
WBIV61_IEA_WAT_EMD_LogTrace_Details.ppt

This presentation covers the high level details on the classes and the methods that need

to be implemented for metadata discovery, logging and tracing support in your custom

WebSphere® adapter.

Page 1 of 32

WBIV61_IEA_WAT_EMD_LogTrace_Details.ppt

The slide shows an architectural view of Enterprise Metadata Discovery(EMD). The major

portion of EMD is the tools contract, which specifies how the adapter can introspect the

EIS and provide the necessary information to build a service. The EMD contract also has

runtime contracts. The J2CA specification was designed before the introduction of SOA,

so there are a few pieces necessary to bridge the gap between a “service” and a JCA

connector. These are discussed later on in the presentation.

Page 2 of 32

WBIV61_IEA_WAT_EMD_LogTrace_Details.ppt

Enterprise Metadata Discovery (EMD) is a discovery service component within an adapter

that enables the generation of business object definitions and other artifacts required by

SCA. It is equivalent to the Object Discovery Agent (ODA) from WebSphere Business

Integration adapters. In addition to generating business objects, however, it also generates

the artifacts needed by SCA, such as import, export files and WSDL.

For the EMD tool to be able to recognize the resource adapter enabled for EMD, there is a

bootstrap step that looks for a discovery-service.xml file. This file should be located in the

META-INF folder for the resource adapter. The structure and content of this file can be

referred from EMD specification. The file is provided as part of Twine ball sample which

can be edited.

Each EMD implementation needs to have two resource bundle files. One for capturing the

property group, property names and description for any properties that shall be displayed

on wizard. Second one for log messages that are logged to the log file for logging and

tracing.

The bundle names have to follow the convention of having EMD.properties file and

LogMessages.properties in the EMD package. You need to add these files under emd

package. The property names need to follow a naming convention for the bean objects.

The property groups representing resource adapter, managed connection factory and

ActivationSpec need to have property names matching with the bean properties. You must

provide the discovery-service.xml, EMD.properties file, LogMessages.properties file and

Page 3 of 32

implementation for the stubs generated.

WBIV61_IEA_WAT_EMD_LogTrace_Details.ppt Page 3 of 32

WBIV61_IEA_WAT_EMD_LogTrace_Details.ppt

This slide provides more details on the property groups. All the properties used in the

discovery service are represented by the PropertyGroup set of interfaces. A property

group is a collection of properties. A property group can be associated with the inbound,

outbound connection configurations, MetadataTree, nodes of the MetadataTree like the

MetadataObject and MetadataSelection. Property group can be a nested. It can include

child property groups. Property groups provides a listener and an event interface to trickle

changes from one property into another property or property group. As part of adapter

foundation classes, complete implementation of these APIs is provided. You need not

implement these but use the implemented API while providing implementation for EMD

classes.

Page 4 of 32

WBIV61_IEA_WAT_EMD_LogTrace_Details.ppt

Any interaction between a tool and an EIS originates with an implementation of the

WBIMetadataDiscoveryImpl. This is the main entry class for invocation of EMD.

You should implement the constructor and call super constructor and pass the bundle

name. The bundle Name is the name of the resource bundle that has to be used for

property group or properties of the EMD.

getAdapterTypeSummaries() must be implemented and should return a list of adapter

type supported by EMD implementation. For jca adapters, there is only one adapter type.

The adapterType must be an instance of type WBIAdapterTypeImpl. Each instance must

be populated with information about inbound and outbound connections.

You should create instances of WBIOutboundConnectionTypeImpl and

WBIInboundConnectionTypeImpl subclasses and add the connections using the

addinboundconnectiontypes and addoutboundconnectiontypes methods.

WBIAdapterTypeImpl constructor needs a set of parameters that need to be passed. The

name of the class representing the ResourceAdapter class which is used to create

property groups for ResourceAdapter in EMD, the number of outbound connections, and

the number of inbound connections.

You need to set supportedInMetadataService as true for connections which can be

selected in the tool to perform discovery. Add the connections to adapterType using

addInboundConnectionType and addOutboundConnectionType methods

Page 5 of 32

WBIV61_IEA_WAT_EMD_LogTrace_Details.ppt

The getAdapterType method should return the instance of adapterType for a given ID. If

the EMD implementation supports only one adapterType then it should just return that else

it needs to return the one that has the input ID.

