

®

IBM Software Group

© 2008 IBM Corporation

Updated May 19, 2008

WebSphere ® Enterprise Service Bus V6.1
WebSphere Process Server V6.1
WebSphere Integration Developer V6.1

Accessing service message objects

This presentation examines how service message objects are accessed from within a
mediation flow.

WBIV61_AccessingSMOs.ppt Page 1 of 22

IBM Software Group

2

Accessing service message objects © 2008 IBM Corporation

Goals

�Understand the accessing of service message
objects (SMO)
�Access and manipulation of SMO content

�Manipulation of message type

�Approaches used
�XPath

�XSL transformations (XSL Style sheets)

�Business objects maps

�Java™ code

The goal of this presentation is to provide you with an understanding of how to access
service message objects (SMO). Accessing SMOs occurs within mediation flows and
involves the reading, writing and updating of the elements of an SMO. Updating an SMO
might also include modifying the message type, which occurs when the structure of the
payload of the message is changed. Each of the mechanisms for accessing and
manipulating service message objects is covered, which includes the use of XPath
expressions, XSL transformations using XSL style sheets, business object maps and Java
code.

WBIV61_AccessingSMOs.ppt Page 2 of 22

IBM Software Group

3

Accessing service message objects © 2008 IBM Corporation

Manipulating SMOs

� Ways to access and manipulate SMOs
�XPath 1.0 expressions

� Primary mechanism for accessing the SMO
� Used in some form by many of the mediation primitives
� Identify elements to read, update or process conditional expressions

�XSL style sheets
� Underlying mechanism of the XSL transformation mediation primitive
� Typically used to modify SMO message type within a flow

�Business object maps
� Underlying mechanism of the business object map mediation primitive
� Typically used to modify SMO message type within a flow

�Java code
� Used by the Custom Mediation primitive
� SMO APIs and DataObject APIs

� Used to access and update SMO content and can also modify SMO message type

This slide provides an overview of the different mechanisms for accessing and
manipulating the contents of an SMO. XPath 1.0 is the primary mechanism for accessing
SMOs and is employed in one form or another by almost all of the mediation primitives.
XPath expressions can be used to identify elements of the SMO to read or update. They
can also be conditional expressions to be evaluated. XSL style sheets are used by the
XSL transformation primitive, which is typically used to modify the message type within the
flow by changing the structure of the body of the message. Business object maps are
used by the business object map primitive. Similar to the XSL style sheets, the typical use
of a business object map is to modify the SMO message type within a flow. Java code is
used by the custom mediation primitive to access the SMO. The generic DataObject APIs
can be used, making use of XPath expressions to identify properties within the SMO.
There are also SMO specific APIs, which provide type safe access to the properties within
the SMO. Using Java code, you can read and update the message content and you also
have the ability to modify the message type by changing the structure of the message
body. In the next series of slides, each of these mechanisms is examined in detail.

WBIV61_AccessingSMOs.ppt Page 3 of 22

IBM Software Group

4

Accessing service message objects © 2008 IBM Corporation

XPathXPath

Section

This section takes a closer look at the use of XPath for accessing SMOs.

WBIV61_AccessingSMOs.ppt Page 4 of 22

IBM Software Group

5

Accessing service message objects © 2008 IBM Corporation

XPath
� Most mediation primitives use XPath in some form
�XPath expression identifying a specific property within the SMO

�XPath conditional expression to be evaluated

� Root property
�Used to specify what part of the SMO is visible to the primitive

�Values selected from a drop down:

� Typically the values are: / /body /context /headers

� Some instances of root are more restrictive and some are less restrictive

� Other properties using XPath
�Specified using XPath expression builder dialog

�Content assist is also provided

XPath expressions are used in some form by most of the mediation primitives and are
typically a qualified path based on the SMO schema that identifies a property within the
SMO. The property identified might be a complex DataObject type or a simple element
with a primitive type. At other times the XPath expression might be a conditional
expression to be evaluated true or false relative to the value of an element in the SMO.
There are generally two different ways that an XPath expression is specified within the
properties for a mediation primitive. The first is the use of a root property, which identifies
that portion of the SMO that is to be visible to or used by the primitive. In most cases, the
root property consists of four possible values that are selected using a drop down box.
The value / (forward slash) is used to indicate the entire SMO and /body indicates the
body or payload of the SMO. The value /context refers to the context section of the SMO
and /headers refers to the headers contained in the SMO. However, the use of the root
property is not always exactly like this. Some cases are more restrictive and only provide
two possible choices and other cases allow the use of an XPath expression that can
identify any property within the SMO. Other uses of XPath by mediation primitives make
use of the XPath expression builder dialog. The dialog allows you to traverse the SMO
schema to select a particular property or element within the SMO. It enables you to build
up an expression using XPath functions and operators. Input fields for XPath expressions
are also enabled for content assist. This provides similar capabilities to that of the XPath
expression builder dialog, but through the use of content assist proposal lists.

WBIV61_AccessingSMOs.ppt Page 5 of 22

IBM Software Group

6

Accessing service message objects © 2008 IBM Corporation

XPath expression builder dialog
� Contains three source viewers
�Data types viewer

� Shows schema elements and
attributes available to use

� Shown collapsed, with twisties to
open sections and drill down

�XPath functions
� Shows top level groups with twisties

to show functions

�Operators
� Expanded list of available operators

� XPath expression
�View where expression is

constructed
�Built by obtaining appropriate

elements from source viewers
� Drag-and-drop
� Double click

�Can type directly into the field

� Launched using:
� Edit… button for XPath property field
� … button in an XPath table cell

This slide examines the XPath expression builder dialog. The dialog has four panes, three

for making selections, and the fourth where the XPath expression is constructed.

The data type viewer shows the schema for the SMO in a collapsed form. You can expand

the schema elements selectively and drill down to the element that you want to include in

the expression.

The next pane lets you select XPath functions to be used in the expression. These

functions are grouped by category.

The third pane is for the operators, providing an expanded list of the XPath operators that

you can select for building the expression.

At the bottom of the slide is the entry field for the XPath expression being constructed.

You can drag elements from any of the three panes and drop them into the expression

being built. Double clicking on a schema element, function or operator in a pane adds that

element to the expression. You can also type directly into the field.

This dialog is launched by using the Edit… button found next to text entry fields requiring

an XPath expression. In a table, a cell that takes an XPath expression has a … button to

access this dialog.

WBIV61_AccessingSMOs.ppt Page 6 of 22

IBM Software Group

7

Accessing service message objects © 2008 IBM Corporation

XPath content assist

� XPath content assist enabled fields
�Accessed using ctrl-space

�If auto activation enabled, entry of symbol: / ([,

� Two different proposal lists
�Node and variable

�Functions and operator

�ctrl-space to toggle lists – status bar indicates this can be done

Fields for XPath expressions are normally enabled for content assist. Similar to other
content assist enabled entry fields in WebSphere Integration Developer, the context assist
proposal lists are accessed using the ctrl-space key combination. Auto activation is a user
selectable option. When activated, the symbols “/” (forward slash), “(“ (left parenthesis), “[“
(left square bracket) and “,” (comma) will cause the proposal list to be displayed. There are
two proposal lists. The first is the node and variable list, where you can select schema
elements from the SMO similar to the data types viewer in the XPath expression builder
dialog. The other proposal list provides the functions and operators. The ctrl-space key
combination can be used to toggle back and forth between the two proposal lists. The
status bar at the bottom of the list provides a prompt to remind you that you can toggle
between the lists.

WBIV61_AccessingSMOs.ppt Page 7 of 22

IBM Software Group

8

Accessing service message objects © 2008 IBM Corporation

XPath content assist configuration

�Content assist support is configurable
�Window � Preferences… � Business Integration � XPath

The use of content assist for XPath expressions is configurable through a preferences
dialog. To access the panel, select Window, Preferences… from the menu bar and then
select Business Integration, XPath from the left side of the preferences dialog. The
configuration parameters available to you are shown in the screen capture.

WBIV61_AccessingSMOs.ppt Page 8 of 22

IBM Software Group

9

Accessing service message objects © 2008 IBM Corporation

XSL transformation (XSL style sheets)XSL transformation (XSL style sheets)

Section

This section takes a closer look at the use of XSL transformations, which use XSL style
sheets for accessing SMOs.

