
WPIv602_StopFailPrimitives.ppt Page 1 of 14

®

IBM Software Group

© 2007 IBM Corporation

Updated April 12, 2007

WebSphere ® Enterprise Service Bus V6.0.2
WebSphere Process Server V6.0.2
WebSphere Integration Developer V6.0.2

Stop and fail mediation primitives

This presentation provides a detailed look at the stop mediation primitive and the fail
mediation primitive.

WPIv602_StopFailPrimitives.ppt Page 2 of 14

IBM Software Group

2

Stop and fail mediation primitives © 2007 IBM Corporation

Goals

�Understand the stop mediation primitive
�Overview of function
�Use of terminals

�Definition of properties

�Use of stop versus unwired terminals

�Example usage

�Understand the fail mediation primitive
�Overview of function

�Use of terminals

�Definition of properties

�Example usage

Fail

Stop

The goal of this presentation is to provide you with a full understanding of the stop and fail
mediation primitives.

The presentation assumes that you are already familiar with the material presented in the
Mediation primitive common details presentation and the Common details –
Promoted properties presentation. These two presentations serve as a base for
understanding mediation primitives in general.

The stop mediation primitive is examined first. An overview of its function is provided along
with a description of the primitive’s use of terminals and properties. The behavior of wiring
an output or fail terminal to a stop primitive versus leaving the terminals unwired is
compared and contrasted. A usage example of a stop primitive is then provided.

Similarly, an overview of the fail primitive’s functionality is provided along with a
description of the primitive’s use of terminals and properties. Finally, a usage example for
a fail primitive is given.

WPIv602_StopFailPrimitives.ppt Page 3 of 14

IBM Software Group

3

Stop and fail mediation primitives © 2007 IBM Corporation

StopStop

Section

This section examines the stop mediation primitive.

WPIv602_StopFailPrimitives.ppt Page 4 of 14

IBM Software Group

4

Stop and fail mediation primitives © 2007 IBM Corporation

Stop – Function, terminals and properties

� Terminates the current path of the mediation flow
�No exception or message of any kind is generated

�There is no processing of the service message object (SMO)

�If there are other active paths, they continue

� Terminals:
�Input terminal only

�No output or fail terminals

� This primitive has no properties

The stop primitive enables you to terminate the current path of a mediation flow without
raising an exception or generating any kind of a message.

The SMO is not processed or updated in any way. If there are multiple active paths in the
mediation flow, the stop primitive only stops the path on which it is wired and the other
paths continue.

The stop primitive has an input terminal but has no output terminals or fail terminal.

The stop primitive has no properties, and therefore has no promoted properties either.

WPIv602_StopFailPrimitives.ppt Page 5 of 14

IBM Software Group

5

Stop and fail mediation primitives © 2007 IBM Corporation

Stop – Use of stop versus unwired terminals

� Output terminal – unwired versus wired to a stop
�Behavior is the same
�Terminates this active path with no exception or message

� Flow continues if there are other active paths
�Explicit use of stop is preferable

� Explicitly shows the intention to stop
� Suppresses warning messages in WebSphere Integration Developer

� Fail terminal – unwired versus wired to a stop
�Behavior is different
�Unwired - terminates the flow by throwing an exception

� Flow terminates even if there are multiple active paths
�Wired to a stop

� Suppresses the exception
� If there are multiple active paths, only this path terminates
� In most cases it is better not to suppress the exception

In this slide the behavior of a terminal wired to a stop primitive is compared to the behavior
seen when the terminal is left unwired.

The first case to consider is for an output terminal. In this case the behavior is the same if
the terminal is left unwired as opposed to being wired to a stop mediation primitive. The
active path is terminated with no exception or message. If this was the only active path,
the mediation flow ends, but if there are other active paths in the mediation, the flow
continues. The explicit use of the stop terminal is preferable because it shows the
intention to stop the flow at this point. It also suppresses warning messages about
unwired terminals from WebSphere Integration Developer.

The other case to consider is for a fail terminal, in which case the behavior is different.
When a fail terminal is left unwired, all active paths of the flow are terminated, an
exception is thrown and a log message is written. If the fail terminal is wired to a stop, the
exception is suppressed, no log messages are written and other active paths continue. In
general, wiring a stop mediation primitive to a fail terminal is not the appropriate logic for
the flow.

WPIv602_StopFailPrimitives.ppt Page 6 of 14

IBM Software Group

6

Stop and fail mediation primitives © 2007 IBM Corporation

Stop – Usage example
� Example – Filter broadcast messages
�Broadcast service dynamically filters messages that can be broadcast

�Content type identifier contained in the message

�Database used to maintain current set of legal broadcasts

�Database lookup used to validate if message can be broadcast

�Messages currently being filtered out are thrown away

� Mediation logic:
�Wire a stop to the keyNotFound terminal of the database lookup

Database Lookup to check if
message currently allowed Stop – throw away message:

broadcast not currently allowed

This slide provides a usage example for the stop mediation primitive.

The requirement is for the mediation to selectively forward broadcast messages. The
messages contain a content identifier that is used to determine if the message should be
forwarded or ignored. A database is used to contain the content identifiers for messages
that currently should be broadcast and the database is updated to add or delete message
identifiers as the broadcast needs vary. The mediation flow is composed of a Database
Lookup mediation primitive, which takes the content identifier from the message and uses
it as a key for the lookup. If the lookup is successful, the flow continues through the out
terminal which is wired to the callout for the broadcast service. If the lookup is not
successful, the keyNotFound output terminal is wired to a stop mediation primitive, which
essentially causes the message to be discarded.