The implementation of getMetadataTree method should return an instance of

WBIMetadataTreeImpl implementation. Each EMD implementation should extend

WBIMetadataTreeImpl class and an instance of that class should be returned from this

method.

createServiceDescription method should return an instance of inbound or outbound

service description depending on input selection set.

You can iterate on imported configurations (represented by MetadataSelection set) and

the use the properties specified (on MetadataSelection) to complete the service

description.

The instance of service description created should be filled in with name, namespace,

function descriptions and configurations

After the tool gets handle to the metadatadiscoveryimpl it gets a list of adapter types. JCA

adapters discovery service does not support multiple adapter types . So the tool will not

Page 6 of 32

display it. This is the first selection user makes when running emd process.

WBIV61_IEA_WAT_EMD_LogTrace_Details.ppt Page 6 of 32

WBIV61_IEA_WAT_EMD_LogTrace_Details.ppt

For connection types that are used to perform metadata discovery

OutboundConnectionConfiguration represents properties needed to connect to EIS for

discovery and to create service descriptions. For connection types that are used only at

runtime this represents properties from managed connection factory and resource adapter.

You must implement the constructor and send ConnectionType as parameter

createUnifiedProperties method should return an instance of property group which

represents managed connection factory and resource adapter properties together in a

consolidated property group. Since the property groups needed for discovery can be

different then what is needed at runtime, this method can have a check on

isSupportedInMetadataService and then create the corresponding property groups. For

connections that are set as true for isSupportedInMetadataService, this method is used by

tool to display the first connection configuration screen for EMD.

Page 7 of 32

WBIV61_IEA_WAT_EMD_LogTrace_Details.ppt

createResourceAdapterProperties method should return an instance of property group

which represents properties that user can configure for resource adapter Bean. The

method getPropertyGroup() in EMDUtil class can be used to fetch the properties for base

class WBIResourceAdapter bean. You can add your own properties for the resource

adapter bean class.

createManagedConnectionFactoryProperties method should return an instance of

property group which represents properties that user can configure for managed

connection factory Bean. The method getPropertyGroup() provided in EMDUtil class can

be used to fetch the properties for base class WBIManagedConnectionFactory bean. You

can add your own properties for there managed connection factory bean class

Page 8 of 32

WBIV61_IEA_WAT_EMD_LogTrace_Details.ppt

InboundConnectionConfiguration class is similar to

WBIOutboundConnectionConfigurationImpl except instead of managed connection factory

properties, the bean class to be handled is ActivationSpec.

You must implement the constructor and send ConnectionType as parameter

createUnifiedProperties method should return an instance of property group which

represents activation specification and resource adapter properties together in a

consolidated property group. The isSupportedInMetadataService should always be set to

false

createResourceAdapterProperties method should return an instance of property group

which represents properties that user can configure for resource adapter Bean. The

method getPropertyGroup() in EMDUtil class can be used to fetch the properties for base

class WBIResourceAdapter bean. You can add your own properties for the resource

adapter bean class.

Page 9 of 32

WBIV61_IEA_WAT_EMD_LogTrace_Details.ppt

createActivationSpecProperties method should return an instance of property group

which represents properties that user can configure for activation specification bean. User

fills in the properties for the connection configuration in the discovery wizard. Discovery

service establishes a connection to the EIS repository to perform discovery by mapping

the user provided properties to managed connection factory properties and calling the

getConnection() method.

Metadataconnection object represents this connection. Interface is implemented by base

classes and no implementation is needed from you. Once the connection is successful ,

the tool makes a request to get the metadata tree that represents object structure in EIS

Page 10 of 32

WBIV61_IEA_WAT_EMD_LogTrace_Details.ppt

WBIMetadataTreeImpl class represents the tree structure displayed in the tool that

shows the object structure of data objects in EIS

The structure of the Metadata Tree is dependent on discovery service implementation. You

can either choose to display the display the properties, parameters in the tree as nodes or

not. recommendation is to display the leaf level properties only if there is an advantage to

the user, in most cases the simple properties or parameters of the function should not be

added as nodes in the tree. Node representing the object or the function should provide

information about the node. For example, in EISs where function overloading is possible

the function description for the node should identify the parameters in some sense so that

the user can make the right selection for import.

