
‘UOM’ code list, you could have used the standard code list ‘355X41’.

(Validate(“UOM",\ITEMS\UNIT-OF-MEAS\\,True))

63

Using a Translation Table

To convert UNIT-OF-MEAS before mapping it to
element 355 (Unit or Basis for Measure), you will
build a Translation Table to convert as follows:
Source Value Target Value

EACH EA
DOZEN DZ
BOX BX
GROSS GS

64

Using the Translate Function

Using translation table XUOM, this command will translate the value in
UNIT-OF-MEAS with the result stored in element 355. ‘S’ indicates that
the “Source” side is the table is to be searched. ‘False’ indicates that no
message is to be produced if the value is not found in the table. ‘EA’ is
the default value to be used if the value is not found in the table.

\Table 2\10 M PO1 Loop\10 M PO1\3 O 355\\ = Translate(‘XUOM','S',\ITEMS\UNIT-OF-MEAS\\,False ,'EA')

“T” would indicate that the Target side of the table is

to be searched.

65

Dealing with Character Strings

• This example has names in the application data in the form:

� Firstname Lastname

• You need to convert those names to XML data in the form:

� Lastname, Firstname

• You will enclose those commands in a “Command Group.”

• Creating a Command Group will provide you with an

opportunity to describe the Command Group.

• You will then insert the group of related commands under

this description.

• You also need to create some Character and Integer local

variables to assist with this mapping.

66

Dealing With Character Strings Example

67

Character Manipulation in a Command Group

68

Hierarchical Loops

• Hierarchical Loops (HL loops) or “Self-defining loops” allow

the user to define the looping structure or hierarchy

• Hierarchical Loops are defined by the HL segment in the

ANSI X12 EDI standard

• The HL Segment:

� Identifies the start of each loop in the hierarchy

� Assigns an ID number to the loop

� Identifies the parent (next outer) loop

� Indicates the nesting level of the loop

� Indicates whether the loop has inner loops (children)

• HL Qualification is available when the map is based on the

EDI standard – target based for inbound, source based for

outbound.

69

The HL Segment

HL*4*2*I*0~

HL01 – Unique loop ID – Usually sequential

HL02 – Loop ID of parent loop

HL03 – Code indicating level of the loop

HL04 – Child indicator – 0 – no children
1 – children (subordinate loops)

A hierarchical loop is similar to an organization

chart. Just as an organization chart shows you the

various groups of people and their relationships to

the whole, a hierarchical loop shows you each group

of data and its relationship to the whole.

Hierarchical loops define different levels of data,

which can be used in any sequence and skipped when

appropriate. This allows you to place the loop

anywhere in your data.

70

Mapping Hierarchical Loops

HL01 (ID number) - A unique number that identifies

the occurrence of the HL segment. This data element

is alphanumeric and has a maximum length of 12

characters. This field usually contains a sequential

number that is incremented for each occurrence of

the HL segment.

HL02 (Parent ID) - The HL01 value of the HL

segment that is the parent of the current HL segment.

HL03 (Level Code) - A code that indicates the level

of the HL segment in the current HL loop. For

example, the level code could refer to the shipment,

order, or item level information in the ANSI X12

Shipping Notice transaction set.

HL04 (Child code) - A code that indicates if the

segment has subordinate segments: 1 for subordinate

segments, or 0 for no subordinate segments. The

71

HL Qualification

72

Mapping a Child or Peer

73

Mapping Qualified Inbound Elements

• You have seen that, for outbound maps, you can map

qualifiers from fields or specify literal values.

• Now you will look at receiving that qualified data and

inspecting the qualifier to determine where the qualified

element is to be mapped.

• In the example, if the qualifier is ‘UP,’ you want to map the

qualified element to the UPC code field in the target data.

UP 593331112377
In this example the ‘UP’ in the first
element indicates that the second

element contains a UPC code.

