
WPIv602_EventEmitterPrimitive.ppt Page 1 of 18

®

IBM Software Group

© 2007 IBM Corporation

Updated April 18, 2007

WebSphere ® Enterprise Service Bus V6.0.2
WebSphere Process Server V6.0.2
WebSphere Integration Developer V6.0.2

Event emitter mediation primitive New
V602

This presentation provides a detailed look at the Event Emitter mediation primitive which
was newly introduced in version 6.0.2.

WPIv602_EventEmitterPrimitive.ppt Page 2 of 18

IBM Software Group

2

Event emitter mediation primitive © 2007 IBM Corporation

�Understand the event emitter mediation primitive

�Overview of function
�Use of terminals

�Definition of properties

�Contents of an event

�Error handling
�Best practices for usage

�Example usage

Goals

Event emitter

The goal of this presentation is to provide you with a full understanding of the Event
Emitter mediation primitive.

The presentation assumes that you are already familiar with the material presented in the
Mediation Primitive Common Details presentation and the Common Details –
Promoted Properties presentation. These two presentations serve as a base for
understanding mediation primitives in general.

In this presentation, an overview of the Event Emitter mediation primitive is provided,
along with information about the primitive’s use of terminals and its properties. There is a
section which discusses the content of an event and how a formal definition of an event
can be exported for use by monitoring applications. The error handling characteristics are
then covered along with some information regarding best practices for the use of Event
Emitters. Finally, an example usage of a Event Emitter is provided.

WPIv602_EventEmitterPrimitive.ppt Page 3 of 18

IBM Software Group

3

Event emitter mediation primitive © 2007 IBM Corporation

Overview of function

� Emits an event from within a mediation flow
�Enables reporting of significant events within the flow

�Contents of the event are easily configured

� Fully integrated with common event infrastructure (CEI)
�Common base event structure

�Events contain all the common elements of common base events
used with CEI

� Events are configured to contain a section of the Service
Message Object (SMO)
�Data objects in the SMO are expanded to extended data elements

� The SMO is not updated

The Event Emitter primitive provides an simple and easily configured mechanism that can
be used to report significant events which have occurred within a mediation flow.

The event that is emitted is fully compatible with the common event infrastructure, which is
part of the Service Oriented Architecture core within WebSphere Enterprise Service Bus
and WebSphere Process Server. The structure of the event is known as a common base
event. Events emitted by this primitive contain all the common base event elements that
the common event infrastructure expects it to contain.

When specifying the properties for the Event Emitter, you configure the portion of the
Service Message Object (SMO) which you want the event to contain. Data objects within
that portion of the SMO are expanded and placed into the common base event as
extended data elements. Examples of this are shown later in the presentation.

The Event Emitter primitive does not update the SMO.

WPIv602_EventEmitterPrimitive.ppt Page 4 of 18

IBM Software Group

4

Event emitter mediation primitive © 2007 IBM Corporation

Overview of function (cont.)

� Fully compatible with CEI
�Generated events are sent to CEI server, therefore:

� Can be written to the event database

� Can be forwarded using JMS topics or queues

�Event definitions can be exported

�Can be used by monitoring applications
� Common base event browser

� WebSphere Business Monitor

� User written event processing application

As stated on the previous slide, the Event Emitter primitive produces events which are
fully compatible with the common event infrastructure. This implies some capabilities
which are worth mentioning here.

The events are sent to the CEI server and what happens with an event depends upon how
the CEI server is configured. The possibilities are that the event is written to an event
database, sent as a message on a JMS queue and published to a JMS topic. These
capabilities make the event available to applications which query the database or receive
the event through JMS.

Because applications may be interested in interpreting the contents of the event, the
WebSphere Integration Developer provides the capability to export a definition for the
event. Applications which browse, interrogate or consume the events include the common
base event browser, the WebSphere Business Monitor or any user written event
processing application.

WPIv602_EventEmitterPrimitive.ppt Page 5 of 18

IBM Software Group

5

Event emitter mediation primitive © 2007 IBM Corporation

Terminals

� Terminals:
�Input terminal

�One output terminal

�Fail terminal

� All terminals must be for the same message type

The Event Emitter primitive has one input terminal, one output terminal and a fail terminal.
The output terminal must be for the same message type as the input terminal because the
Event Emitter primitive does not modify the message body. Shown here is an Event
Emitter primitive with its terminals and the terminals as seen in the properties view.

