
WBIV61_IEA_AdapterSAP_Outbound.ppt

This presentation covers the outbound functionality of the WebSphere Adapter for SAP.

Page 1 of 25

WBIV61_IEA_AdapterSAP_Outbound.ppt

The agenda for this presentation is shown here.

Page 2 of 25

WBIV61_IEA_AdapterSAP_Outbound.ppt

This section provides an overview of WebSphere Adapter for SAP outbound support.

Page 3 of 25

WBIV61_IEA_AdapterSAP_Outbound.ppt

Outbound calls are supported with the BAPI, ALE, and AEP interfaces using advanced

business application Programming (ABAP) handlers and query interface for SAP Software

(QISS). With BAPI, the calls can be simple BAPI calls, BAPI using remote function calls

or multiple BAPI calls in a single interaction, referred to as BAPI unit of work. BAPI

outbound calls have request and response interaction style. The ALE interface supports

passing single or multiple IDocs. These are one-way calls where the IDocs are passed to

the SAP application. With the AEP interface, the adapter makes use of the ABAP

handlers, and with the QISS interface you can directly query the SAP application tables

Page 4 of 25

WBIV61_IEA_AdapterSAP_Outbound.ppt

This section provides an overview of outbound operations supported using different

interfaces by the SAP adapter.

Page 5 of 25

WBIV61_IEA_AdapterSAP_Outbound.ppt

The high level flow of an outbound call using either the BAPI or ALE interface is described

here.

The SAP function call and its parameters and other attributes are modeled using a

business object. The business objects were generated by the external service wizard

within WebSphere Integration Developer. The SCA client wraps the business object in a

JCA common client interface record object. The adapter extracts the business object and

its metadata from the common client interface record object. It then determines the type of

call, (BAPI, ALE, QISS or AEP), and the SAP function name and the function attributes.

Using the SAPJco API calls, the adapter makes the SAP function call to the target SAP

application. The result (if any) returned by the function call is then returned to the calling

component.

Page 6 of 25

WBIV61_IEA_AdapterSAP_Outbound.ppt

This section covers outbound operations using the BAPI interface.

Page 7 of 25

WBIV61_IEA_AdapterSAP_Outbound.ppt

BAPIs are SAP standardized business application programming interfaces that enable

vendor systems to interact with SAP systems. BAPI is implemented as an RFC-enabled

function, so the adapter‘s BAPI interface can support any RFC-enabled function. The

BAPI interface APIs allow vendor systems to interact with SAP. Adapters provide local

transaction support for the BAPI interface using the BAPI calls,

BAPI_TRANSACTION_COMMIT and BAPI_TRANSACTION_ROLLBACK. Create,

update, delete, and retrieve are the supported operations, except in the case of BAPI

result set where “retrieveall” is the only supported operation.

Page 8 of 25

WBIV61_IEA_AdapterSAP_Outbound.ppt

A single BAPI call is a synchronous blocking call. SAP adapter supports single BAPI calls

by representing each call with a single business object. The adapter looks at the

metadata and properties that are part of business object in the incoming request to make

the appropriate SAP API function call through the sapjco.jar file. The SAP application

executes the function call and returns response data to the adapter, which converts the

response into a business object, which is passed on to the calling component. This

diagram shows the business object structure for a single BAPI call. These business object

definitions are generated by the external wizard with the WebSphere Integration

Developer. The BAPI calls that represent the operations, namely, create, update, retrieve

and delete are grouped and wrapped within a wrapper. The leaf nodes in the tree

representing the operation have a structure containing the attributes of the function call, as

shown on the right side of the page.

Page 9 of 25

WBIV61_IEA_AdapterSAP_Outbound.ppt

Shown here are the BAPI logical units of work or transactions, where there can be one or

more BAPI calls. Each BAPI call is represented by its child, as shown in the diagram as

BAPI-1, BAPI-2, and BAPI-3. The BAPI transaction wrapper represents the complete

transaction, with each second-level child representing a structure parameter or table

parameter of the method. Simple attributes correspond to simple parameters of the

method and the adapter uses the operation application specific information to determine

the sequence of the BAPI calls.

Page 10 of 25

WBIV61_IEA_AdapterSAP_Outbound.ppt

This feature provides a new approach to build result set data by combining two BAPI calls.

