
WPSWIDv602_SCAToolsAndExamples.ppt Page 1 of 23

®

IBM Software Group

© 2007 IBM Corporation

Updated April 4, 2007

Service Component Architecture (SCA) tools
and examples

WebSphere ® Process Server V6.0.2
WebSphere Enterprise Service Bus V6.0.2
WebSphere Integration Developer V6.0.2

This presentation will cover tools and provide examples for Service Component
Architecture (SCA).

WPSWIDv602_SCAToolsAndExamples.ppt Page 2 of 23

IBM Software Group

2

SCA tools and examples © 2007 IBM Corporation

Goals

� Introduce tools support for assembling SCA
modules

�Provide a simple example of an SCA-based
application

The goals of this presentation are to introduce tools support for Service Component
Architecture provided in WebSphere Integration Developer version 6 and provide a simple
example of an SCA-based application.

WPSWIDv602_SCAToolsAndExamples.ppt Page 3 of 23

IBM Software Group

3

SCA tools and examples © 2007 IBM Corporation

Agenda

� Tools support

�Example

�Summary and references

This section will provide an overview of the tools support for building SCA applications.

WPSWIDv602_SCAToolsAndExamples.ppt Page 4 of 23

IBM Software Group

4

SCA tools and examples © 2007 IBM Corporation

Module assembly in Integration Developer V6

WebSphere Integration Developer provides first class tools support for building SCA based applications
targeted for WebSphere Process Server. The primary tool for defining and assembling SCA artifacts is the
Assembly Editor. This editor allows developers to visually build SCA elements such as service components,
exports, imports, and stand-alone references in addition to wire together components to build a composite
application. For each element that is visually created using the assembly editor, Integration Developer tools
take care of generating the appropriate Service Component Definition Language (SCDL) for each component
behind the scenes.

When using the assembly editor there are several development approaches. First, you can build your SCA
application using a top-down development model. In this case you can use the assembly editor to diagram
and model your application before there is any backing business logic created. Once components are added
to the assembly diagram in the editor, you can assign interfaces and even create new interface definitions for
each component from within the editor. Once the SCA components are defined with their interfaces and
references, you generate skeleton implementations from them, and edit the implementations to add your
business logic.

In the "Bottom up" development model, you start by defining your business logic by implementing BPEL
processes, business state machines, business rules, and human tasks. Then, you create the SCA artifacts
for these implementations by dragging them and dropping them onto the assembly diagram. As part of this
process, the appropriate interfaces and references are automatically added to the artifacts. You complete
the assembly by wiring the SCA elements together.

Finally, in the "Meet in the middle" development model, you define the elements in the assembly diagram
and their implementations in parallel. As with the "top down" approach, you create the assembly diagram in
the assembly editor. But unlike the "top down" approach, you do not generate implementations from the
elements in the diagram. Instead, you select the appropriate implementation that you created in parallel.
Know that the parallel activities, creating the diagram and creating their implementations, are not done in
isolation. You must know the interfaces and references for each element in order to create its
implementation, and vice versa. The point is that you do not have to wait for one activity to finish before you
begin with the other.

WPSWIDv602_SCAToolsAndExamples.ppt Page 5 of 23

IBM Software Group

5

SCA tools and examples © 2007 IBM Corporation

Assembly editor: Getting started

Assembly diagram

Canvas

Palette

Components
Import, Export, Stand-alone Reference
Interface Map and Selector
Wire tool

Add
interface

Add
reference

Shows
implementation

type
Reference

Each module project in WebSphere Integration Developer has one assembly diagram
associated with the SCA project. The assembly diagram for a module is found in the
Business Integration view directly under the project folder, and is given the same name as
the module project. To open the assembly diagram in the assembly editor, double click on
the assembly diagram icon in the business integration view.

On the left of the assembly editor is a palette that allows you to add various SCA artifacts
to the assembly diagram and wire them together to build a composite application. The
canvas area of the assembly diagram shows the various components that make up the
SCA application in the module project. Much of your assembly work can be done from
right within the assembly diagram using the palette, action bar, and context menus. In
addition to this, the Properties view is also an important part of building your assembly
diagram. The Properties view is tightly associated with the assembly diagram, and
enables typical and advanced service component configuration activities.