You must provide a constructor that accepts MetaDataConnection object as parameter.

createMetaDataSelection method should return an instance of the specific

MetadataSelection class. Your implementation should extend WBIMetadataSelectionImpl

and return an instance of that class in this method.

Page 11 of 32

WBIV61_IEA_WAT_EMD_LogTrace_Details.ppt

createFilterProperties method should return a property group instance that is used to

perform filtering for nodes of the tree. (properties like inbound or outbound to restrict

objects selected in one run to be of a single type). This filter is used only for displaying top

level nodes on the tree

getMetadataObject method should return an instance of MetadataObject for a specific

location. Each MetadataObject instance that is added to the MetadataTree should have a

unique location so that when the tool calls this method implementation it can find the exact

MetadataObject and return it.

listMetadataObjects method should return an instance of

WBIMetadataObjectResponseImpl. The instance should be populated with

MetadataObjects using method setObjects(). Any metadataObjects that can be selected

by user for import should be set as true with method setIsSelectableForImport() method.

Page 12 of 32

WBIV61_IEA_WAT_EMD_LogTrace_Details.ppt

WBIMetadataObjectImpl class represents the nodes of the tree that gets displayed to

the user in discovery tool. In most cases these will map to objects in EIS that the user

needs to select for importing to service description

Your implementation for createFilteringProperties method should return an instance of a

property group that represents properties that can used in filtering for fetching child objects

of a MetadataObject

Your implementation for getObjectProperties method should return a property group that

gives more information about the specific object in MetadataTree which provides

information to the user about the metadata object instance. You should return null if such

properties are not applicable

Your implementation for getChildren method should return an instance of

WBIMetadataObjectResponseImpl populated with child MetadataObjects.The logic should

use filter properties if they are supported by the implementation

Page 13 of 32

WBIV61_IEA_WAT_EMD_LogTrace_Details.ppt

WBIMetadataSelectionImpl class represents the object that holds the metadataObjects

selected by user for importing. It holds properties that can be specified by the user for the

whole selection set and not a specific MetadataObject.

Your implementation for the createSelectionProperties method should return a property

group that is used to capture inputs from user needed for the whole selection. For

example, specification of service type whether its “Inbound” or “Outbound”,

Namespace for business objects, operations supported, location for xsds should be saved

relative to the module project.

Page 14 of 32

WBIV61_IEA_WAT_EMD_LogTrace_Details.ppt

WBIMetadataImportConfigurationImpl class represents the MetadataObject selected by

the user along with any configuration properties that user can specify for the specific

instance of MetadataObject

Your implementation for createConfigurationProperties method should return a property

group that is used to capture inputs from user needed for the metadata object. These are

the properties specific to the instance of MetadataObject. For example, if implementation

supports selection of operations for each MetadataObject or some additional information

that is needed to process the object at runtime that information can be captured here.

WBIMetadataEditImpl class that is used by discovery service tool to get a handle to

connectionTypes which can be used to edit properties of resource adapter, managed

connection factory or activationspec. An instance of this class is created by the tool during

the boot strap process. Along with the name of MetadataDiscovery class the name of this

class must be specified in discovery-service.xml file.

You must provide implementation for getOutboundConnectionType method and return

the instance of OutboundConnectionType which is used at runtime. For inbound, you must

provide implementation for getInboundConnectionType method and return the instance

Page 15 of 32

of InboundConnectionType which is used at runtime

WBIV61_IEA_WAT_EMD_LogTrace_Details.ppt Page 15 of 32

WBIV61_IEA_WAT_EMD_LogTrace_Details.ppt

WBIDataDescriptionImpl provides the data description that is common to the inbound

and outbound models. You will implement methods in the class that include a definition of

the structure and content of adapter business objects that is passed between the client

and adapter at runtime. Data description enables the client to create the proper data

objects for requests and interpret the data objects returned as responses. Each

DataDescription instance should have a unique namespace.

You should implement setFunctionDescriptions method in the

WBIInboundServiceDescriptionImpl class. WBIInboundServiceDescriptionImpl class

represents the object that is responsible for population of function descriptions for inbound

service description. setFunctionDescriptions method should populate the function

descriptions based on objects selected in MetadataSelection and selection properties

You should implement setFunctionDescriptions method in the

WBIOutboundServiceDescriptionImpl class. WBIInboundServiceDescriptionImpl

class represents the object that is responsible for population of function descriptions for

outbound service description. setFunctionDescriptions method should populate the

function descriptions based on objects selected in MetadataSelection and selection

properties

Page 16 of 32

WBIV61_IEA_WAT_EMD_LogTrace_Details.ppt

A JCA EMD service can define “faults”. These faults are very similar to Web service

faults from the client perspective.