Out of two methods, one method will act as query, here referred as “queryMethod “, this

method will fetch all the keys which are based on data passed to this method . The second

method will fetch all the relevant data, referred as “resultMethod” method; this method will

fetch all the data-details based on key. The queryMethod and resultMethod are combined

to form a result set. The methods are represented as business object.

The Result set query “queryMethod” method is represented as child of “resultMethod”

business object. The “resultMethod” property level application specification information

(ASI) provides the foreign-key relationship with “queryMethod” properties. This relationship

is used to map key data from queryMethod method to resultMethod method using foreign

key. One by one all the key data are set into resultMethod business object

Page 11 of 25

WBIV61_IEA_AdapterSAP_Outbound.ppt

This section covers outbound operations using the ALE interface.

Page 12 of 25

WBIV61_IEA_AdapterSAP_Outbound.ppt

The ALE interface provides an asynchronous interface for sending batch data represented

by IDocs to SAP applications. The adapter extracts the IDoc information from the

business object and then uses SAP JCo function calls to convert the business object

representing IDoc object to a table format that is compatible with the IDoc format. The

adapter then uses remote function Calls (RFC) in the SAP RFC library to establish an

RFC connection to the ALE interface and pass the IDoc data to the SAP system. After

passing the data to SAP, the adapter releases the connection to SAP. Because the ALE

interface is asynchronous, SAP returns a return code only and a null object to the caller.

When no exceptions are raised, the outbound transaction is considered successful. The

success of the transaction can be verified by inspecting the IDocs that have been

generated in SAP. Only return code (success or failure) is returned and no return data is

sent back to the adapter. For the ALE outbound call, all the information is in the IDoc and

the only supported operation is “execute” on the IDoc. Create, update, and delete

operations do not make sense for ALE as this is a batch oriented asynchronous interface.

The receiving SAP application processes the data and performs appropriate operations

based on the data contained in the control record child object of the IDoc

Page 13 of 25

WBIV61_IEA_AdapterSAP_Outbound.ppt

This diagram shows the support for IDoc packets, where each IDoc is represented by the

IDoc object. The wrapper business object contains instances of IDoc objects. For

individual IDocs, the wrapper contains only one instance of an IDoc object, whereas for

IDoc packets, the wrapper contains many instances of an IDoc object. The IDoc object

contains the control record and data record objects and the control record object contains

the metadata required by the SAP adapter to process the IDoc object.

Page 14 of 25

WBIV61_IEA_AdapterSAP_Outbound.ppt

The adapter uses the qRFC protocol to deliver a set of ordered IDocs to a queue on the

SAP server or to receive them from a queue on the SAP server. The IDocs are then

processed in the order in which they appear in the queue.

The adapter receives a request from a client application. Adapter uses the business object

to populate the appropriate RFC-enabled function call used by the ALE interface. The

adapter establishes an RFC connection to the ALE interface and passes the IDoc data, in

the order in which it is specified in the business graph, to the specified queue on the SAP

system. After passing the data to SAP, the adapter returns the transaction ID.

For processing qRFC, the call queue-name and queue-counter are required. This

information is available in the RFC wrapper level property “qRFCQueueName” . Each

qRFC call is processed in sequence by the adapter. Once the logical units of work reach

the SAP queue, the SAP application processes the logical units of work in the order they

were delivered. The qRFC wrapper level property “qRFCQueueName” contains a default

queue name, which is gathered at design time by the external service wizard. If you do

not provide a queue name at runtime in the “qRFCQueueName” property, the default value

is used as the queue name. You can override the default value by setting the queue name

in the business object. The adapter finds the list of queues available at runtime and SAP

uses them to determine if the queue name is valid.

Page 15 of 25

WBIV61_IEA_AdapterSAP_Outbound.ppt

This section covers the outbound operations using the advanced event processing

interface.

Page 16 of 25

WBIV61_IEA_AdapterSAP_Outbound.ppt

Business objects for the AEP interface are defined in SAP as an IDoc and either standard IDocs delivered
with SAP or custom-built IDocs can be used. The external service wizard is used to generate the business
object definition based on an IDoc. Business object development for the ABAP extension module consists of
creating an application-specific business object definition and an associated ABAP handler for each
operation that you want to support. ABAP handlers reside in the SAP application as ABAP function modules
and communicate with the connector and are needed to get business object data into or out of the SAP
application database. ABAP handlers are responsible for adding business object data into the SAP
application database (create, update, delete operations) or for retrieving data from the SAP application
database (retrieve operation). You must develop operation-specific ABAP handlers for each supported
hierarchical business object.