WPSWIDv602_SCAToolsAndExamples.ppt Page 6 of 23

IBM Software Group

6

SCA tools and examples © 2007 IBM Corporation

Assembly diagram: Properties

�Use the properties view to
configure selected component
in the assembly diagram

Description tab

Details tab

Implementation
tab

Like most editors, the assembly editor is tightly integrated with the properties view. When
a particular component is selected in the assembly editor, the corresponding properties for
that component are available for viewing and editing in the Properties view. For service
components there are three tabs that are displayed in the properties view:

Description tab – Is used to view and edit general properties about the service component.

Details tab – Is used to view and edit interfaces and references associated with the service
component. Note that there is also the ability from this tab to set qualifiers for interface
and reference scopes.

Implementation tab – Is used to view and edit configuration associated with the particular
implementation type for the selected component. Implementation level qualifiers are also
set from this tab.

The properties view of import and export components are similar to service components,
with the exception of the Implementation tab. For import and export elements you do not
have an implementation tab, rather this tab is replaced with a Bindings tab that allows you
to configure information that is specific to the type of binding for that element.

WPSWIDv602_SCAToolsAndExamples.ppt Page 7 of 23

IBM Software Group

7

SCA tools and examples © 2007 IBM Corporation

Assembly diagram: Adding elements

� Add export from palette or context menu of assembly diagram

� Select a component in assembly diagram and choose “Export…”
from the context menu

� Drop an interface from module or library project onto assembly
diagram and select “Export with… ”

Export

� Add import from palette or context menu of assembly diagram

� Drop an export from another module onto assembly diagram

� Drop an interface from module or library project onto assembly
diagram and select “Import with… ”

Import

� Add component from palette or context menu of assembly diagram

� Drop an interface from module or library project onto assembly
diagram and select “Component with no implementation type ”

� Drop an implementation onto assembly diagram

Service
Component

Add OptionsType

The table on this slide lists the various ways developers can add components, imports,
and exports to the assembly diagram. In all cases, these elements can be added to the
assembly diagram using the palette from the assembly diagram editor or by dropping the
appropriate interface onto the assembly diagram and selecting the appropriate component
type from a dialog box. Typically the method the you will use for adding components to
the assembly diagram will depend on whether he/she is using a top-down or bottom-up
development approach.

WPSWIDv602_SCAToolsAndExamples.ppt Page 8 of 23

IBM Software Group

8

SCA tools and examples © 2007 IBM Corporation

Assembly diagram: Interfaces

� Interfaces can be added
�Before wiring to a target component

� Action bar

� Properties view or context menu

�By dropping an interface or
implementation on the assembly
diagram

�Automatically during wiring to a target
component

Add wire

Preference

Once a component has been added to the assembly diagram, you may need to add one or
more interfaces to the component definition. Interfaces may be added to the component
definition explicitly using the appropriate action bar icon, from within the properties view, or
from the context menu. However, interfaces can also be added to a service component
automatically when you take a particular action. For example, if an interface or
implementation is dropped onto the assembly diagram from the physical resources or
business integration view, that interface will be added to the service component defined by
this action. Likewise, an interface definition can automatically be added to a service
component definition when an attempt is made to wire a reference with a particular
interface to a component that does not include that interface definition. In this case,
WebSphere Integration Developer prompts you to find out if they want to have an interface
automatically created on the target service component.

WPSWIDv602_SCAToolsAndExamples.ppt Page 9 of 23

IBM Software Group

9

SCA tools and examples © 2007 IBM Corporation

Assembly diagram: References

� References can be added
�Before wiring to a target component

� Action bar

� Properties view or context menu

�Automatically during wiring to a
target component

Add wire

Reference
name

Preference

Like interfaces associated with a component, references on a service component definition
can be added in several different ways. References can be added explicitly from the
action bar that appears above a service component in the assembly diagram. Likewise,
you can also use the properties view or context menu for a service component to add a
reference. Another approach is to allow the assembly editor tools to add the reference
automatically when wiring together two components when the caller does not already have
a reference to the target component. In this case, the assembly editor will prompt you
indicating that a reference will be added to the source node. This prompt can be disabled
by selecting the assembly editor preference to always create a reference without
prompting.

WPSWIDv602_SCAToolsAndExamples.ppt Page 10 of 23

IBM Software Group

10

SCA tools and examples © 2007 IBM Corporation

Assembly diagram: References (cont.)

