
WPSWIDv6_SCAToolsAndExamples.ppt Page 1 of 24

®

IBM Software Group

© 2005 IBM Corporation

Updated November 2, 2005

WebSphere® Process Server V6.0
WebSphere® Integration Developer V6.0
Service Component Architecture (SCA) Tools
and Examples

This presentation will cover tools and provide examples for Service Component
Architecture (SCA).

WPSWIDv6_SCAToolsAndExamples.ppt Page 2 of 24

IBM Software Group

2

Service Component Architecture (SCA) Tools and Examples © 2005 IBM Corporation

Goals

� Introduce tools support for assembling SCA
modules

�Provide a simple example of an SCA-based
application

The goals of this presentation are to introduce tools support for Service Component
Architecture (SCA) provided in WebSphere Integration Developer V6.0 and provide a
simple example of an SCA-based application.

WPSWIDv6_SCAToolsAndExamples.ppt Page 3 of 24

IBM Software Group

3

Service Component Architecture (SCA) Tools and Examples © 2005 IBM Corporation

Agenda

�Tools Support

�Example

�Summary and References

This section will provide an overview of the tools support for building SCA applications.

WPSWIDv6_SCAToolsAndExamples.ppt Page 4 of 24

IBM Software Group

4

Service Component Architecture (SCA) Tools and Examples © 2005 IBM Corporation

Module Assembly in Integration Developer V6

�Assembly Editor

�Primary tool for composing SCA-based applications

�Visual tool for specifying
� Service components

– Interfaces, implementation type, and references

� Stand-alone references

� Exports

� Imports

� Wires connecting component references with the appropriate target service

� Several development approaches are supported
� Top down

� Bottom up

� Meet in the middle

WebSphere Integration Developer V6.0 provides first class tools support for building SCA based applications targeted
for WebSphere Process Server V6.0. The primary tool for defining and assembling SCA artifacts is the Assembly Editor.
This editor allows developers to visually build SCA elements such as service components, exports, imports, and stand-
alone references as well as wire together components to build a composite application. For each element that is visually
created using the assembly editor, Integration Developer tools take care of generating the appropriate SCDL definitions
for each component behind the scenes.

When using the assembly editor there are several development approaches. First, you can build your SCA application
using a top-down development model. In this case you can use the assembly editor to diagram and model your
application before there is any backing business logic created. Once components are added to the assembly diagram in
the editor, you can assign interfaces and even create new interface definitions for each component from within the
editor. Once the SCA components are defined with their interfaces and references, you generate skeleton
implementations from them, and edit the implementations to add your business logic.

In the "Bottom up" development model, you start by defining your business logic by implementing BPEL processes,
business state machines, business rules, and human tasks. Then, you create the SCA artifacts for these
implementations by dragging them and dropping them onto the assembly diagram. As part of this process, the
appropriate interfaces and references are automatically added to the artifacts. You complete the assembly by wiring the
SCA elements together.

Finally, in the "Meet in the middle" development model, you define the elements in the assembly diagram and their
implementations in parallel. As with the "top down" approach, you create the assembly diagram in the assembly editor.
But unlike the "top down" approach, you do not generate implementations from the elements in the diagram. Instead,
you select the appropriate implementation that you created in parallel. The developer should know that the parallel
activities, creating the diagram and creating their implementations, are not done in isolation. You must know the
interfaces and references for each element in order to create its implementation, and vice versa. The point is that you
do not have to wait for one activity to finish before you begin with the other.

WPSWIDv6_SCAToolsAndExamples.ppt Page 5 of 24

IBM Software Group

5

Service Component Architecture (SCA) Tools and Examples © 2005 IBM Corporation

Assembly Editor: Getting Started

Assembly diagram

Canvas

Palette

Components

Import, Export, Stand-alone Reference

Interface Map and Selector
Wire tool

Add
interface

Add
reference

Shows
implementation

type
Reference

Each module project in WebSphere Integration Developer V6.0 has one assembly
diagram associated with the SCA project. The assembly diagram for a module is found in
the Business Integration view directly under the project folder, and is given the same name

as the module project. To open the assembly diagram in the assembly editor, double click
on the assembly diagram icon in the business integration view.

On the left of the assembly editor is a palette that allows you to add various SCA artifacts
to the assembly diagram and wire them together to build a composite application. The

canvas area of the assembly diagram shows the various components that make up the
SCA application in the module project. Much of your assembly work can be done from

right within the assembly diagram using the palette, action bar, and context menus. In

addition to this, the Properties view is also an important part of building your assembly

diagram. The Properties view is tightly associated with the assembly diagram, and
enables typical and advanced service component configuration activities.