The application-specific business object and the ABAP handler rely on each other’s consistency to pass data
into and out of the SAP application. Therefore, if you change the business object definition, you must also
change the ABAP handler.

In the outbound processing, the adapter receives the AEP record as a business object. The business object
contains the business data along with the metadata. Depending on the operation set, the adapter looks up
the ABAP handler to be invoked from the operation application specific information. The adapter converts
the business data to handler data format and passes it along with the ABAP handler information to the SAP
application. After the object-specific ABAP handler finishes processing the business object data, it returns
the business object data in IDoc format to the ABAP component, which converts the business object data
back to its original format and returns it to the adapter. The adapter component in the SAP application
invokes the particular ABAP handler and returns the results back to the adapter, which converts the results to
a business object and returns it to the caller.

Page 17 of 25

WBIV61_IEA_AdapterSAP_Outbound.ppt

SAP adapter provides a set of transports that can be used to set up the IBM WebSphere

business integration station tool, which provides a wizard called the call transaction

recorder to capture the changes you make and code stubs that can be used to generate

ABAP handlers. The wizard does not create the handler, just code stubs that can be used

to develop handlers. The tool does not create the IDocs for you, so you must also create

the IDocs on the SAP backend. The WebSphere Integration Developer provides the

external service wizard, which can generate the business object definitions for the custom

IDocs you created on the SAP backend.

Page 18 of 25

WBIV61_IEA_AdapterSAP_Outbound.ppt

This section covers outbound operations supported by Query Interface for SAP software

(QISS)

Page 19 of 25

WBIV61_IEA_AdapterSAP_Outbound.ppt

To access data in hierarchical form, SAP provides remote function Calls (RFC) and BAPI.

However, in some scenarios, you might want to retrieve data in some specific hierarchical

form or from SAP application tables for which SAP does not provide an interface.

Query interface for SAP software supports the retrieval of data directly from the SAP

application tables that can be represented in custom hierarchical form. The SAP adapter

receives the business object with table information. Adapter extracts the details about the

table to be queried, the columns that need to be retrieved and the where clause which is

defined from the application specific information. The query is run on the SAP table and

the result (rows) are converted to a table and inserted into a container.

Page 20 of 25

WBIV61_IEA_AdapterSAP_Outbound.ppt

The diagram on the top right shows the structure of the table object. The columns in the

application table on which the query is to be run map as attributes of the table object.

Another important attribute of the table object is the query object. Using the external

service wizard, you can generate a query object for an SAP application table that you want

to retrieve data from.

Table objects can be linked using foreign keys defined inside the table object’s property to

define a hierarchy (parent-child relationships). The child table object has a foreign key that

references a property in the parent query object. Query object has a WHERE clause,

maxrows and rowskip as attributes. The WHERE clause entered using the external

service wizard becomes the table’s default WHERE clause, but you can override the

default WHERE clause at runtime.

The syntax of the WHERE clause is not validated before the query is run. If running the

WHERE fails, the appropriate exception is created. The maxRows attribute defines the

maximum number of rows to retrieve, while the rowsSkip attribute defines the number of

rows to skip before retrieving the rows.

Page 21 of 25

WBIV61_IEA_AdapterSAP_Outbound.ppt

For the SAP query interface outbound call, supported operations are RetrieveAll and

exists. For RetrieveAll processing, each row that is retrieved is mapped to a table object

and each table object is then inserted into a container. For exists processing, it checks for

the existence of records and works just on the top level object. It then returns a business

object with a Boolean value.

Page 22 of 25

WBIV61_IEA_AdapterSAP_Outbound.ppt

This section provides a summary and references.

Page 23 of 25

WBIV61_IEA_AdapterSAP_Outbound.ppt

This presentation covered the details of SAP adapter’s outbound functionality and the

various interfaces supported by the adapter for outbound interaction. More information

can be found in the user guide and the Information center.

Page 24 of 25

WBIV61_IEA_AdapterSAP_Outbound.ppt Page 25 of 25