� Java-to-WSDL references
�Allows stand-alone references or Java™ service

components to access components with WSDL interfaces
� Client can now use type safe invocation rather than dynamic

Java Interface Type WSDL Interface

Add wire

Preferences

The assembly editor also provides a feature that converts WSDL interface references to a
Java interface on a reference definition. This allows stand-alone references or Java
service components to access target components with a WSDL interfaces using a strongly
typed Java interface rather than the dynamic invocation approach. When wiring together a
stand-alone reference or a Java service component with a interface that has a WSDL port
type interface, the tools will prompt you about whether or not to convert the reference to a
Java interface. Selecting ‘Yes’ causes the tools to generate a Java interface based upon
the target WSDL interface. By selecting the ‘Remember my decision…’ check box, you
can automatically set a preference to have the tools always covert the WSDL reference to
Java reference or to never perform this conversion.

WPSWIDv602_SCAToolsAndExamples.ppt Page 11 of 23

IBM Software Group

11

SCA tools and examples © 2007 IBM Corporation

Assembly diagram: Wires

�Components can be wired together by the
�Wiring tool from palette

�Wiring handle

�Context menu option

� The properties view can display important
information about a wire

Click on the wire
and go to the
Properties view

There are several ways components can be wired together. First a wire can be created
between two components by using the wiring tool from the palette. There is also a yellow
wiring handle that appears, when an item is selected, on the side of a service component
or reference. This wiring handle can be selected and pulled over to the target component
to create a wire. Finally, there are several context menu options available for creating
wires between components. By selecting a wire and going to the properties view you can
view some important information about the wire definition. Specifically, you can determine
the reference name which is needed to locate a service from the ServiceManager with the
client programming model. You can also view the reference name by explicitly selecting
the reference in the assembly diagram and viewing the properties view or the hover help.

WPSWIDv602_SCAToolsAndExamples.ppt Page 12 of 23

IBM Software Group

12

SCA tools and examples © 2007 IBM Corporation

Assembly diagram: Selecting implementation

�Creating a new implementation

�Select an existing implementation
�Context menu for component in

assembly diagram

�Drop existing implementation onto
assembly diagram

Select type if
not specified

Select type if
not specified

Component with no
implementation

Service components in an SCA module will all ultimately have an implementation type
associated with them. There are several ways to indicate this implementation type for a
component. The first way to do this is by dropping a component of a particular type, such
as Java, Process, or Human Task from the palette and onto the canvas of the assembly
editor. However, if you have a generic component with no implementation type on the
assembly diagram, you can use the context menu options to either generate a new
implementation and select the type, or by selecting an existing implementation. You can
select an existing implementation by using the context menu option or by dropping an
existing implementation, from the Physical Resources view for example, onto the
assembly diagram.

WPSWIDv602_SCAToolsAndExamples.ppt Page 13 of 23

IBM Software Group

13

SCA tools and examples © 2007 IBM Corporation

Agenda

� Tools support

�Example

�Summary and references

This section will provide several examples that highlight the SCA client programming
model.

WPSWIDv602_SCAToolsAndExamples.ppt Page 14 of 23

IBM Software Group

14

SCA tools and examples © 2007 IBM Corporation

Example: HelloWorld

The diagram on this slide provides an overview of the example used to highlight the SCA
programming model in the next several slides. In this example, there is a HelloWorld
module that contains a simple service component that has a WSDL port type interface and
a Java implementation. This service component does not have any references to other
service components. Also included in the module is a stand-alone reference that is used
by a client JSP to invoke the simple HelloWorld Service component.

WPSWIDv602_SCAToolsAndExamples.ppt Page 15 of 23

IBM Software Group

15

SCA tools and examples © 2007 IBM Corporation

Example: HelloWorld assembly definitions

<scdl:component displayName="HelloWorld" name=“Hell oWorld" ...>
<interfaces>

<interface xsi:type="wsdl:WSDLPortType”
portType="ns1:HelloWorldInterface">

<method name="sendMessage"/>
</interface>

</interfaces>
<implementation xsi:type="java:JavaImplementation”

class = “sample.HelloWorldImpl”/>
</scdl:component>

<scdl:references ... >
<reference name="HelloWorldInterfacePartner">

<interface xsi:type="wsdl:WSDLPortType"
portType="ns1:HelloWorldInterface"/>

<wire target=“HelloWorld”/>
</reference>

</scdl:references>

HelloWorld.component

sca.references

Standalone
Reference

HelloWorld
Component

As a brief introduction to the Service Component Definition Language (SCDL), this slide
provides an overview of the HelloWorld component definition, in addition to the stand-
alone reference definition. Note that for the HelloWorld component the interface type is
WSDL port type, and that the implemenation type is Java. Notice the reference name in
the stand-alone reference definition because this name is needed later in this example to
pass to the ServiceManager to look up the HelloWorld service. Also note in the stand-
alone reference the wire definition that has a target that points to the HelloWorld
component.