74

Qualifier Based Inbound EDI Mapping

75

Conditional Inbound Element Mapping

76

Conditional Inbound Element Mapping - If

(StrComp(\Table 2\10 M HL Loop\20 O LIN\2 M 235\\ ,‘MG’)=0)

77

Conditional Inbound Element Mapping Command

78

Conditional Mapping Based on ‘MG’ Qualifier

\ITEMS\MFG-PART-NUMBER\\ = \Table 2\10 M HL Loop\20 O LIN\3 M 234\\

79

Conditional Element Mappings

80

Additional Mappings

• You have just completed the mapping for the first 235-234
element pair, checking for any of three qualifiers.

• However, there are nine more potential pairs of qualifiers
and IDs that may need to be mapped.

• The Client allows you to shift and drag mappings from one
element to another element.

• You can drag the mappings from the first element 234
mappings to the next.

• To facilitate this, you can first create a group and copy those
mappings as a group.

• Then you can update the path references by opening the
mapping editor and dragging the appropriate qualifier and ID
elements to the new copies.

• This provides function similar to &SAMEAS with
Send/Receive maps.

81

Completed Conditional Element Mappings

82

Compile the Map, Producing the Control String

83

Validation Maps

• Source based

• There is no target document

• FAError may be used

• Many standard mapping techniques may be applied such as
the IF and Error commands and the Validate function.

• Code Lists for EDI ID-type elements are included with the
distribution materials.

• The following Validation Maps are used to perform service
segment validation during data transformation processing:
� &WDI_E99AENV_VAL-UN/EDIFACT based on E99A service

segments and code lists

� &WDI_UCSENV_VAL-UCS based on UCS 4050 service
segments and code lists

� &WDI_X44ENV_VAL-X12 based on X12 4040 service segments
and code lists

Validation maps are only used in conjunction with

Data Transformation maps. If the target data is EDI,

the Validation map is run after the translation defined

by the Data Transformation map is complete. If the

source data is EDI the Validation map first validates

the inbound EDI data. The Data Transformation then

only runs if the validation did not fail.

84

Validation Map Layout

A validation map is used to handle extended

validation requirements, and to call an extended error

function to report the information needed to create a

functional acknowledgment. A validation map can

also copy to local variables, and use most other

mapping functions. A Validation map cannot

produce an target file.

85

Functional Acknowledgement Maps

• Source or target based

• Source document is:

$FUNC_ACK_META

• Source document uses dictionary:

$FUNC_ACK_METADATA_DICTIONARY

• Target document is defined by an EDI standard

• Target documents provided include:
� $DT99724 – For X12 997 Version 2 Release 4 and lower

� $DT99735 – For X12 997 Version 3 Release 5 and lower

� $DT99737 – For X12 997 Version 2 Release 7 and lower

� $DT99933 – For UCS 999 Version 3 Release 3 and lower

� $DTCTL – For UN/EDIFACT earlier than Version 94B

� $DTCTL21 – For UN/EDIFACT version 94B (Version 2, Release
1) and later.

Typically you would select the appropriate map

provided for your version and release of the EDI

standard. However, if you have special functional

acknowledgement requirements, you may wish to

write your own Functional Acknowledgement map.

86

Functional Acknowledgment Maps Provided

A functional acknowledgement map is a data

transformation map that allows you to create a

functional acknowledgment to be returned to your

trading partner. Both source and target based

mapping are available for mapping functional

acknowledgments.

87

Sample Functional Acknowledgment Map

88

Unit Summary

• Local and global variables are defined in the lower right pane

• Variables may be used in mapping commands

• String literals are coded in single or double quotes

• Special variables are provided by IBM

• Mapping commands MapFrom and MapTo are produced
with drag and drop mapping

• Mapping commands may be entered manually

• Data Transformation mapping functions provide for data
interrogation and manipulation

• Mapping tools are applied to satisfy special mapping
requirements

• Validation maps are always used in conjunction with Data
Transformation maps

• Functional Acknowledgement maps are provided, but
custom maps may be created