WBIV61_AccessingSMOs.ppt Page 9 of 22

IBM Software Group

10

Accessing service message objects © 2008 IBM Corporation

XSL style sheets

� XSL transformation primitives process XSL style sheets at
runtime

� An XSL style sheet used by the XSL transformation
primitive can be:
�Generated from an XML map created with the XML mapping editor

�Created directly using the XSL editor

� Typical use is for modification of message type in a flow
�When input and callout nodes have different message types

�To reply using the input response node in a request flow

�Before or after service invoke primitives

�To reply with a fault using the input fault node to report a flow error

The XSL transformation primitives use XSL style sheets at runtime to manipulate the
SMO. There are two ways to define an XSL style sheet. The first is to use the XML
mapping editor to define a mapping, which is then used to generate an XSL style sheet.
The second approach is to the use the XSL editor to edit the style sheet directly. See the
XSL transformation primitive presentation for information about the XML editor and the
specification of an XML map versus an XSL style sheet.

Typically, the XSL style sheet is used within a mediation flow to modify the message type.
There are many different reasons why this might need to be done. It is required when a
mediation flow has an input node and a callout node that have terminals for different
message types. Also, if the input response node is going to be used in the request flow,
the request message must be transformed into a response message. Use of the service
invoke primitive normally requires changing the message type before and after its use in
the flow, as its message types are dictated by the external service being called. Another
possible instance requiring changing the message type is when an error is detected in the
request flow and the message has to be transformed to a fault message to be returned
using the input fault node.

WBIV61_AccessingSMOs.ppt Page 10 of 22

IBM Software Group

11

Accessing service message objects © 2008 IBM Corporation

XML mapping editor and XSL style sheet

This slide shows a screen capture of the XML mapping editor with a simple XML map of a
message body. It also shows the resulting segment of the XSL style sheet. The mapping
is from a getCustomerInformation operation to a getCustomerExtendedInfo operation.
Each operation contains a customer ID field, which is moved from source to target. The
target also has a portfolio requested field, which is set by the map to a default value of
“401K”. At the bottom is a screen capture of that portion of the XSL style sheet that
reflects this mapping. The arrows from the map to the style sheet show the generated
move and the generated assign.

WBIV61_AccessingSMOs.ppt Page 11 of 22

IBM Software Group

12

Accessing service message objects © 2008 IBM Corporation

Business object mapsBusiness object maps

Section

This section takes a look at how business object maps are used for accessing SMOs.

WBIV61_AccessingSMOs.ppt Page 12 of 22

IBM Software Group

13

Accessing service message objects © 2008 IBM Corporation

Business object maps

� Business object maps run generated Java code at runtime

� Business objects maps are used by business object map
primitives
�New maps can be created with the business object map editor

�Existing maps can be selected

� These are the same maps used by mapping service APIs
and for parameter mapping in interface maps
�Possibly use mapping service APIs from custom mediation primitives

� Typical use is for modification of message type in a flow

� There is overlapping function provided by XSL style sheets
and business object maps

Unlike the XSL style sheets that manipulate an XML version of the SMO at runtime,
business object maps result in generated Java code that accesses an SDO representation
of the SMO at runtime. The business object maps are used by the business object map
primitive to manipulate the SMO within a mediation flow. When configuring a business
object map primitive, you can launch the business object map editor for creating a new
map or you can select an existing business object map to be used. These business object
maps are the same maps that are used in WebSphere Process Server for performing
parameter mapping within interface maps and are also used with the mapping service
APIs. It is possible to make use of business object maps within a mediation flow by using
the mapping service APIs from a custom mediation primitive. However, their typical use
within a flow is through use of the business object map primitive.

Similar to an XSL transformation, the typical use of a business object map within a
mediation flow is to change the message type of the SMO. All the same reasons
documented on the previous XSL transformation slide apply equally to business object
maps.

At this point is should be clear that there is overlapping function provided by XSL style
sheets and business object maps, accomplishing basically the same function through
different approaches. The next slide takes a closer look at this overlap.

