
WPIv601_ESB_CustomPrimitive.ppt Page 1 of 13

®

IBM Software Group

© 2006 IBM Corporation

Updated May 1, 2006

WebSphere® Process Server V6.0.1
WebSphere® Integration Developer V6.0.1
WebSphere® Enterprise Service Bus V6.0.1

Custom Mediation Primitive

This presentation provides a detailed look at the Custom Mediation primitive.

WPIv601_ESB_CustomPrimitive.ppt Page 2 of 13

IBM Software Group

2

Custom Mediation Primitive © 2006 IBM Corporation

Goals

�Understand the Custom Mediation primitive details

�Overview of function

�Use of terminals

�Definition of properties

�Structure of primitive and mediation module assembly

�Error handling

�Examine custom code samples

Custom Mediation

The goal of this presentation is to provide you with a full understanding of the Custom
Mediation primitive. It is assumed that you are already familiar with the material presented
in the Mediation Primitive Common Details presentation, which serves as a base for
understanding mediation primitives in general. In this presentation, an overview of the
Custom Mediation primitive is provided along with information about the primitive’s use of
terminals and its properties. The structure of the Custom Mediation primitive in relation to
the mediation module assembly is then described. Finally, the error handling
characteristics are presented and example usages of a Custom Mediation primitive are
provided.

WPIv601_ESB_CustomPrimitive.ppt Page 3 of 13

IBM Software Group

3

Custom Mediation Primitive © 2006 IBM Corporation

Custom Mediation – Overview of Function

�Enables use of custom mediation logic

�Can be used when no built-in primitive provides a
needed function

� Logic implemented in Java™ and defined as either:

�Snippet (Visual or Java)

�Service Component Architecture (SCA) Java component

�Similar to other mediation primitives in behavior

�Usage of terminals, wiring, exception processing

The Custom Mediation primitive enable you to define your own custom mediation logic for
use when the built-in primitives do not provide the needed functionality. Java is used to
define the logic and can be coded as a visual snippet, a Java snippet or alternatively as an
operation within a Java SCA component. The general behavior is similar to that of the
built-in mediation primitives with respect to the use of terminals, wiring of primitives and
exception handling.

WPIv601_ESB_CustomPrimitive.ppt Page 4 of 13

IBM Software Group

4

Custom Mediation Primitive © 2006 IBM Corporation

Custom Mediation – Terminals

�Terminals:

�Input terminal

�One Output terminal

�Fail terminal

�Message type of Input and Output terminal
� Same type – for manipulation of values within a message

� Different type – for changing format of the message body

The Custom Mediation primitive has one input terminal, one output terminal and a fail
terminal. The output terminal can be for the same message type as the input terminal or
for a different message type. When the message types are different, the Java code in the
Custom Mediation must modify the structure of the body of the message to conform with
the output terminal type. Shown here is a Custom Mediation primitive with its terminals
and the terminals as seen in the properties view.

WPIv601_ESB_CustomPrimitive.ppt Page 5 of 13

IBM Software Group

5

Custom Mediation Primitive © 2006 IBM Corporation

Custom Mediation
- Properties

� Service operation
�Name of the operation to call on the service interface

�Operation must:
� Be a request/response operation

� Take a single input parameter of type DataObject

� Return a DataObject

� Service reference
�Name of the Mediation Flow Component’s reference to the service

�The reference needs to be wired to a Java service component or an Import

� Root
�The portion of the Service Message Object to be passed

�Valid values are only: / and /body

� NOTE: Properties are read only on this panel – they are defined using
the Define Custom Mediation dialog accessed using the Define… button

In the upper right is a screen capture of the Details tab from the Properties view for a
Custom Mediation primitive showing the following properties:

Service operation is a property that contains the name of the operation to be called on
the service interface. The operation must be a request/response operation that takes a
DataObject as its only input parameter and it must also return a DataObject.

Service reference contains the name of a reference defined on the Mediation Flow
Component that supports the service interface. In the assembly diagram, the reference
must be wired to a Java SCA component or an SCA import.

Root is a property that defines the portion of the SMO that will be passed to the operation.
There are only two valid values for root, / (slash), which indicates to pass the entire SMO
and /body, which indicates to pass only the message body or payload.

The properties on this panel are read only and are set using the Define Custom Mediation

dialog that is accessed by using the Define… button.

