

®

IBM Software Group

© 2008 IBM Corporation

Updated May 20, 2008

WebSphere ® Enterprise Service Bus V6.1
WebSphere Process Server V6.1
WebSphere Integration Developer V6.1

SMO dump utility and code sample

This presentation provides information about a DataObject dump utility useful for dumping
a service message object (SMO). It describes the use of the utility for SMOs and looks at
the implementation, which serves as an example of SMO traversal.

WBIV61_SMOCodeSample.ppt Page 1 of 18

IBM Software Group

2

SMO dump utility and code sample © 2008 IBM Corporation

Goals

� Introduce a DataObject dump utility
�Useful for dumping the service message object (SMO)

�Provide you with the code in a project interchange file

�Describe how to use it

�Enhance your understanding of the SMO structure
�Showing you sample dump output

�Describe code from dump utility that traverses the SMO

�Enable you to examine the SMO in your own
mediation flows

The goal of the presentation is to introduce you to a DataObject dump utility that is used
for dumping the contents of the service message object. You are provided with a link to a
project interchange file that you can import into WebSphere Integration Developer for your
own use. How to instrument a mediation flow to call the dump utility is described.

The utility can be used to dump any DataObject. However, the focus of its use in this
presentation is for the dumping of an SMO with the intention of enhancing your
understanding of the SMO structure and contents. The presentation shows you a few
sample output dumps of major sections of the SMO. Following that, the code for the dump
utility is examined to show you how to write code that can traverse an SMO.

The project interchange file for this utility is being provided to you because the best way to
enhance your understanding of the SMO is for you to use the dump utility in your own
mediation flows. Being able to see what is really in the SMO will help you tremendously as
you design, develop and debug your mediation flows.

WBIV61_SMOCodeSample.ppt Page 2 of 18

IBM Software Group

3

SMO dump utility and code sample © 2008 IBM Corporation

How to use the dump utilityHow to use the dump utility

Section

The first section of the presentation shows you how you can use the dump utility to dump
the contents of the SMO.

WBIV61_SMOCodeSample.ppt Page 3 of 18

IBM Software Group

4

SMO dump utility and code sample © 2008 IBM Corporation

Include dump utility in your mediation module

� To use the dump utility in your flow, you must:
�Download the DumpUtilsPI.zip project interchange file

�Import it into WebSphere Integration Developer

�In your mediation module, add it as a Java™ project dependency

The dump utility is packaged in a WebSphere Integration Developer project interchange
file named DumpUtilsPI.zip. You can download this using the link on this slide. There is
also another link to it provided on the same page you used to launch this presentation.

Once you have downloaded the file, you need to import it as a project interchange file into
your WebSphere Integration Developer workspace.

In order to use the utility in your mediation module a dependency to it must be created.
The screen capture in the slide basically shows what you need to do. Start by opening the
dependencies editor for the mediation module and then open the Java section, which
allows you to add dependencies to Java projects. Click the Add… button to open the Java
Project Selection dialog and then select the DumpUtils project and hit OK. This adds the
project to the list of Java projects used by this module. Click on the DumpUtils project in
the list and check to ensure that the Deploy with Module check box has been selected.

WBIV61_SMOCodeSample.ppt Page 4 of 18

http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/topic/com.ibm.iea.wpi_v6/wpswid/6.1/MediationLabs/LabFiles61/DumpUtils/DumpUtilsPI.zip

IBM Software Group

5

SMO dump utility and code sample © 2008 IBM Corporation

Call dump utility from a custom mediation

� Calling the dump utility
�Create a custom mediation with Java snippet
�Add the Java code to call the dump utility

� See README-UsageNotes.txt in DumpUtils project
�Documents usage
�Can cut and paste the code into the Java snippet

In your mediation flow, you can call the dump utility using a custom mediation primitive
with a Java snippet implementation.

There are two lines of code that you need to add, which are highlighted in the screen
capture on this slide. The first line creates the object that provides the dump functionality
and the second line uses the object to perform the dump of the SMO. The method to call
is named dumpDataObject and it takes two parameters, the first being the DataObject to
dump and the second is an optional comment that is included at the beginning of the
dump.

