

®

IBM Software Group

© 2008 IBM Corporation

Updated May 15, 2008

WebSphere ® Enterprise Service Bus V6.1
WebSphere Process Server V6.1
WebSphere Integration Developer V6.1

Mediation primitive common details

This presentation discusses those aspects of mediation primitives that are common to
mediation primitives in general.

WBIV61_CommonPrimitiveDetails.ppt Page 1 of 21

IBM Software Group

2

Mediation primitive common details © 2008 IBM Corporation

Goals

�Provide the basic understanding needed before
examining individual primitives
�Review concepts of mediation primitives

�Describe elements common to mediation primitives

The goal of this presentation is to provide a basic understanding before discussing each of
the individual mediation primitives. This is done by reviewing the concepts of mediation
primitives and describing the elements which are common across many or all of the
primitives.

WBIV61_CommonPrimitiveDetails.ppt Page 2 of 21

IBM Software Group

3

Mediation primitive common details © 2008 IBM Corporation

Place of mediation primitives in the big picture

� Mediation modules:
�Mediate messages flowing between service requestors and providers

� Handle protocol transformations
� Update content of the message
� Modify format of the message
� Dynamically route service requests/responses

�Contain a mediation flow component

� Mediation flow components:
�Used to define the mediation flow logic
�Unique flow logic defined for every operation of a service interface

� Mediation primitives
�Wiring of primitives is used to construct the logic of a mediation flow
�Each primitive performs some specific part of the flow logic

� Each primitive type performs some predefined function
� The predefined function is configured for each instance through the use of properties

In order to understand mediation primitives, it is important to understand where they fit into

the big picture of mediations.

Starting at the highest level of abstraction, there are mediation modules whose function is

to mediate messages flowing between service requestors and service providers.

Mediating a message might involve handling protocol transformations, updating the

content of the message, modifying the format of the message or dynamically routing the

message to an appropriate service provider.

The mediation module contains a mediation flow component, which is where the overall

logic for the mediation is defined. For every operation defined on an input interface there is

unique mediation flow logic for the operation’s request and response. The flow logic is

defined within the mediation flow component using mediation primitives.

Each type of mediation primitive provides some predefined functional capability. Each

instance of a mediation primitive has its predefined function configured through the use of

properties. The property settings define how the primitive explicitly behaves in this specific

instance. The overall logic of the flow is defined by wiring these configured mediation

primitives together into a logical flow.

To summarize, the highest level of a mediation is the mediation module, which contains a

mediation flow component, which contains mediation flows, which are composed of

mediation primitives wired together to define the logic.