WPSWIDv6_SCAToolsAndExamples.ppt Page 6 of 24

IBM Software Group

6

Service Component Architecture (SCA) Tools and Examples © 2005 IBM Corporation

Assembly Diagram: Properties

�Use the properties view to
configure selected component
in the assembly diagram

Description tab

Details tab

Implementation
tab

Like most editors, the assembly editor is tightly integrated with the properties view. When
a particular component is selected in the assembly editor, the corresponding properties for
that component are available for viewing and editing in the Properties view. For service

components there are three tabs that are displayed in the properties view:

Description tab – Is used to view and edit general properties about the service component.

Details tab – Is used to view and edit interfaces and references associated with the service

component. Note that there is also the ability from this tab to set qualifiers for interface

and reference scopes.

Implementation tab – Is used to view and edit configuration associated with the particular

implementation type for the selected component. Implementation level qualifiers are also

set from this tab.

The properties view of import and export components are similar to service components,
with the exception of the Implementation tab. For import and export elements you do not

have an implementation tab, rather this tab is replaced with a Bindings tab that allows the

developer to configure information that is specific to the type of binding for that element.

WPSWIDv6_SCAToolsAndExamples.ppt Page 7 of 24

IBM Software Group

7

Service Component Architecture (SCA) Tools and Examples © 2005 IBM Corporation

Assembly Diagram: Adding Elements

� Add export from palette or context menu of assembly diagram

� Select a component in assembly diagram and choose “Export…”

from the context menu

� Drop an interface from module or library project onto assembly

diagram and select “Export with…”

Export

� Add import from palette or context menu of assembly diagram

� Drop an export from another module onto assembly diagram

� Drop an interface from module or library project onto assembly

diagram and select “Import with…”

Import

� Add component from palette or context menu of assembly diagram

� Drop an interface from module or library project onto assembly

diagram and select “Component with no implementation type”

� Drop an implementation onto assembly diagram

Service

Component

Add OptionsType

The table on this slide lists the various ways developers can add components, imports,
and exports to the assembly diagram. In all cases, these elements can be added to the
assembly diagram using the palette from the assembly diagram editor or by dropping the

appropriate interface onto the assembly diagram and selecting the appropriate component
type from a dialog box. Typically the method the developer uses for adding components
to the assembly diagram will depend on whether he/she is using a top-down or bottom-up

development approach.

WPSWIDv6_SCAToolsAndExamples.ppt Page 8 of 24

IBM Software Group

8

Service Component Architecture (SCA) Tools and Examples © 2005 IBM Corporation

Assembly Diagram: Interfaces

� Interfaces can be added

�Before wiring to a target component

� Action bar

� Properties view or context menu

�By dropping an interface or

implementation on the assembly

diagram

�Automatically during wiring to a target

component

Add wire

Preference

Once a component has been added to the assembly diagram, the developer may need to
add one or more interfaces to the component definition. Interfaces may be added to the
component definition explicitly using the appropriate action bar icon, from within the

properties view, or from the context menu. However, interfaces can also be added to a
service component automatically when the developer takes a particular action. For
example, if an interface or implementation is dropped onto the assembly diagram from the

physical resources or business integration view, that interface will be added to the service
component defined by this action. Likewise, an interface definition can automatically be
added to a service component definition when an attempt is made to wire a reference with
a particular interface to a component that does not include that interface definition. In this

case, WebSphere Integration Developer V6.0 prompts the user to find out if they want to

have an interface automatically created on the target service component.

WPSWIDv6_SCAToolsAndExamples.ppt Page 9 of 24

IBM Software Group

9

Service Component Architecture (SCA) Tools and Examples © 2005 IBM Corporation

Assembly Diagram: References

� References can be added

�Before wiring to a target component

� Action bar

� Properties view or context menu

�Automatically during wiring to a

target component

Add wire

Reference
name

Preference

Like interfaces associated with a component, references on a service component definition
can be added in several different ways. References can be added explicitly from the
action bar that appears above a service component in the assembly diagram. Likewise,

you can also use the properties view or context menu for a service component to add a
reference. Another approach is to allow the assembly editor tools to add the reference
automatically when wiring together two components when the caller does not already have

a reference to the target component. In this case, the assembly editor will prompt the
developer indicating that a reference will be added to the source node. This prompt can
be disabled by selecting the assembly editor preference to always create a reference
without prompting.

WPSWIDv6_SCAToolsAndExamples.ppt Page 10 of 24

IBM Software Group

10

Service Component Architecture (SCA) Tools and Examples © 2005 IBM Corporation

Assembly Diagram: References (Continued)

� Java-to-WSDL references

�Allows stand-alone references or Java™ service
components to access components with WSDL interfaces

� Client can now use type safe invocation rather than dynamic

Java Interface Type WSDL Interface

Add wire

Preferences

The assembly editor also provides a feature that converts WSDL interface references to a
Java interface on a reference definition. This allows stand-alone references or Java
service components to access target components with a WSDL interfaces using a strongly

typed Java interface rather than the dynamic invocation approach. When wiring together a
stand-alone reference or a Java service component with a interface that has a WSDL port
type interface, the tools will prompt the user about whether or not to convert the reference

to a Java interface. Selecting ‘Yes’ causes the tools to generate a Java interface based
upon the target WSDL interface. By selecting the ‘Remember my decision…’ check box,
the developer can automatically set a preference to have the tools always covert the
WSDL reference to Java reference or to never perform this conversion.