WPIv601_ESB_CustomPrimitive.ppt Page 6 of 13

IBM Software Group

6

Custom Mediation Primitive © 2006 IBM Corporation

Reference to
service component

SCA component with
Java implementation

Custom Mediation – Structure

� Assembly diagram contains the following:

�Reference on the Mediation Flow component

�SCA component with Java implementation

� The reference and SCA component can be generated

� The custom logic can be coded in two ways:

�In the Custom Mediation Properties view - Implementation tab

� As a Visual Snippet or as a Java Snippet

� Code to call the snippet is contained in the Java SCA component implementation

�Directly in the Java SCA component implementation

The Custom Mediation primitive is the only mediation primitive that has a corresponding
part, which is on the assembly diagram for the Mediation Module. The Custom Mediation
primitive must have a reference on the Mediation Flow Component that is wired to a Java
SCA component as shown on this slide. The development tools provide the capability for
the reference and the Java SCA component to be generated after the Custom Mediation
primitive properties have been defined. There are two approaches to defining the custom
logic. The first is by coding either a visual or a Java snippet on the Implementation tab of
the Properties view of the Custom Mediation. The Java SCA component contains
generated code that invokes the snippet. The other approach is to write the custom code
as part of the Java SCA component. In this case, the reference and the Java SCA
component can still be generated, and will contain the stub of the operation to be
implemented.

WPIv601_ESB_CustomPrimitive.ppt Page 7 of 13

IBM Software Group

7

Custom Mediation Primitive © 2006 IBM Corporation

Custom Mediation – Structure

Code in Java
SCA Component

Generated Java SCA
component implementation that

calls the snippet

Code in
Java Snippet

Java Snippet

User Written Code

Code in Java
SCA Component

Generated Java SCA
component implementation that

calls the snippet

Code in
Java Snippet

Java Snippet

User Written Code

This slide further examines the structure of a Custom Mediation. The top portion of the
slide illustrates using a Java snippet, whereas the bottom portion shows placing the
custom code directly into the Java SCA component. In the example, there is identical user
written code. In the case of the Java snippet, the user code is contained on the
Implementation panel of the Properties view and the generated code for calling the snippet
is contained in the Java SCA component. In the case of the user code being implemented
in the Java SCA component, it is inserted within the generated operation stub.

WPIv601_ESB_CustomPrimitive.ppt Page 8 of 13

IBM Software Group

8

Custom Mediation Primitive © 2006 IBM Corporation

Custom Mediation – Alternate Structure
� Normal structure contains:

�Reference on Mediation Flow Component

�Java SCA Component

�Custom code in Snippet or Java SCA Component

� An alternate structural possibility contains:
�Reference on Mediation Flow Component

�SCA Import with binding to an Export in another Module

�Module with Export and SCA Component with the custom code

� Possible usage
�Package complex custom mediation logic as a service

�Use that service from many different mediation modules

MediationModule

ModuleReference on Mediation Flow Import

Export

SCA Component

Binding

MediationModuleMediationModule

ModuleModuleReference on Mediation Flow Import

Export

SCA Component

Binding

This slide shows an alternative structure for a Custom Mediation primitive. Reviewing the
typical structure, a Custom Mediation primitive is composed of a reference on the
mediation flow component, a Java SCA component and custom code, which is either in a
snippet or the Java SCA component. In the alternative structure there is still a reference
on the mediation flow component. However, that reference is wired to an SCA import
rather than a Java SCA component. In a separate SCA module, there is an export for the
same service interface wired to an SCA component, which contains the custom code.

An example of a scenario where this structure might be useful is a case where there is

complex custom mediation logic that must be used from several different mediation flows.
The custom mediation is essentially packaged as a service and the service is used from
each of the mediation flows.

WPIv601_ESB_CustomPrimitive.ppt Page 9 of 13

IBM Software Group

9

Custom Mediation Primitive © 2006 IBM Corporation

Custom Mediation – Error Processing

� MediationRuntimeException thrown for

�No operation or service reference specified in the properties

�No matching reference exists on the Mediation Flow Component

� MediationRuntimeException (Fail terminal flow)

�Note difference in behavior

� Unlike most MediationRuntimeExceptions, these fire the Fail terminal if wired

�The reference on the Mediation Flow Component is not wired

�Custom code returns null

� Must return a DataObject

� Beware, default code is generated with returns null;

� Any exception throw by the custom java code

�Thrown as is, not wrapped by any MediationXxxxxException type

�If the Fail terminal is wired, it will be fired

The error processing details and considerations are examined in this slide.

A MediationRuntimeException will be thrown when the operation or service reference
name has not been specified in the properties or if the specified reference does not exist
on the Mediation Flow Component. A MediationRuntimeException can also occur for
other conditions that are detected when processing the Custom Mediation primitive.
Unlike most other MediationRuntimeExceptions, these will result in the Fail terminal flow
being followed if the Fail terminal is wired. One of the conditions where this can occur is
when the reference on the Mediation Flow Component is not wired. Another cause of this

is when the custom code returns a null rather than a DataObject. This could be a common
mistake because the generated code stub returns null and must therefore be changed to
return a DataObject. The custom code can throw any exception and the exception thrown

will not be wrapped by any of the mediation receptions. If the Fail terminal is wired, that
flow will be followed. Otherwise, the exception is thrown and the mediation flow is
terminated.