WBIV61_CommonPrimitiveDetails.ppt Page 3 of 21

IBM Software Group

4

Mediation primitive common details © 2008 IBM Corporation

Mediation primitive types

Check completion of a split/aggregate flow Fan in

Selectively forward message based on condition Message filter

Downcasts element to more specific type Set message type

Raise a common base event to CEI Event emitter

Write a log message to the configured log database Message logger

Primitives which read but do not update the SMO elements

Set potential endpoints from registry query Endpoint lookup

Starts iterative or split flow for aggregation Fan out

Set elements from contents of a database row Database lookup

Message elements are set, copied or deleted Message element setter

Primitives which can update SMO elements

This slide and the next introduce the various mediation primitive types. There are various ways that
mediation primitive types can be organized. In these slides they are organized according to their behavior
and abilities for updating the service message object as it flows through the mediation.
The first group includes those primitives that read from but do not update the SMO. The message logger
primitive is used to log all or part of the contents of the message to a message log database which is
identified through configuration of the primitive. The event emitter primitive is used to raise an event
containing all or part of the contents of the message. The event is a common base event which is handled by
the common event infrastructure. The message filter primitive is used to modify the path through a flow by
selectively forwarding the message based on the evaluation of simple XPath expressions. Each expression
is associated with an output terminal defining where the message is forwarded. The fan in primitive is always
used in conjunction with a fan out primitive as part of a message splitting and aggregation scenario. Based
on the state of the flow and the fan in’s configuration information, it controls whether the flow returns to the
fan out or if the flow proceeds from the fan in, passing on the aggregated results. The set message type
primitive is used in conjunction with loosely typed elements in the SMO. It enables a loosely type element,
such as an XSD:anyType, to be downcast to a more specific type. This allows tools, such as the XPath
expression builder, to represent the element to you as the more specific type.
The next group contains the primitives that have the ability to update elements of the SMO but do not modify
the type of the message. The message element setter primitive can be configured to update elements of
the SMO. Individual elements can be set to a specific value or can have their value deleted. Individual
elements or sub-trees in the SMO can be set by copying the values from another location in the SMO. Arrays
in the SMO can have an element appended. The database lookup primitive is used to access information
from a database and insert it into the message. A field in the message is used as a key for the database
access and selected fields from the resulting database row can be placed into the message. The endpoint
lookup primitive is used to perform a query of the WebSphere Service Registry and Repository. The SMO
is updated with potential service endpoints that can be used by a callout node or service invoke primitive.
The fan out primitive is used to start an iteration for a message splitting and aggregation flow. It can be used
to process an array of repeating elements within the SMO and can also be used as the head of a flow with
multiple paths. For a simple splitting scenario the fan out is used without a fan in, but for a splitting and
aggregation scenario it has an associated fan in.

WBIV61_CommonPrimitiveDetails.ppt Page 4 of 21

IBM Software Group

5

Mediation primitive common details © 2008 IBM Corporation

Mediation primitives types (continue)

Read, update, modify message using Java code Custom mediation

Invoke external service, message modified with result Service invoke

Update, modify message using business object maps Business object map

Update, modify message using XSLT XSL transformation

Primitives which can modify the SMO message type

Primitives that ignore the SMO

Stop single path in flow without an exception Stop

Stop entire flow and raise an exception Fail

The next group includes those primitives that have the ability to modify the message type
of the SMO. The XSL transformation primitive is used to update or transform messages
using XSLT. This can be used to change the format of the message. An example of when
the format needs to change is when the target provider has a different interface than the
incoming message. The business object map primitive is very similar in function to the
XSL transformation primitive, but it uses business object maps rather than XSLT to
perform the transformation. These are the same business object maps that are used in
WebSphere Process Server within an interface map to perform parameter mapping. As a
result, change logging and the relationship service are enabled. The service invoke
primitive is used to make a call from within a mediation flow to an external service defined
on the mediation module assembly. The service can be defined by a Java component or
by an import. The input terminal message type conforms to the input to the service and the
output terminal message type conforms to the output from the service. The custom
mediation primitive is used to do any message processing not covered by the other
mediation primitives. This is done through Java code that can be written as a visual
snippet or as a Java snippet.

The remaining primitives do not access the SMO. The stop primitive is used to stop an
individual path through the mediation flow without raising an exception or affecting other
paths through the flow. The fail primitive is used for error conditions and will stop the
entire mediation flow and cause an exception to be raised.

WBIV61_CommonPrimitiveDetails.ppt Page 5 of 21

IBM Software Group

6

Mediation primitive common details © 2008 IBM Corporation

Mediation primitives in mediation flow editor
Operation

connections
panel

Mediation flow
panel for
selected
operation

connection

Mediation
primitives

Properties
view for
selected

mediation
primitive

Selected
operation

connection

Shown here is a screen capture of the mediation flow editor.

The top panel of the editor is for operation connections and contains the input and output

interfaces along with all of their operations. Every operation on the input interface must be

wired to one or more operations on the output interfaces.

By selecting a particular operation connection, the mediation flow logic for that input

operation is shown in the mediation flow panel of the editor. This panel has tabs that can

be used to display the mediation logic for either the request flow or the response flow.

Within a flow, mediation primitives are wired together between the nodes to define the

logic of the flow.

Selecting any specific mediation primitive in the editor displays the properties for that

primitive in the properties view, which is in the bottom panel. This is where the properties

are specified to configure the behavior of the primitive.