WPSWIDv602_SCAToolsAndExamples.ppt Page 16 of 23

IBM Software Group

16

SCA tools and examples © 2007 IBM Corporation

Example: HelloWorld implementation details

HelloWorldImpl.java

public class HelloWorldImpl {
public String sendMessage(String message) {

return "The following message was submitted: " + message;
}

}

HelloWorldInterface.wsdl

Implementation

In the example presented so far, the HelloWorldInterface associated with the HelloWorld
component is defined using a WSDL port type interface. That interface definition is
highlighted on this slide, along with the Java class used to implement the service
component.

WPSWIDv602_SCAToolsAndExamples.ppt Page 17 of 23

IBM Software Group

17

SCA tools and examples © 2007 IBM Corporation

Example: HelloWorld client implementation

index.jsp (Client Programming Model)

try {
ServiceManager serviceManager = new ServiceManager();
Service service = (Service)

serviceManager.locateService("HelloWorldInterfacePartner");

String theMessage = request.getParameter("message");
DataObject resp = (DataObject) service.invoke("sendMessage", theMessage);
if (resp != null) {

out.println("<p>" + resp.getString("status") + "</p>");
}

} catch (Exception e) {
System.out.println(e);

}

Reference
Name

Invoke the
“sendMessage”

service
Get status String from
returned DataObject

This slide highlights the client code needed to invoke the HelloWorld service component
from within a client JSP. The first step is to use the ServiceManager to locate the
HelloWorld service. This is done with the locateService method and passing in the
reference name for the stand-alone reference that is wired to the HelloWorld service
component. The next step is to call the invoke method to invoke the sendMessage
operation on the HelloWorld interface. Finally the response from invoking the service can
be displayed to you.

WPSWIDv602_SCAToolsAndExamples.ppt Page 18 of 23

IBM Software Group

18

SCA tools and examples © 2007 IBM Corporation

Example: HelloWorld artifacts

Implementation of
HelloWorldInterface

Definition of HelloWorld
service component

Stand-alone
reference
definition

HelloWorld
module

definition

HelloWorldInterface
WSDL definition

The Physical Resources view in WebSphere Integration Developer is a useful view for
looking at all of the resources that make up an SCA module. These resources can be
particularly useful when debugging an application or just learning more about the definition
language used to define SCA components.

WPSWIDv602_SCAToolsAndExamples.ppt Page 19 of 23

IBM Software Group

19

SCA tools and examples © 2007 IBM Corporation

Agenda

� Tools support

�Example

�Summary and references

This section will provide a summary of SCA.

WPSWIDv602_SCAToolsAndExamples.ppt Page 20 of 23

IBM Software Group

20

SCA tools and examples © 2007 IBM Corporation

Summary

�SCA is the fundamental component model for
WebSphere Process Server V6
�Programming model the Service Oriented Architecture

solution

�SCA helps separate business logic from
implementation
�Focus is on assembling solutions rather than

implementation details

�Mitigates need for integration developers to have deep
knowledge of Java or J2EE

�Aimed at helping J2EE developers become more
productive

SCA is the fundamental component model for WebSphere Process Server V6 and
provides the basis of the service oriented architecture solution. SCA helps separate
business logic from implementation and allows developers to focus on assembling
solutions rather than implementation details.

WPSWIDv602_SCAToolsAndExamples.ppt Page 21 of 23

IBM Software Group

21

SCA tools and examples © 2007 IBM Corporation

References

�Service data objects (SDO)
�http://www-128.ibm.com/developerworks/library/j-commonj-sdowmt/

�http://www-106.ibm.com/developerworks/java/library/j-sdo/

WPSWIDv602_SCAToolsAndExamples.ppt Page 22 of 23

IBM Software Group

22

SCA tools and examples © 2007 IBM Corporation

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WPSWIDv602_SCAToolsAndExamples.ppt Page 23 of 23

IBM Software Group

SCA tools and examples © 2007 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM WebSphere

J2EE, Java, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include
technical inaccuracies or typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any
statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this
document to IBM products, programs, or services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM
operates or does business. Any reference to an IBM Program Product in this document is not intended to state or imply that only that program product may be used.
Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY
WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and
conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License Agreement, etc.) under which
they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly
available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other
claims related to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding
patent or copyright licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented
as illustrations of how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will
experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration,
and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements equivalent to the
ratios stated here.

© Copyright International Business Machines Corporation 2007. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule
Contract and IBM Corp.

23