WPIv601_ESB_CustomPrimitive.ppt Page 10 of 13

IBM Software Group

10

Custom Mediation Primitive © 2006 IBM Corporation

Custom Mediation – Custom Code Example

� A typical scenario

�Custom Mediation used to construct a key prior to a Database Lookup

�Data from the body of the message is manipulated to construct key

�Key value is placed into the transient context

� Scenario for this code example:

�Database Lookup will need first two digits of the customer ID as a key

One of the typical scenarios for a custom mediation is constructing a key that can be used
to perform a database lookup. In such a scenario, the custom mediation can access
various data elements in the SMO and use them to construct a key value that is then
placed into the transient context to be used by a subsequent database lookup. In this
particular scenario, the first two digits of a customer number are extracted to be used as a
key. Looking at the code, you will see that the mediate operation takes a DataObject as
input and returns a DataObject. In this example, the root property was specified as /
(slash), indicating that the DataObject passed in and returned is the entire SMO. The first
step is to cast the input parameter input1 to a ServiceMessageObject type and assign it to
a ServiceMessageObject variable called smo. This variable can then be used to perform
type safe SMO specific operations. The next step is to obtain the transient context, which
is done in two steps. The getContext operation is performed on smo, which returns the
context portion of the SMO and is assigned to a ContextType variable called context.
Next, the getTransient operation is performed on context to obtain the transient context,
which is assigned to a DataObject type called transientContext. The customerID must
now be obtained from the body of the SMO. Using the smo variable, the getBody
operation returns the body of the message, which is assigned to a DataObject called
body. Using the generic get operation on body the getCustomerInformation property is
obtained and similarly the customerID is then obtained from it. A substring of the first two
digits of customerID is obtained and placed into the accountLocationID element of the
transientContext using the generic setString operation. Finally the original SMO is
returned with the transient context updated to contain the desired key value.

WPIv601_ESB_CustomPrimitive.ppt Page 11 of 13

IBM Software Group

11

Custom Mediation Primitive © 2006 IBM Corporation

Custom Mediation – Throwing an Exception

� Scenario

�Check customer ID for validity

�Throw MediationBusinessException when invalid

�Exception contains user defined message insert

[1/18/06 17:48:50:354 CST] 0000004b ExceptionUtil E CNTR0020E: EJB threw an unexpected (non-declared) exception during invocation of method
"transactionNotSupportedActivitySessionSupports" on bean "BeanId(CustomerRoutingMediationApp#CustomerRoutingMediationEJB.jar#Module, null)".
Exception data: com.ibm.wsspi.sibx.mediation.MediationBusinessException: MyOwnErrorCode: CustomerID is too short, ID=22222

at sca.component.java.impl.CustomMediation1PartnerImpl.mediate(CustomMediation1PartnerImpl.java:49)

Resulting Log

Exception Type User defined messageCode where error occurred

The code example on this slide examines custom code that throws a
MediationBusinessException containing a user defined message insert if the customerID
does not pass a validity check.

The operation has the same signature as the previous example, except that it now has a
throws clause to declare that the operation can throw a MediationBusinessException. In
the code, the customerID is obtained from the SMO by drilling down to it using the
generic DataObject get operation. First the body is obtained from input1, which contains
the SMO. Then getCustomerInformation is obtained from the body and finally the

customerID is obtained from the getCustomerInformation. Validation checking is then
done on the customerID, which in the case of this example is simply checking to make
sure its length is not less than six digits. If it is less than six digits the

MediationBusinessException containing the user defined error message is thrown.
Assuming that the Fail terminal of the Custom Mediation primitive has not been wired, the
mediation flow will be terminated and a log message written. An example of such a log is

shown at the bottom of the slide. Notice that the log contains the exception type and the
user defined error message, and also identifies the custom mediation code as the source
of the exception.

WPIv601_ESB_CustomPrimitive.ppt Page 12 of 13

IBM Software Group

12

Custom Mediation Primitive © 2006 IBM Corporation

Summary

� Examined the Custom Mediation primitive details

�Overview of function

�Use of terminals

�Definition of properties

�Structure of primitive and mediation module assembly

�Error handling

�Examine custom code samples

Custom Mediation

In summary, this presentation provided details regarding the Custom Mediation primitive,
along with an overview of its function and information about the primitive’s use of terminals
and its properties. The structure of the primitive in relationship to the mediation module
assembly was also described. Finally, information about error handling was presented
and two code examples were examined.

WPIv601_ESB_CustomPrimitive.ppt Page 13 of 13

13

IBM Software Group

© 2006 IBM Corporation

Trademarks, Copyrights, and Disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM CICS IMS MQSeries Tivoli
IBM(logo) Cloudscape Informix OS/390 WebSphere
e(logo)business DB2 iSeries OS/400 xSeries
AIX DB2 Universal Database Lotus pSeries zSeries

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product and service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements and/or changes in the product(s) and/or program(s) described herein at any time without notice. Any statements regarding IBM's
future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or
services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program
Product in this document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual
property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER
EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall
have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and conditions of the agreements (e.g., IBM Customer Agreement,
Statement of Limited Warranty, International Program License Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. IBM makes no representations or warranties, express or implied, regarding non-IBM products and
services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2004,2005. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

Template Revision: 7/18/2005 4:30 PM