WBIV61_CommonPrimitiveDetails.ppt Page 6 of 21

IBM Software Group

7

Mediation primitive common details © 2008 IBM Corporation

Properties view – edit a table based property

Edit… opens XPath expression builder

Depending on type, fields can:
- be drop down boxes
- be normal text entry fields
- include buttons to other dialogs Deletes highlighted row

Reorders list
Moves highlighted row up or down

Some table cells provide
a drop down for selecting
values

Values can be directly
edited in the table cell

Several of the primitives have a property that is represented as a table. This slide

describes the common aspects of these table based properties and the mechanics of

editing rows in the table. This example happens to use the filters property of the message

filter primitive as an example.

The Add/Edit properties dialog is used to edit a single row in the table, containing a field

for each column. It is accessed by hitting the Add… button or by selecting an existing row

from the table and hitting the Edit… button. When a column in the row represents an

XPath expression, the dialog contains an Edit… button. This enables you to use the

XPath expression builder dialog to define the expression to be evaluated.

Other fields in the Add/Edit properties dialog might contain drop down boxes, or they might

be simple text entry fields. Which type is used depends upon the content expected for the

column the field represents. Additionally, some types include a New… button which will

present an appropriate dialog for creating a new instance of the appropriate type.

Individual cells in the table can be edited directly without using the Add/Edit properties

dialog. In some cases, the cell might contain a dropdown box from which you can select

the value for the cell.

The Remove button deletes the selected row from the table.

For some table properties, the order of the rows is important, and for others it is not. In

either case, there are up and down arrows that can be used to move a selected row up or

down within the table.

WBIV61_CommonPrimitiveDetails.ppt Page 7 of 21

IBM Software Group

8

Mediation primitive common details © 2008 IBM Corporation

Mediation primitive input and output terminals
� Terminals:

�Define a mediation primitive’s input and output message type
�Message types define the content of the service message object body

� Input terminals
�Defines input message type
�Generally one per primitive (with a few exceptions)

� Output terminals
�Defines output message type
�Zero, one or more output terminals per primitive (based on primitive type)
�Possibly required to have same message type as input terminal (based on

primitive type)

� Fail terminal
�Used when a primitive fails during the flow
�Message type must be the same as input terminal message type
�Propagates the original message updated to contain failure information

All mediation primitives have terminals, which are used to define the input and output of
the primitive, specifically identifying the message type that flows through the terminal. The
message type is defined by the structure of the service message object body that is
present in that part of the flow.

Typically, there is just one input terminal per primitive and it defines the input message
type. Exceptions to this are the custom mediation primitive, allowing a variable number of
input terminals and the fan in primitive which has two defined input terminals.

An output terminal defines the output message type. The number of output terminals
varies by the primitive type. A primitive type can have zero, one, two or a variable number
of output terminals. For many mediation primitives, the output terminal must be of the
same message type as the input terminal. This is because the primitive is not capable of
changing the structure of the SMO body. However, for primitives that can change the
SMO body structure, the output terminal can be for a different message type.

The fail terminal is used when the mediation primitive fails in some way while processing
the message. Because the original message is propagated when there is a failure, the fail
terminal is always for the same message type as the input terminal. The message is
updated to contain information about the failure.

WBIV61_CommonPrimitiveDetails.ppt Page 8 of 21

IBM Software Group

9

Mediation primitive common details © 2008 IBM Corporation

Terminals in the mediation flow editor

Hover over terminal displays name and type

Input Terminal Output Terminals

Fail Terminal

Terminal representation

Terminals are shown in Properties view

Hover over primitive displays
all terminals and type

This slide examines how terminals are represented in the mediation flow editor. Starting in
the upper left is a mediation primitive. It has an input terminal which is always on the left
side, output terminals which are on the right side and the fail terminal which is the lower
terminal on the right side. Notice that the fail terminal has a different shape than either the
input or output terminals. Moving down to the illustration in the left center, the behavior
when hovering the mouse pointer over a terminal is illustrated. When this is done, a popup
appears specifying the name of the terminal and the message type associated with that
terminal. The illustration on the upper right shows you what happens when you hover the
mouse pointer over the primitive. A popup appears specifying the name of the primitive
along with the name and message type of all the terminals for that primitive. Finally, on
the bottom is a screen capture of the terminal tab in the properties view of the mediation
primitive. Selecting any terminal in the list on the left displays the name and type of the
terminal on the right. Notice that the message type here is the fully qualified type rather
than the short version of the type shown in the popups. Also notice the Change… button
which opens a dialog for modifying the message type associated with the terminal.