WPIv602_EventEmitterPrimitive.ppt Page 6 of 18

IBM Software Group

6

Event emitter mediation primitive © 2007 IBM Corporation

Properties

� Label
�Defines an identifier for the event
�Maps to the extensionName of the common base event
�Default value is constructed as:

� <Module Name>_<Mediation Name>_<Primitive Name>_<Flow Type>
� Best practice – assign a meaningful value identifying the event’s content or purpose

� Root
�XPath expression defining portion of SMO to include in the event
�XPath expression can identify any element or portion of the SMO
�Default is � <exclude message content from event data>

� Transaction mode:
�Overrides the transaction mode configured for CEI

� new – event sent outside of the current transaction, within it’s own transaction
� existing – event sent within the current transaction
� default – event sent using the default setting of the CEI emitter

In the upper right portion of the slide is a screen capture showing the Details tab of the
Properties view for an Event Emitter. An Event Emitter has the following properties:

The Label property provides an identifier for the event. The value for this property is
placed into the extensionName field, which is a part of the standard common base event
format. If you do not assign a specific value to this property, WebSphere Integration
Developer provides a default value, as shown in the slide. It is constructed from the
Mediation Module name, the Mediation Flow name, the Event Emitter primitive name and
the flow type, all separated using underbars. It is likely that this default won’t be
meaningful to whomever is consuming the events, so it is recommended that you assign
some meaningful value to this property.

The Root property contains an XPath expression and is used to define what portion of the
Service Message Object is included in the event. It can define a leaf element or a data
object within the SMO. The Custom XPath… button can be used to access the XPath
Expression Builder dialog to allow you to easily construct the XPath expression. If you do
not specify this property, the default is to exclude all SMO content from the event.

The Transaction mode property is used to define transaction handling for the writing of
the event. A setting of new means that the event is emitted within the context of its own
transaction. A setting of existing means that the event participates in the current
transaction. Finally, a setting of default indicates to use whatever setting has been
configured for CEI.

WPIv602_EventEmitterPrimitive.ppt Page 7 of 18

IBM Software Group

7

Event emitter mediation primitive © 2007 IBM Corporation

Promoted properties

� Promotable
�Transaction mode

� Not promotable
�Label

�Root

This slide shows the Promoted Properties panel for the Event Emitter primitive. As you
can see, only the Transaction mode property is promotable. The Label and Root
properties are not promotable. This is because any change to them would cause the event
to not match an exported event definition which external event monitoring applications
might be relying on.

WPIv602_EventEmitterPrimitive.ppt Page 8 of 18

IBM Software Group

8

Event emitter mediation primitive © 2007 IBM Corporation

Event contents

� contextDataElements contain IDs used for correlation
�Enables correlation with other events from the same flow

� Predefined events, such as events from SCA components or BPEL processes
� Application defined events

�Session ID, Current Correlation ID and Parent Correlation ID

Label property used
to set the

extensionName field

The next several slides take a look at the contents of an event.

The screen capture of the event in this slide was taken from an event displayed in the
common base event browser. The common base event browser is an application built into
WebSphere Enterprise Service Bus and WebSphere Process Server.

The first thing to notice is the placement of the Label property value into the
extensionName field of the event. This is a standard field in any common base event.

The next thing to notice is the contextDataElements. This is an extensible portion of the
common base event where context information can be included. For events emitted from
WebSphere Enterprise Service Bus and WebSphere Process Server, this context data
contains session and correlation IDs. Using these IDs, this event can be associated with
other events that occurred as part of the same overall flow. These other events could be
predefined events such as are emitted by SCA and BPEL, or they could also be
application defined events.

WPIv602_EventEmitterPrimitive.ppt Page 9 of 18

IBM Software Group

9

Event emitter mediation primitive © 2007 IBM Corporation

Event emitter specific event contents

� In common base events, application specific event
data is placed into extendedDataElements

�Event emitter defines extendedDataElements:
�ModuleName – Name of the mediation module

�MediationName – Name of the event emitter producing
this event

�Root – XPath expression defining what part of the SMO
to include in the event

�Message – the portion of the SMO identified by root
� Leaf element – value appears as is

� Data object – fully expanded into separate extendedDataElements

Common base events normally contain some amount of application specific data.
Common base events define the extendedDataElement as the location for this application
specific data. All events that are produced by the Event Emitter primitive contain a
common set of application data as shown in this slide.

The ModuleName is the name of the Mediation Module in which the Event Emitter exists.

The MediationName is the name of the Event Emitter primitive which generated the
event.

The Root is the XPath expression which defines what portion of the SMO is included in
the event.

The Message is that portion of the SMO that is identified by the Root. If the Root identifies
a leaf element in the SMO, it is just the value of that element that appears in the event.
However, it the Root identifies a data object, the data object is expanded to show all of its
individual elements. This is shown in more detail on the next couple of slides.