WPIv602_StopFailPrimitives.ppt Page 7 of 14

IBM Software Group

7

Stop and fail mediation primitives © 2007 IBM Corporation

FailFail

Section

This section examines the fail mediation primitive.

WPIv602_StopFailPrimitives.ppt Page 8 of 14

IBM Software Group

8

Stop and fail mediation primitives © 2007 IBM Corporation

Fail – Function and terminals

� Terminates mediation flow by raising an exception
�Allows you to raise an exception at any point in the flow

�FailFlowException raised containing user defined text

�There is no processing of the SMO

�Enables creation of exceptions based on business logic

�All active paths through the flow are terminated

� Terminals:
�Input terminal only

�No output or fail terminals

The fail mediation primitive enables you to terminate a mediation flow by throwing an
exception. This allows you to create exceptions based on business logic errors within the
flow. The exception thrown is a FailFlowException, which contains a text string that you
provide describing the error condition. The SMO is not processed or updated in any way
by the fail primitive. If there are multiple active paths in the mediation flow, the fail
primitive causes them all to be stopped.

The fail mediation primitive has an input terminal, but has no output terminals or fail
terminal.

WPIv602_StopFailPrimitives.ppt Page 9 of 14

IBM Software Group

9

Stop and fail mediation primitives © 2007 IBM Corporation

Fail – Properties and promoted properties

� Properties:
�Error message

� Text string that is placed into the exception
� String is fixed – variable data cannot be inserted

� Promotable
�Error message

The fail primitive has only one property, called Error message. It contains a static text
string which is used to describe the error condition that has been encountered. This is
placed into the FailFlowException that is raised.

The Error message property is promotable as shown in the lower screen capture.

WPIv602_StopFailPrimitives.ppt Page 10 of 14

IBM Software Group

10

Stop and fail mediation primitives © 2007 IBM Corporation

Fail – Usage example
� Example – Account number based message augmentation
�Mediation flow input operation contains only customer number

�Operation on target service callout requires customer name and number
�Database lookup used to obtain customer name

�It is an error when no customer record is found

� Mediation logic:
�Database lookup uses account number to access customer record

�When customer record found, use XSLT to transform message

�When customer record not found, use fail primitive to raise exception

Lookup customer name in database

If customer exists, transform format of message bod y

Fail – customer not found

This slide shows a usage example of the fail mediation primitive.

The scenario is one where the mediation needs to add additional information to the
message and it is an error condition when the additional information is unavailable. The
request message contains only a customer number, but the target service provider’s
interface requires both the customer number and customer name. A Database Lookup
primitive is used to obtain the customer’s name based on the customer number. In the
case where the customer number is not found in the database, it is considered an error.

The mediation flow is shown at the bottom of the slide. The input node is wired to a
Database Lookup, which obtains the customer name from the database. If the lookup
succeeds, the out terminal is wired to an XSLT primitive used to modify the message
body. The modified message is then passed on to the callout node for the service
provider. In the case where the lookup fails, the flow goes through the keyNotFound
output terminal, which is wired to a fail primitive. The fail primitive throws an exception
indicating that the customer record was not found.

WPIv602_StopFailPrimitives.ppt Page 11 of 14

IBM Software Group

11

Stop and fail mediation primitives © 2007 IBM Corporation

SummarySummary

Section

The following slide presents a summary of this presentation.

WPIv602_StopFailPrimitives.ppt Page 12 of 14

IBM Software Group

12

Stop and fail mediation primitives © 2007 IBM Corporation

Summary

�Examined the stop mediation primitive
�Overview of function
�Use of terminals

�Definition of properties

�Use of stop versus unwired terminals

�Example usage

�Examined the fail mediation primitive
�Overview of function

�Use of terminals

�Definition of properties

�Example usage

Fail

Stop

In this presentation, details were provided regarding both the stop and fail mediation
primitives. First, the stop mediation primitive was examined, providing an overview of its
function, a description of the primitive’s use of terminals and its properties. The behavior of
the stop primitive as opposed to leaving terminals unwired was contrasted. A usage
example of a stop mediation primitive was given. Similarly, an overview of the fail
mediation primitive was provided, along with its use of terminals, its properties and a
usage example.

WPIv602_StopFailPrimitives.ppt Page 13 of 14

IBM Software Group

13

Stop and fail mediation primitives © 2007 IBM Corporation

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WPIv602_StopFailPrimitives.ppt Page 14 of 14

IBM Software Group

Stop and fail mediation primitives © 2007 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or
both:

IBM WebSphere

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document
could include technical inaccuracies or typographical errors. IBM may make improvements or changes in the products or programs described herein at
any time without notice. Any statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent
goals and objectives only. References in this document to IBM products, programs, or services does not imply that IBM intends to make such products,
programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program Product in this document is
not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual
property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS"
WITHOUT ANY WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products are
warranted, if at all, according to the terms and conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty,
International Program License Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the
suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products in connection with
this publication and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights.
Inquiries regarding patent or copyright licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples
described are presented as illustrations of how those customers have used IBM products and the results they may have achieved. The actual
throughput or performance that any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's
job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user
will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2007. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA
ADP Schedule Contract and IBM Corp.