WBIV61_CommonPrimitiveDetails.ppt Page 9 of 21

IBM Software Group

10

Mediation primitive common details © 2008 IBM Corporation

� Connections between terminals:
�Are represented with wires
�Connected terminals must have matching message types

� Message types can be augmented
�Provides additional type information for weakly typed fields
�Wiring considerations for augmented message types

� Wiring allowed when target terminal is less specific type than source
� Wiring not allowed when target terminal is more specific type than source

�See the set message type primitive presentation for complete
discussion

Wiring of mediation primitive terminals

Wire

Matching message types

The next few slides look at the behavior of the mediation flow editor relative to the
assignment of message types to terminals during the process of wiring a mediation flow.
As illustrated in the graphic, connections between terminals are represented with wires.
When two terminals are wired together, they must have matching message types.

Message types can be augmented with additional type information. This is used when
needing to provide additional type information for weakly typed fields, such as those
defined as an xsd:anyType. When wiring terminals that have augmented message types,
the two terminals are not required to have exactly the same augmentation. Wiring is
allowed when the target terminal has a less specific type than the source terminal.
However, if the target has a more specific augmented type than the source, they can not
be wired together.

Augmented message types are not addressed in detail in this presentation. A complete
discussion of augmentation of message types is provided in the set message type
primitive presentation.

WBIV61_CommonPrimitiveDetails.ppt Page 10 of 21

IBM Software Group

11

Mediation primitive common details © 2008 IBM Corporation

� The editor dynamically manages message types
�Input and callout nodes:

� Have fixed terminal message types

� Interface and operation associated with the node defines the message type

�Primitives:
� Have dynamically configured terminal message types

Wiring of mediation primitive terminals

Message type “undefined”
until wired

Message type assigned

During the process of wiring terminals together, the editor dynamically manages the
message types of the terminals. In the graphic, you see a mediation flow that has one
input node on the left, callout nodes on the right, and two mediation primitives in the
middle. At this point, none of these are wired together. Notice that the nodes have
message types assigned to their terminals, whereas the mediation primitives do not yet
have message types assigned to their terminals.

WBIV61_CommonPrimitiveDetails.ppt Page 11 of 21

IBM Software Group

12

Mediation primitive common details © 2008 IBM Corporation

Wiring of mediation primitive terminals

�Example of wiring and message type handling

� Terminals can be given static message type values
�Message type can be statically set in Properties View

�Attempts to wire with terminals of unlike message type prevented

propagates that type as required through the flow

Adding a wire from a terminal with a defined type …

Wiring “undefined” to “undefined” type keeps type as “undefined”

Continuing from the previous slide, the top graphic shows a wire added from the output
terminal of the LogMessage primitive to the input terminal of the DBLookup primitive, both
of which have undefined message types. When you do this, the terminals still have an
undefined message type.
In the next graphic, the output terminal of the input node is wired to the input terminal of
the LogMessage primitive. Because the output terminal of the input node has a specific
message type assigned, that message type is dynamically assigned to the input terminal
of the LogMessage primitive so that the wire connects terminals of like message type.
Since a message logger primitive must have the same output message type as its input
message type, the editor dynamically assigns the message type to the output and fail
terminals of the LogMessage primitive. Since there is a wire between the output terminal
of the LogMessage primitive and the input terminal of the DBLookup primitive, the
message type is propagated so that the wire is connecting terminals of like type. Finally,
since a database lookup primitive must have the same output message type as its input
message type, the editor dynamically assigns that type to the output and fail terminals of
the DBLookup primitive.
In addition, the editor resets all the terminals to have an undefined message type if the
wire that started the message type propagation is removed. So you can see that the
mediation flow editor makes it quite easy to manage terminal message types when wiring
a flow.
It is also possible to assign a specific message type to a terminal so that it is static and
overrides the dynamic assignment of message type. When you do this, the editor prevents
you from wiring the terminal with the static message type to anything other than a terminal
with like type or a terminal with an undefined message type.