The last line provides the SMO that is propagated from the output terminal when the
custom mediation completes. This is required by the custom mediation primitive
implementation and is included in the code skeleton when the custom mediation primitive
is first created.

There are use notes provided in the DumpUtils project that are located in the read me file
referenced on the slide. It contains documentation for the utility, including code snippets
that can be cut and pasted directly into your custom mediation primitive.

WBIV61_SMOCodeSample.ppt Page 5 of 18

IBM Software Group

6

SMO dump utility and code sample © 2008 IBM Corporation

Dumping selected elements of the SMO

� Utility can dump selected elements in the SMO
�Element cannot be a leaf, must be a DataObject

�When using ServiceMessageObject APIs, need to cast to DataObject

� Examples:

The utility is able to dump any DataObject and therefore you do not need to dump the
entire SMO. Any element of the SMO can be dumped provided it is a DataObject rather
than a leaf element. When using the ServiceMessageObject APIs, the returned element’s
type does not inherit from DataObject even when that part of the SMO is in fact a
DataObject. Therefore, when using the ServiceMessageObject APIs you need to cast the
returned value to DataObject.
This slide shows several example invocations of the utility. There are two basic
approaches that are shown. One is to dump an element of the SMO using the
getDataObject method on the input parameter to the custom mediation primitive, which is
called smo. The string passed to this operation is an XPath expression to the element you
want to dump. The other approach is to use the ServiceMessageObject APIs on the input
parameter smo and to then cast the returned value to the type DataObject.
The first example dumps all the headers in the SMO using the ServiceMessageObject API
approach, while the second example dumps just the JMS header and uses the DataObject
API approach.
The third example is useful in a flow wired to a fail terminal because it is dumping the
failInfo element that gets populated when a mediation primitive raises an exception.
The fourth example dumps the correlation context.
The next example is dumping the entire contents of the SMO body and is using the
ServiceMessageObject APIs. Contrast this to the last example, which dumps a portion of
the body using the DataObject APIs. Note that in this last example, there are no
ServiceMessageObject APIs that provide traversal into the message body, so the
DataObject APIs have to be used in this case.

WBIV61_SMOCodeSample.ppt Page 6 of 18

IBM Software Group

7

SMO dump utility and code sample © 2008 IBM Corporation

Sample output from the dump utilitySample output from the dump utility

Section

In this section you are shown sample output from the dump utility. The dump output is
directed to the SystemOut.log file for the server. It is also visible in the Console view of
WebSphere Integration Developer.

WBIV61_SMOCodeSample.ppt Page 7 of 18

IBM Software Group

8

SMO dump utility and code sample © 2008 IBM Corporation

Sample output of SMO context

Code to dump SMO context

transient

primitiveContext

failInfo

correlation

shared

This first example dumps the context section of the SMO.

Looking at the example, notice that the second parameter to dumpDataObject supplies the

comment “Dump entire SMO context”. This comment is placed at the beginning of the

dump.

Notice the first parameter is using the ServiceMessageObject APIs to get the SMO context

and is then casting it to a DataObject. In the dump the DataObject is shown to be of type

ContextType.

The context in the SMO has five properties. The first two are the correlation context and

the transient context. Notice that the transient context in this flow was configured with a

business object but that the correlation context was not. Also notice the last property,

which is the shared context. In this flow it was not configured with a business object.

The property failInfo is not populated in this case but it is when this is a flow from a fail

terminal.

The primitiveContext property is an area intended to be used by mediation primitive

implementations. It is populated if there is an endpoint lookup or fan out primitive in the

flow.

WBIV61_SMOCodeSample.ppt Page 8 of 18

IBM Software Group

9

SMO dump utility and code sample © 2008 IBM Corporation

| :
| SMOHeader deleted
| :

Sample output of SMO headers

MQHeader

properties

SOAPFaultInfo

SOAPHeader

JMSHeader

Code to dump SMO headers

HTTPHeader

SMOHeader (see next slide)

There are two slides used to show the SMO headers. This slide shows the entire SMO
headers section, except that the details of the SMOHeader have been removed. They are
shown on the next slide because there is not enough room to show the entire headers
section on one slide.