WPSWIDv6_SCAToolsAndExamples.ppt Page 11 of 24

IBM Software Group

11

Service Component Architecture (SCA) Tools and Examples © 2005 IBM Corporation

Assembly Diagram: Wires

�Components can be wired together by the

�Wiring tool from palette

�Wiring handle

�Context menu option

�The properties view can display important
information about a wire

Click on the wire
and go to the
Properties view

There are several ways components can be wired together. First a wire can be created
between two components by using the wiring tool from the palette. There is also a yellow
wiring handle that appears, when an item is selected, on the side of a service component

or reference. This wiring handle can be selected and pulled over to the target component
to create a wire. Finally, there are several context menu options available for creating
wires between components. By selecting a wire and going to the properties view you can

view some important information about the wire definition. Specifically, you can determine
the reference name which is needed to locate a service from the ServiceManager with the
client programming model. You can also view the reference name by explicitly selecting
the reference in the assembly diagram and viewing the properties view or the hover help.

WPSWIDv6_SCAToolsAndExamples.ppt Page 12 of 24

IBM Software Group

12

Service Component Architecture (SCA) Tools and Examples © 2005 IBM Corporation

Assembly Diagram: Selecting Implementation

�Creating a new implementation

�Select an existing implementation

�Context menu for component in
assembly diagram

�Drop existing implementation onto
assembly diagram

Select type if
not specified

Select type if
not specified

Component with no
implementation

Service components in an SCA module will all ultimately have an implementation type
associated with them. There are several ways to indicate this implementation type for a
component. The first way to do this is by dropping a component of a particular type, such

as Java, Process, or Human Task from the palette and onto the canvas of the assembly
editor. However, if you have a generic component with no implementation type on the
assembly diagram, you can use the context menu options to either generate a new

implementation and select the type, or by selecting an existing implementation. You can
select an existing implementation by using the context menu option or by dropping an
existing implementation, from the Physical Resources view for example, onto the
assembly diagram.

WPSWIDv6_SCAToolsAndExamples.ppt Page 13 of 24

IBM Software Group

13

Service Component Architecture (SCA) Tools and Examples © 2005 IBM Corporation

Agenda

�Tools Support

�Example

�Summary and References

This section will provide several examples that highlight the SCA client programming
model.

WPSWIDv6_SCAToolsAndExamples.ppt Page 14 of 24

IBM Software Group

14

Service Component Architecture (SCA) Tools and Examples © 2005 IBM Corporation

Example: HelloWorld

The diagram on this slide provides an overview of the example used to highlight the SCA
programming model in the next several slides. In this example, there is a HelloWorld
module that contains a simple service component that has a WSDL port type interface and

a Java implementation. This service component does not have any references to other
service components. Also included in the module is a stand-alone reference that is used
by a client JSP to invoke the simple HelloWorld Service component.

WPSWIDv6_SCAToolsAndExamples.ppt Page 15 of 24

IBM Software Group

15

Service Component Architecture (SCA) Tools and Examples © 2005 IBM Corporation

Example: HelloWorld Assembly Definitions

<scdl:component displayName="HelloWorld" name=“HelloWorld" ...>

<interfaces>

<interface xsi:type="wsdl:WSDLPortType”

portType="ns1:HelloWorldInterface">

<method name="sendMessage"/>

</interface>

</interfaces>

<implementation xsi:type="java:JavaImplementation”

class = “sample.HelloWorldImpl”/>

</scdl:component>

<scdl:references ... >

<reference name="HelloWorldInterfacePartner">

<interface xsi:type="wsdl:WSDLPortType"

portType="ns1:HelloWorldInterface"/>

<wire target=“HelloWorld”/>

</reference>

</scdl:references>

HelloWorld.component

sca.references

Standalone
Reference

HelloWorld
Component

As a brief introduction to the Service Component Definition Language (SCDL), this slide
provides an overview of the HelloWorld component definition, as well as the stand-alone
reference definition. Note that for the HelloWorld component the interface type is WSDL

port type, and that the implemenation type is Java. Notice the reference name in the
stand-alone reference definition because this name is needed later in this example to pass
to the ServiceManager to look up the HelloWorld service. Also note in the stand-alone

reference the wire definition that has a target that points to the HelloWorld component.