WBIV61_AccessingSMOs.ppt Page 13 of 22

IBM Software Group

14

Accessing service message objects © 2008 IBM Corporation

Business object maps & XSL transformations

� Using business object maps versus XSL transformations
�The answer is generally not clear cut
�Performances differences vary with scenario

� Some reasons to use business object maps
�Mapping requires maintaining a relationship
�Change summary needs to be maintained in a business graph
�Configure event settings to raise CEI events
�Share maps between mediations, interface mapping and mapping

APIs
� Utilize existing investment in business object maps
� Develop new maps that can be used in multiple places

�Business object map editor provides some unique capabilities
� Variables
� Fuzzy mapping
� Explicit ordering of transformations

With the overlapping functional capabilities of business object maps and XSL
transformations it is worth considering which type to use in your mediation flows. To start
out, the answer to this question is not generally clear cut and there is not a set of rules or
guidelines to direct you in making a decision. In many cases, it will come down to a
personal preference between the business object map editor and the XML mapping editor,
but even these are very similar. One consideration might be runtime performance, but this
is also not clear cut. It depends upon the specific scenario as to which option might be
better, especially when you consider the very different underlying implementations. A
discussion of those considerations is complex and goes beyond the scope of this
presentation.

For particular requirements, however, there are some clear cut situations where using a
business object map is preferable to using an XSL transformation. The relationship
service, which maintains identity and lookup relationships, only works with business object
maps. Likewise, the use of a business graph to maintain a change summary with your
business object is also only supported with business object maps. You might have a
situation where you want to do the same mapping in a mediation flow and in an interface
map or mapping service API call. In this case you want to use a business object map to
enable the reuse. This can be a situation where you are reusing existing business object
maps or developing new maps to be used from multiple places. Although the two mapping
editors are extremely similar, the business object map editor does provide for the use of
variables, fuzzy mapping and the explicit ordering of transformations.

WBIV61_AccessingSMOs.ppt Page 14 of 22

IBM Software Group

15

Accessing service message objects © 2008 IBM Corporation

Business object maps and Java code

On this slide you can see a screen capture of the business object map editor with a simple
business object mapping of a message body. This is the same mapping as was shown
previously in the XML mapping editor. The mapping is from a getCustomerInformation
operation to a getCustomerExtendedInfo operation. Each operation contains a customer
ID field, which is moved from source to target. The target also has a portfolio requested
field, which is set by the map to a default value of “401K”. At the bottom are screen
captures of code extracted from the generated Java code for the map. This is not
something you normally see or have any reason to look at, and these are just two
statements extracted from a rather complex generated Java class. They are shown here
to highlight again that business object maps result in generated Java classes that operate
on an SDO representation of the SMO.

WBIV61_AccessingSMOs.ppt Page 15 of 22

IBM Software Group

16

Accessing service message objects © 2008 IBM Corporation

Java codeJava code

Section

This section takes a closer look at the use of Java code for accessing SMOs.

WBIV61_AccessingSMOs.ppt Page 16 of 22

IBM Software Group

17

Accessing service message objects © 2008 IBM Corporation

Java code
� Java code can be used in custom mediation primitives

� Custom mediation operation:
�Is passed the SMO as input parameter (which is a type of DataObject)
�Fires an output terminal passing it the SMO

�Input and output message types must match terminals of custom mediation

� DataObject API (commonj.sdo.DataObject)
�Defined by the service data object (SDO) specification

�Provides a dynamic loosely typed interface to access an SMO
�Augmented subset of XPath 1.0 can be used with accessor methods

�Javadoc and specification: http://help.eclipse.org/help32/index.jsp

� ServiceMessageObject API
�Provides strongly typed interface for well defined portion of SMO

� Everything except the contents of the body and the transient, correlation and shared contexts

�Javadoc available from the Information Center

Custom mediation primitives contain Java code defining the logic for the primitive. The
Java operation called by the custom mediation takes the SMO as input. The SMO is a
type of DataObject, and can be accessed using either DataObject or
ServiceMessageObject APIs. The body portion of the SMO that is passed in conforms to
the message type defined for the input terminal. The code in the custom mediation
primitive is required to pass the SMO to the fire method of the output terminal object. The
body portion of the SMO that is passed to the output terminal object’s fire method must
conform to the message type of the output terminal of the custom mediation primitive.