WPIv602_EventEmitterPrimitive.ppt Page 10 of 18

IBM Software Group

10

Event emitter mediation primitive © 2007 IBM Corporation

Event contents – Message element
� When no message data is included

�The message extendedDataElement is not present

� When root specifies a leaf element
�The message extendedDataElement contains the value of the leaf element

This slide looks at the Message element placed into the event.

The top portion of this slide illustrates what appears in an event when the Root property
specifies the default value, indicating that no message content is placed into the event.
The screen capture in the upper left shows the contents of the Root property. The screen
capture on the upper right shows the content of the event. Notice that all the fields are
qualified by extendedDataElement, which is the application data portion of the event. The
ModuleName, MediationName and Root are all present, but the Message is not present.

In the bottom portion of the slide is an illustration of what the event looks like when the
Root property specifies a leaf element in the SMO. On the lower left is a screen capture
from the Schema Viewer panel of the XPath Expression Builder, showing that the leaf
element named street is selected. On the right you can see that the Root property
contains the XPath expression identifying the element street. In the event, the Message is
present. It contains the value of the element street taken from the SMO, but does not
identify the element by its name, street.

WPIv602_EventEmitterPrimitive.ppt Page 11 of 18

IBM Software Group

11

Event emitter mediation primitive © 2007 IBM Corporation

Event contents – Message element (cont.)
� When root specifies a data object (complex type)

�Multiple message extendedDataElements showing values for all contained
elements

This slide continues the look at the Message element portion of the event. In this case, the
portion of the SMO identified by the Root property is a data object.

Looking on the left you can see that the input1 data object has been selected in the
Schema Viewer of the XPath Expression Builder dialog. This is also reflected in the Root
property shown on the right. Looking at the event itself, there are several
extendedDataElements for Message. The first represents input1, but the name itself does
not show. It is composed of leaf elements f_name, l_name, age, and the data object
address, which is composed of the leaf elements houseNumber. street and postcode. All
of these are identified by name along with the leaf element values.

WPIv602_EventEmitterPrimitive.ppt Page 12 of 18

IBM Software Group

12

Event emitter mediation primitive © 2007 IBM Corporation

Export event definitions
� Event Emitter event definitions can be exported
�Generate definitions for all event emitters in a flow
�.cbe files created in Events folder of Mediation Module
�.cbe files can be imported for monitoring

� Into the CEI Event Catalog
� From CEI Event Catalog into the WebSphere Business Monitor

Event monitoring applications need to understand the contents on the events they are
processing. WebSphere Integration Developer allows you to export event definitions that
can be used by the applications. The screen capture on the left shows that using the pop-
up menu for a mediation flow, you can select the Monitor Tools menu item and then the
Generate Event Definitions menu item. This causes an Events folder to be created in your
mediation module. It is populated with .cbe files representing the events defined by the
Event Emitter contained in the module, as shown on the right. These .cbe files can then be
imported into the CEI Event Catalog. If you are using the WebSphere Business Monitor, it
can import the event definitions from the CEI Event Catalog.

WPIv602_EventEmitterPrimitive.ppt Page 13 of 18

IBM Software Group

13

Event emitter mediation primitive © 2007 IBM Corporation

Error processing

� MediationRuntimeException thrown for:
�Root property XPath expression syntax is invalid

�Label property value is:
� null
� longer than 64 characters

�Transaction Mode property has invalid value
� Can’t set invalid value in WebSphere Integration Developer
� An invalid value can be set administratively if the property is promoted

� MediationBusinessException (Fail terminal flow)
�Any transient error, such as CEI being unavailable

� Root XPath value not found in Service Message Object
�Not considered an error condition

�The event is produced without a Message extendedDataElement

The error processing details and considerations are examined in this slide.

A MediationRuntimeException is thrown for a number of reasons. One case is where the
Root property contains an XPath expression with an invalid syntax. Another cause is when
the Label property is null or if it is longer than 64 characters. The
MediationRuntimeException also occurs when there is an invalid value in the Transaction
mode property. This would only occur in the event that the Transaction mode property
were promoted, and the invalid value was set administratively. The WebSphere Integration
Developer prevents you from setting an invalid value at development time.

A MediationBusinessException occurs for any transient problems, such as CEI not being
available. These exceptions cause the Fail terminal flow to be taken.

It is possible for the Root property to have a syntactically correct XPath express which
does not identify an element within the SMO. This could occur do to a mistake in
specifying the property or from an optional element not being present in the SMO. This is
considered a normal situation by the Event Emitter primitive, and it produces an event
without the Message extendedDataElement being present.