WPSWIDv6_SCAToolsAndExamples.ppt Page 16 of 24

IBM Software Group

16

Service Component Architecture (SCA) Tools and Examples © 2005 IBM Corporation

Example: HelloWorld Implementation Details

HelloWorldImpl.java

public class HelloWorldImpl {
public String sendMessage(String message) {

return "The following message was submitted: " + message;
}

}

HelloWorldInterface.wsdl

Implementation

In the example presented so far, the HelloWorldInterface associated with the HelloWorld
component is defined using a WSDL port type interface. That interface definition is
highlighted on this slide, along with the Java class used to implement the service

component.

WPSWIDv6_SCAToolsAndExamples.ppt Page 17 of 24

IBM Software Group

17

Service Component Architecture (SCA) Tools and Examples © 2005 IBM Corporation

Example: HelloWorld Client Implementation

index.jsp (Client Programming Model)

try {
ServiceManager serviceManager = new ServiceManager();
Service service = (Service)

serviceManager.locateService("HelloWorldInterfacePartner");

String theMessage = request.getParameter("message");
DataObject resp = (DataObject) service.invoke("sendMessage", theMessage);
if (resp != null) {

out.println("<p>" + resp.getString("status") + "</p>");
}

} catch (Exception e) {
System.out.println(e);

}

Reference
Name

Invoke the
“sendMessage”

service
Get status String from
returned DataObject

This slide highlights the client code needed to invoke the HelloWorld service component
from within a client JSP. The first step is to use the ServiceManager to locate the
HelloWorld service. This is done with the locateService method and passing in the

reference name for the stand-alone reference that is wired to the HelloWorld service
component. The next step is to call the invoke method to invoke the sendMessage
operation on the HelloWorld interface. Finally the response from invoking the service can

be displayed to the user.

WPSWIDv6_SCAToolsAndExamples.ppt Page 18 of 24

IBM Software Group

18

Service Component Architecture (SCA) Tools and Examples © 2005 IBM Corporation

Example: HelloWorld Artifacts

Implementation of
HelloWorldInterface

Definition of HelloWorld
service component

Standalone
reference
definition

HelloWorld
module

definition

HelloWorldInterface
WSDL definition

The Physical Resources view in WebSphere Integration Developer is a useful view for
looking at all of the resources that make up an SCA module. These resources can be
particularly useful when debugging an application or just learning more about the definition

language used to define SCA components.

WPSWIDv6_SCAToolsAndExamples.ppt Page 19 of 24

IBM Software Group

19

Service Component Architecture (SCA) Tools and Examples © 2005 IBM Corporation

Agenda

�Tools Support

�Example

�Summary and References

This section will provide a summary of SCA.

WPSWIDv6_SCAToolsAndExamples.ppt Page 20 of 24

IBM Software Group

20

Service Component Architecture (SCA) Tools and Examples © 2005 IBM Corporation

Summary

�SCA is the fundamental component model for
WebSphere Process Server V6

�Programming model the Service Oriented Architecture
solution

�SCA helps separate business logic from
implementation

�Focus is on assembling solutions rather than
implementation details

�Mitigates need for integration developers to have deep
knowledge of Java or J2EE

�Aimed at helping J2EE developers become more
productive

SCA is the fundamental component model for WebSphere Process Server V6 and
provides the basis of the service oriented architecture solution. SCA helps separate
business logic from implementation and allows developers to focus on assembling

solutions rather than implementation details.

WPSWIDv6_SCAToolsAndExamples.ppt Page 21 of 24

IBM Software Group

21

Service Component Architecture (SCA) Tools and Examples © 2005 IBM Corporation

References

�Service Data Objects (SDO)
�http://www-128.ibm.com/developerworks/library/j-commonj-sdowmt/

�http://www-106.ibm.com/developerworks/java/library/j-sdo/

�http://download.eclipse.org/tools/emf/sdo/javadoc/commonj/sdo/package-summary.html

WPSWIDv6_SCAToolsAndExamples.ppt Page 22 of 24

22

IBM Software Group

Service Component Architecture (SCA) Tools and © 2005 IBM Corporation

Trademarks, Copyrights, and Disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM CICS IMS MQSeries Tivoli
IBM(logo) Cloudscape Informix OS/390 WebSphere
e(logo)business DB2 iSeries OS/400 xSeries
AIX DB2 Universal Database Lotus pSeries zSeries

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product and service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements and/or changes in the product(s) and/or program(s) described herein at any time without notice. Any statements regarding IBM's
future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or
services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program
Product in this document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual
property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER
EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall
have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and conditions of the agreements (e.g., IBM Customer Agreement,
Statement of Limited Warranty, International Program License Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. IBM makes no representations or warranties, express or implied, regarding non-IBM products and
services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2005. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

Template Revision: 3/09/2005 9:40 AM