JCA does not define faults, but rather it defines that connectors should throw a

ResourceException when an operation cannot be performed. EMD defines a “Fault

Binding” that allows an exception to be translated into a fault payload. Adapter Foundation

Classes provide a standard fault binding, and some exceptions that will automatically be

translated to faults.

In V6.1 there is no support to configure fault generation in the discovery tool. The tool

used for discovery in WebSphere Integration Developer is called external service wizard.

You must add the fault information manually to the service after generation if you choose

to use faults.

Page 17 of 32

WBIV61_IEA_WAT_EMD_LogTrace_Details.ppt

Data bindings are used to convert data format from an SDO to a common client interface

record and vice versa. In version 6.0.2, WebSphere adapters used a single data binding

for all EIS adapters. In V6.1, data binding “generator” is used.

When the adapter is deployed at the node level, the adapter does not have direct access

to the business object definitions in an EAR file. The data binding needs the name of the

object at runtime, so it can produce the correct object. This is done by including the

object name into a generated data binding. The “generated” portion of the code by the

WebSphere adapter toolkit is minimal, only including the correct object name.

You must provide a data binding that the data binding generator will extend. This data

binding should contain all the logic necessary to transform your adapter’s record object

into an SDO and vice-versa.

Page 18 of 32

WBIV61_IEA_WAT_EMD_LogTrace_Details.ppt

The next section provides a brief overview of the Data Exchange Service Provider

Interfaces also referred to as DESPI.

Page 19 of 32

WBIV61_IEA_WAT_EMD_LogTrace_Details.ppt

The Data Exchange Service Provider Interface, new in version 6.1, is the adapter’s way of

abstracting the data format, so one adapter with one code path can handle multiple data

representations. This is why an IBM WebSphere Adapter can run in WebSphere Message

Broker, WebSphere Transformation Extender, WebSphere Process Server, WebSphere

Enterprise Service Bus, and WebSphere Application Server all using the same code.

Adapter foundation classes provide data exchange “plug-ins” that allow mediation of the

SDO and Java bean data formats. WebSphere Transformation Extender and WebSphere

Message Broker provide their own data exchange implementations. The adapters at the

code level are unaware of which implementation is used.

Page 20 of 32

WBIV61_IEA_WAT_EMD_LogTrace_Details.ppt

Both data and metadata are abstracted through Data Exchange Service Provider Interface

(DESPI) and Adapter foundation classes APIs. Access to data is provided through cursors

and accessors defined in DESPI. Access to metadata is provided using the adapter

foundation class’s metadata API.

Page 21 of 32

WBIV61_IEA_WAT_EMD_LogTrace_Details.ppt

In Data Exchange Service Provider Interface (DESPI) , data is accessed with cursors and

accessors. A cursor represents a node in the structure. You can use the cursor APIs to

traverse the structure, get the next object in a sequence of children, and so forth. An

accessor represents a singe property or attribute. The accessor API allows you to

manipulate a single piece of data, either getting or setting that data.

Note that cursors and accessors are split by direction (Output and Input). The adapter

should take in an InputCursor, and only read data from it, and should write data to an

Output Cursor. The architecture explicitly forbids writing to an InputCursor.

Page 22 of 32

WBIV61_IEA_WAT_EMD_LogTrace_Details.ppt

The “Type” API allows the adapter to process metadata independently of the metadata

format. You will notice that these classes and methods are similar to what you’d find in

SDO API, and that’s intentional. The Type and Property API allow you to access to the

same kinds of metadata across different formats, including parsed and cached Application

Specific Information (ASI)

Note that all calls to Type, TypeFactory, and Property are cached using HashMaps. The

first call with a given set of parameters can be slower, but subsequent calls should be very

fast. Do not implement your own caching in your adapter-specific code. Doing so will only

waste memory.

Page 23 of 32

WBIV61_IEA_WAT_EMD_LogTrace_Details.ppt

A StructuredRecord is what bridges the gap between the JCA common client interface

data model (Record) and the Data Exchange Service Provider Interface.