WBIV61_CommonPrimitiveDetails.ppt Page 12 of 21

IBM Software Group

13

Mediation primitive common details © 2008 IBM Corporation

Mediation primitive exceptions

�Exceptions associated with mediation primitives:
�MediationConfigurationException

� For a configuration problem or a transient external resource failure

� Example: Database table cannot be found or accessed

�MediationBusinessException
� For business error when executing the primitive

� Example: A key that should be in a message is not found

�MediationRuntimeException
� There are runtime problems when setting up the mediation flow

� Example: Incorrect JNDI name for a data source

The specific exceptions that mediation primitives can raise are described here.

A MediationConfigurationException is used when there is a configuration problem. It is

also used for a transient problem with an external resource, such as not being able to find

or access a database.

A MediationBusinessException is used when an error that appears to be a business

logic problem occurs while executing a primitive. An example of this kind of problem is

when the database key value configured for a primitive cannot be found in the message.

A MediationRuntimeException occurs when there is some kind of problem initializing a

mediation flow. An example of this is when the JNDI name for a data source is incorrect.

These exceptions and associated error processing are described in more detail in the next

few slides.

WBIV61_CommonPrimitiveDetails.ppt Page 13 of 21

IBM Software Group

14

Mediation primitive common details © 2008 IBM Corporation

Mediation primitive exception handling

�Mediation primitive exceptions can be raised:
�While setting up and initializing the flow

� MediationRuntimeException

� MediationConfigurationException

�While processing the primitive itself
� MediationConfigurationException

� MediationBusinessException

� MediationRuntimeException

In order to provide an understanding of the exception processing behavior, it is important
to know the different points at which a mediation exception can be raised.

First of all, some initialization is done by the runtime to set up a mediation flow. This
initialization occurs before control is given to any mediation primitives. Exceptions that
might be raised at this time are the MediationRuntimeException or the
MediationConfigurationException, with the MediationRuntimeException being the most
common.

Secondly, after initialization of the flow, an exception can be raised during the processing
of a mediation primitive. Normally these are a MediationConfigurationException or a
MediationBusinessException, but in some cases a MediationRuntimeException can also
be raised.

WBIV61_CommonPrimitiveDetails.ppt Page 14 of 21

IBM Software Group

15

Mediation primitive common details © 2008 IBM Corporation

Mediation primitive exception handling

�Exception behavior pseudo code:

IF
exception raised during processing of primitive itself
AND the fail terminal is wired

THEN
continue without logging exception
follow connection from fail terminal

ELSE
log the exception
terminate the mediation flow

The behavior for processing exceptions is different based on a couple of factors. The first
factor is whether the exception is raised during initialization processing or during the
processing of a primitive. The second factor is whether the fail terminal is wired.

Looking at the slide you can see pseudocode describing the actual behavior. If the
exception is raised during the processing of the primitive and the fail terminal is wired to
some other primitive or node, then the exception is not logged. The mediation flow
continues, following the wire from the fail terminal. In all other cases, the exception causes
a log message to be written and the mediation flow to terminate.