WPIv602_EventEmitterPrimitive.ppt Page 14 of 18

IBM Software Group

14

Event emitter mediation primitive © 2007 IBM Corporation

Best practices

� Consider where Event Emitters are placed in the flow
�Generally may not want any in the normal execution path

� This may produce a large number of events with little value

�Typically used on error paths
� Wired from a fail terminal or other terminal fired on application logic errors

� Can insert failure information or application information into the event

� Consider what SMO data is placed in the event
�Including the entire SMO may produce very large events
�Focus on the error or application information relevant to the event

� The Label property value should be meaningful to the event consumer
�Example: Label=OrderInfo - if event contains application data for an order

� Transaction mode = “new”
�Use if you need to ensure event gets to CEI even if the flow fails downstream

When designing your flow, there are some best practices which you can consider
regarding the use of Event Emitter primitives.

The first of these is to be judicious about where in the flow you place them. Generally
speaking, unless you have a specific application requirement, you would not want to place
an Event Emitter on the normal path of a flow. This has the potential to raise a large
number of events with potentially little value. A typical use would be to put an Event
Emitter on an error path, such as wired to a Fail terminal or some other output terminal
that represents an application error. Such an event might contain the failure information
from the SMO header or some application specific data from the body of the SMO.

Placing the entire SMO into an event may be appropriate in some instances. However, a
smaller event is generated if you can be selective about the specific data you need to see
for the situation you are reporting with the event.

Give the Label property a value which has meaning to the consumer of the event. This
might be something like OrderInfo for an event that contains application data for an order.

Finally, using a Transaction mode setting of new ensures the event gets emitted to CEI
even if there is a failure in your flow downstream from the Event Emitter.

WPIv602_EventEmitterPrimitive.ppt Page 15 of 18

IBM Software Group

15

Event emitter mediation primitive © 2007 IBM Corporation

Example

� Raise an event when failure in mediation flow
�Wire event emitter to fail terminals of primitives in flow

�Configure emitter to put failInfo into event
� This identifies the failure

� Entire SMO might be useful to help determine what caused the failure

�If interface has a fault, wire emitter to XSLT and return fault
� Otherwise wire to a Stop or Fail primitive

In this example, an Event Emitter is being used to report the occurrence of a failure in the
mediation flow. The flow contains a Message Element Setter primitive which is the only
primitive on a normal flow with no failures.

The Event Emitter is wired to the Fail terminal of the Message Element Setter. You can
see in the properties, the Root specifies that the failInfo from the context of the SMO is to
be inserted into the event, thus providing detail of why the failure occurred. If it was felt
that the application data would be helpful in this case, the entire SMO could be placed into
the event so that the failInfo and the SMO body would both be available.

Notice that in this particular flow, the Event Emitter is wired to an XSL Transformation
primitive, which transforms the input message into a fault message that can be returned
using the Input Fault node. An alternative would be to wire the Event Emitter to a Stop or
Fail primitive.

WPIv602_EventEmitterPrimitive.ppt Page 16 of 18

IBM Software Group

16

Event emitter mediation primitive © 2007 IBM Corporation

Summary

�Examined the event emitter mediation primitive

�Overview of function

�Use of terminals

�Definition of properties
�Contents of an event

�Error handling

�Best practices for usage

�Example usage

Event emitter

In summary, this presentation presented an overview of the Event Emitter mediation
primitive, along with information about the primitive’s use of terminals and its properties.
There was a section which discussed the content of an event and how a formal definition
of an event can be exported for use by monitoring applications. The error handling
characteristics were then covered along with some information regarding best practices for
the use of Event Emitters. The presentation concluded with an example usage of a Event
Emitter primitive.

WPIv602_EventEmitterPrimitive.ppt Page 17 of 18

IBM Software Group

17

Event emitter mediation primitive © 2007 IBM Corporation

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WPIv602_EventEmitterPrimitive.ppt Page 18 of 18

IBM Software Group

Event emitter mediation primitive © 2007 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or
both:

IBM WebSphere

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document
could include technical inaccuracies or typographical errors. IBM may make improvements or changes in the products or programs described herein at
any time without notice. Any statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent
goals and objectives only. References in this document to IBM products, programs, or services does not imply that IBM intends to make such products,
programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program Product in this document is
not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual
property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS"
WITHOUT ANY WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products are
warranted, if at all, according to the terms and conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty,
International Program License Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the
suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products in connection with
this publication and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights.
Inquiries regarding patent or copyright licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples
described are presented as illustrations of how those customers have used IBM products and the results they may have achieved. The actual
throughput or performance that any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's
job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user
will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2007. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA
ADP Schedule Contract and IBM Corp.

18