Similar to the example on the previous slide, this dump has a comment identifying what it
is for. It states “Dump SMO headers,” which shows at the beginning of the dump.

The first parameter to the dump uses the ServiceMessageObject APIs to get the headers
section of the SMO. The DataObject shown in the dump is of type HeadersType.

In this particular example, none of the headers that are shown are populated. These are
the JMSHeader, SOAPHeader, SOAPFaultInfo, properties, MQHeader and HTTPHeader.
These are populated with the appropriate information based on the type of SCA binding
that is configured on the export or import that initiated this flow. Examination of what is
contained in the headers is one of the very useful applications of the dump utility.

WBIV61_SMOCodeSample.ppt Page 9 of 18

IBM Software Group

10

SMO dump utility and code sample © 2008 IBM Corporation

Target

Action

Operation

MessageType

Version

Code to dump SMOHeader

AlternateTarget

MessageUUID

Sample output of SMOHeader

This slide shows the SMOHeader contained within the SMO headers. In the invocation of
the dump you can see that the ServiceMessageObject APIs are used to drill down to the
SMOHeader, doing a getHeaders call followed by a getSMOHeader call. In the dump
output it shows that the dump is for a DataObject of SMOHeaderType. The dump also
contains the comment passed to it as the second parameter.

The SMOHeader is always populated with useful values in the MessageUUID, Version
and MessageType properties, but the Operation and Action properties are typically null.
The Target and AlternateTarget properties are populated when you have logic in the flow
to set them for use with dynamic endpoint requests.

WBIV61_SMOCodeSample.ppt Page 10 of 18

11

IBM Software Group

SMO dump utility and code sample © 2008 IBM Corporation

Sample output of
SMO body

Code to dump body

In this example, the ServiceMessageObject APIs are used to dump the body of the SMO
on the request flow for a submitOrder operation. Notice that the DataObject type is
submitOrderRequestMsg, which corresponds with the custom mediation primitive’s input
terminal message type. The submitOrder operation definition is shown on the slide. It
takes an input parameter called order of type Order. The business object definition of
Order is shown. Notice that it contains a field called items, which is an array of OrderItem
objects, the definition for which is also shown. Examine the slide to see how the operation,
its input parameter and the complex types it contains are shown in the DataObject dump.

WBIV61_SMOCodeSample.ppt Page 11 of 18

IBM Software Group

12

SMO dump utility and code sample © 2008 IBM Corporation

Dump utility codeDump utility code

Section

Now that you are familiar with the output of the dump utility, this section examines the
code. This provides some good sample code for showing how to traverse a DataObject.

WBIV61_SMOCodeSample.ppt Page 12 of 18

IBM Software Group

13

SMO dump utility and code sample © 2008 IBM Corporation

Code for DumpDataObject – public methods

� dumpDataObject(DataObject inputDO, String comment)
�Public method to call when including a comment

�Surrounds dump of the inputDO with starting and ending comments

� dumpDataObject(DataObject inputDO)
�Public method to call without providing a comment

�Calls other dumpDataObject method with a null comment

dumpDO
internal method that does
the actual work

This slide shows the two public methods that you can call to do a DataObject dump. They
are both called dumpDataObject and take a DataObject as input. The one on the top of
the slide also takes a second parameter containing a comment to put into the dump.

The method on the top of the slide is very straight forward. It prints start and end of dump
messages, in between which is a call to a private method named dumpDO, which
performs the actual dump of the DataObject.

The method on the bottom of the slide allows you to call for a DataObject dump without
supplying a comment. It is implemented by calling the other method and supplying a
comment string of null.

WBIV61_SMOCodeSample.ppt Page 13 of 18

IBM Software Group

14

SMO dump utility and code sample © 2008 IBM Corporation

Code for DumpDataObject – private methods

� dumpDO(DataObject inputDO, String indent)
�Recursive method, dumps the DataObject with indentation for nesting

indicate start of dump
at this nesting level

print type of DataObject
get list of its properties

iterate, for each property

print property name
get property value

DataObject?, recursively dump

EList?, print type & call
dumpEList to iteratively
dump the list

all other properties,
print type and value

indicate end of dump
at this nesting level

This slide shows the dumpDO method, which does the real work for dumping a
DataObject. As input it takes the DataObject to dump and an indentation string that is
added to the front of each line of output. This enables the visual nesting of DataObjects
when the routine is called recursively to dump DataObjects within DataObjects.