The Java code can access the SMO using the DataObject APIs, which are defined by the
Service Data Object specification, also known as SDO. These APIs provide a loosely
typed interface for accessing the SMO and have accessor methods that make use of an
augmented subset of XPath 1.0 to identify properties within the DataObject. The full
Javadoc for these APIs and the SDO specification are available from the eclipse.org Web
site at the address on the slide. There is also a set of ServiceMessageObject APIs, which
provide a strongly typed interface for accessing the well-defined portion of the SMO.
These APIs understand the schema for the SMO except for the body, the transient
context, the correlation context and the shared context, each of which is unique to each
individual flow. There is Javadoc describing these APIs in the information center.

WBIV61_AccessingSMOs.ppt Page 17 of 22

IBM Software Group

18

Accessing service message objects © 2008 IBM Corporation

� Compare DataObject API use to SMO API use
�Code to access the MessageUUID field contained in the SMOHeader

� Using DataObject with full path

� Using DataObject and traversing down through each property

� Using the ServiceMessageObject strongly typed APIs

� Discovery of coding errors
�Loosely typed DataObject errors such as misspelling a property name are not

discovered until runtime
�Strongly typed SMO errors are caught at compile time

Java code examples

This slide compares the use of the DataObject APIs to the ServiceMessageObject APIs by
using three examples that do the same thing. They each access the MessageUUID field
that is in the SMOHeader.
The first code example uses the loosely typed DataObject APIs and a fully qualified XPath
expression to identify the field. The XPath expression
headers/SMOHeader/MessageUUID is used to obtain the MessageUUID string from the
SMO DataObject.

The second code example also uses the loosely typed DataObject APIs, but in this case
traverses down through each property individually. First, the headers DataObject is
obtained from the SMO DataObject. Then the SMOHeader DataObject is obtained from
headers DataObject. Finally, the MessageUUID string is obtained from SMOHeader
DataObject.

In the third code example, the strongly typed SMO APIs are used. Using the
ServiceMessageObject APIs, the getHeaders operation is used to obtain the headers from
the SMO. From the headers object, the getSMOHeader operation is used to obtain the
SMOHeader. Finally, the getMessageUUID operation is used to get the MessageUUID
string from the SMOHeader.
Contrasting these two approaches with respect to coding errors, the loosely typed
DataObject APIs generally have coding errors surface at runtime, whereas the strongly
typed SMO APIs tend to have coding errors caught at compile time. Therefore, the SMO
APIs might be preferred over the DataObject APIs for ease in development and
debugging.

WBIV61_AccessingSMOs.ppt Page 18 of 22

IBM Software Group

19

Accessing service message objects © 2008 IBM Corporation

SummarySummary

Section

This section presents a summary of the presentation.

WBIV61_AccessingSMOs.ppt Page 19 of 22

IBM Software Group

20

Accessing service message objects © 2008 IBM Corporation

Summary

�Examined service message objects in terms of:
�Access and manipulation of SMO content

�Manipulation of message type

�Approaches used
�XPath

�XSL transformations (XSL style sheets)

�Business object maps

�Java code

This presentation presented details about accessing service message objects, including
modifying their content and changing their message type. The use of XPath expressions,
XSL transformations using XSL style sheets, business object maps and the use of Java
code in custom mediation primitives was examined.

WBIV61_AccessingSMOs.ppt Page 20 of 22

IBM Software Group

21

Accessing service message objects © 2008 IBM Corporation

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_WBIV61_AccessingSMOs.ppt

This module is also available in PDF format at: ../WBIV61_AccessingSMOs.pdf

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WBIV61_AccessingSMOs.ppt Page 21 of 22

IBM Software Group

22

Accessing service message objects © 2008 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM WebSphere

A current list of other IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

Access, Expression, and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries, or both.

Java, Javadoc, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any statements regarding IBM's future direction
and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or services does not imply
that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program Product in this
document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may
be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER
EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall
have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and conditions of the agreements (for example, IBM Customer Agreement,
Statement of Limited Warranty, International Program License Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2008. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

WBIV61_AccessingSMOs.ppt Page 22 of 22