Each adapter has its own StructuredRecord interface. When processing the data in the

outbound request path, the adapter will get the top-level input cursor from the input

structured record and read the data from that. In the return path, or inbound, the

getNext() and extract() methods are used to push the data to the output cursor.

When the adapter returns a structuredrecord from an outbound call, the record will not

contain populated cursors or transformed data. The record will only contain the raw data

from the EIS or a connection to the EIS and a key to the data. When the data binding

calls “getNext()”, the structured record implementation must advance the cursor and

transform this raw data by setting the output cursors and accessors. If the parameter

passed to getNext() is false, the structured record should only advance the cursor and not

transform the data. This is designed to be used in conjunction with the extract() call,

which will set a particular output accessor.

In summary, if the parameter passed to getNext() is true the method will transform the

entire data into the output cursor. The combination of getNext() method with parameter

set to false and extract() will allow the client to select a particular field or fields to

transform.

Page 24 of 32

WBIV61_IEA_WAT_EMD_LogTrace_Details.ppt

The next section provides a brief overview of the support provided by adapter foundation

classes and the code stubs generated by the toolkit to support problem determination and

monitoring.

Page 25 of 32

WBIV61_IEA_WAT_EMD_LogTrace_Details.ppt

The JCA 1.5 specification provides very minimal support for communicating information to

the user. It defines a single stream to which the adapter writes any information. Without

additional tools or support, users of your adapter cannot filter information or analyze

information.

LogUtils class enables you to target different information to different user roles and filter

information. Providing information about the runtime state of the adapter is a critical aspect

of adapter development. This information is invaluable to support teams trying to resolve

problems and the adapter users looking to track operations and monitor the adapter.

Page 26 of 32

WBIV61_IEA_WAT_EMD_LogTrace_Details.ppt

Logs are used to convey customers of the adapter the information that is necessary to

their understanding of the adapter, warnings, potential problems or errors that have

occurred and any actions suggested to resolve them. The various levels of lags are fatal,

severe, warning, audit and info. Log messages should not be hard coded in the adapter to

enable translation. Log messages should be placed in Logmessages.properties file and

should follow a defined structure as shown in the slide.

Trace information is used to convey information that is intended for support teams and

developers. Information includes stack dumps for any exceptions encountered and

operation logic for debugging purposes. Messages are directed at the teams that wrote or

support the adapter rather than any customers, trace messages do not need to be

translated and can be hard-coded in the adapter. The levels are fine, finer, and finest.

Page 27 of 32

WBIV61_IEA_WAT_EMD_LogTrace_Details.ppt

The log method of the LogUtils class should be used to generate a log message. You

should provide a key to the log message you want to use from the log message file. This

log method can also take optional parameters if there are values to be substituted in the

message.

For tracing, you should check if trace is enabled before generating any trace messages

because of performance issues.

LogUtils.isTraceEnabled method can be used for checking if trace is enabled.

Page 28 of 32

WBIV61_IEA_WAT_EMD_LogTrace_Details.ppt

Adapter foundation classes will automatically provide a certain amount of monitoring in

event delivery with polling. If you are using polling, and do not want to have any finer

grained monitoring than what is provided, you need not implement more.

On the other hand, if you are implementing “callback” and want to define additional

monitoring points, the APIs provided by foundation classes can be used.

Page 29 of 32

WBIV61_IEA_WAT_EMD_LogTrace_Details.ppt

FFDC stands for First Failure Data Capture. It is a mechanism to feed back exception and

state information back to support and development. Normally, exceptions, stack traces,

and the object where the exception occurred and its public variables are included;

however it can be extended to provide more information.

FFDC is implemented by adapter foundation classes , but only for adapter foundation

classes code. If you want to have your adapter-specific code enabled for FFDC, you will

need to use the AspectJ compiler and “weave” in the FFDC aspect into your code.

Page 30 of 32

WBIV61_IEA_WAT_EMD_LogTrace_Details.ppt

WebSphere Adapter Toolkit helps adapter developers build custom IBM WebSphere

Adapters to be used within WebSphere Process Server,WebSphere Enterprise Service

Bus or build a basic J2EE JCA adapter. The underlying adapter foundation classes used

by the toolkit simplify the process of adapter development by providing implementation for

most generic contracts so you only provide the implementation logic for your backend

EIS.

Page 31 of 32

WBIV61_IEA_WAT_EMD_LogTrace_Details.ppt Page 32 of 32