The routine allows for the possibility that the DataObject passed in is null, in which case it
does nothing.

When dumping a DataObject, it prints a line indicating that this is the start of the dump and
then prints the type of the DataObject. Since a DataObject is composed of properties, a
list of the contained properties is then obtained. An iterator is then used to iterate through
the list of properties so that each property can be dumped. For each property, the name
of the property is printed and the type of the property value is determined. If the property
value is a DataObject, this operation is recursively called to dump it. If the property value
is an EList, a method to dump the contents of the list is called. This method is examined
on the next slide. If the property is neither a DataObject nor an EList, the type and value
are printed. After all the properties are dumped an end of dump indicator is printed.

WBIV61_SMOCodeSample.ppt Page 14 of 18

IBM Software Group

15

SMO dump utility and code sample © 2008 IBM Corporation

Code for DumpDataObject – private methods

� dumpEList(EObjectContainmentEList eList, String indent)
�Recursive method, dumps the list with indentation for nesting

�EObjectContainmentEList part of Eclipse Modeling Framework (EMF)

� org.eclipse.emf.ecore.util.EObjectContainmentEList

indicate start of dump
at this nesting level

iterate, for each list item

print index for this item in the list

DataObject?, call dumpDO to
iteratively dump the properties

EList?, recursively dump

print all other list items

indicate end of dump
at this nesting level

The method on this slide is used to dump an EList, or more specifically an

EObjectContainmentEList. Similar to the dumpDO routine, it can be called recursively to

handle an EList within an EList. It also has support for the indentation string, allowing the

output to have a visual indication of the nesting.

The EObjectContainmentEList class is part of the Eclipse Modeling Framework (EMF) and

is defined in the package org.eclipse.emf.core.util.

If the EList passed in is null, the method returns immediately without any processing.

The method prints out start and end of EList dump messages around the dump of the list.

The list is processed using an iterator to dump each item in the list, with each item being

identified by an index number. If an item is a DataObject, the dumpDO method is called to

dump it and if it is another EList, this method is called recursively. Otherwise, the item

itself is printed.

WBIV61_SMOCodeSample.ppt Page 15 of 18

IBM Software Group

16

SMO dump utility and code sample © 2008 IBM Corporation

Summary

� Introduced the DataObject dump utility
�Provided the code in a project interchange file

�Described how to use it

�Showed sample dump output

�Described the dump utility code

�Provided you with a tool you can use for:
�Learning to gain a better understanding of the SMO

�Examining the SMO during development and debug

In summary, this presentation provided you with a project interchange file that you can use
to dump DataObjects. How to use the utility was described, along with sample output
showing the results from dumping various sections of the SMO. The code used to perform
the dump was then explained.

The dump utility has the potential to be useful to you. It can be used to gain a better
understand of the structure and content of the SMO by dumping and examining the SMO
for various different mediation flows. It can also be quite useful during the development
and debugging of new mediation flows.

WBIV61_SMOCodeSample.ppt Page 16 of 18

IBM Software Group

17

SMO dump utility and code sample © 2008 IBM Corporation

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_WBIV61_SMOCodeSample.ppt

This module is also available in PDF format at: ../WBIV61_SMOCodeSample.pdf

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WBIV61_SMOCodeSample.ppt Page 17 of 18

IBM Software Group

18

SMO dump utility and code sample © 2008 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM WebSphere

A current list of other IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

Java, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include
technical inaccuracies or typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any
statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this
document to IBM products, programs, or services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM
operates or does business. Any reference to an IBM Program Product in this document is not intended to state or imply that only that program product may be used.
Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY
WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and
conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License Agreement, etc.) under which
they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly
available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other
claims related to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding
patent or copyright licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented
as illustrations of how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will
experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration,
and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements equivalent to the
ratios stated here.

© Copyright International Business Machines Corporation 2008. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule
Contract and IBM Corp.

WBIV61_SMOCodeSample.ppt Page 18 of 18