WBIV61_CommonPrimitiveDetails.ppt Page 15 of 21

IBM Software Group

16

Mediation primitive common details © 2008 IBM Corporation

Mediation primitive configuration exceptions
� Configuration parameters are checked at different times

�During setup and initialization of the flow
�During the processing of the primitive itself

� Handling of these exceptions is therefore different

� Example:
�Database Lookup mediation primitive

� Fail terminal is wired
� Configuration parameters include:

– Data source JNDI name
– Database table name

�Data source JNDI name not found is discovered during setup, therefore
� MediationRuntimeException raised
� Log written
� Flow terminates

�Database table not found is discovered during primitive processing
� MediationConfigurationException raised
� No log written
� Fail terminal connection followed

When there is a problem with something in the configuration of a mediation primitive, you
see the different behaviors described on the previous slide. This is because configuration
parameters are checked at different times, some being checked at the initialization of the
flow and others being checked during the processing of the mediation primitive. For
example, assume you have a database lookup primitive that has its fail terminal wired.
Two of the configuration parameters for a database lookup are the data source JNDI name
and the database table name. The data source JNDI name is checked during the setup of
the flow, therefore the result of an incorrect JNDI name is a MediationRuntimeException
raised with a log written and the mediation flow terminated. However, the database table
name is checked during the processing of the primitive itself. Therefore, when the
MediationConfigurationException is initially raised it is caught, no log is written and the
mediation flow continues by following the wire from the fail terminal of the database
lookup. Only if the fail terminal is not wired will the MediationConfigurationException be
logged and the flow terminated.

In the presentations for each of the individual mediation primitives, there is specific
information about error conditions that can occur for that primitive type. Which of these
behaviors you can expect to see is described.

WBIV61_CommonPrimitiveDetails.ppt Page 16 of 21

IBM Software Group

17

Mediation primitive common details © 2008 IBM Corporation

Error information in SMO

�When the fail terminal connection is followed:
�Error information is added to the service message object

�It is placed inside of the “context” with a “failInfo” tag

�The following is an example:

Error Message Failing Primitive

Path taken through flow

When the fail terminal is wired and an exception occurs within a mediation primitive,

information about the error is added to the failInfo section of the context section of the

service message object. The following information is added:

The failureString contains a text description of the error that occurred.

The origin contains the name of the mediation primitive in which the exception occurred.

The invocation Path contains a list of every mediation primitive that was encountered in

the message flow, up to and including the primitive in which the error occurred. In addition,

the names of the terminals through which the message passed are also listed with each

primitive.

With this information, logic in the flow might be able to determine what action to take in

response to the failure.

WBIV61_CommonPrimitiveDetails.ppt Page 17 of 21

IBM Software Group

18

Mediation primitive common details © 2008 IBM Corporation

Mediation primitives and XPath

� Mediation primitives operate on service message objects

� Service message objects are accessed using XPath 1.0 expressions

� Many configuration properties are XPath expressions
�These properties are set using the “XPath expression builder” dialog

� Several primitives have a configuration property called “Root”
�Represents the portion of the service message object that is used
�Values for root can be selected with a drop down box and generally contain

� / The entire service message object

� /Body the body of the message (operation and parameter or return values)

� /Context the message context (transient context, correlation context and failInfo)

� /Headers protocol headers and arbitrary properties

�Custom XPath expressions are sometimes valid for root properties

� XPath expressions cannot be null

Another element common to mediation primitives is that they operate on service message
objects and that XPath 1.0 expressions can be used to access the data within the SMO.
Many of the configuration properties used by primitives are expressed as XPath
expressions. There is a dialog in WebSphere Integration Developer called the XPath
expression builder that can be used to construct XPath expressions.

Several of the primitives have a property called root, which defines the portion of the SMO
that is to be used by the primitive during its processing. The valid values for root
properties are not consistent across all of the primitives. In most cases the root is
specified with a drop down box with four choices. The choice “/” refers to the entire SMO
and the choices “/body”, “/context” and “/headers” refer to each of the three major sections
of the SMO. In a smaller number of cases, the ability exists to use the XPath expression
builder to construct the expression for root. This enables a finer granularity in identifying
the portion of the SMO that is the root for the primitive.

Null XPath expressions cause an exception at runtime.

WBIV61_CommonPrimitiveDetails.ppt Page 18 of 21

IBM Software Group

19

Mediation primitive common details © 2008 IBM Corporation

Summary

� Reviewed basic concepts of mediation primitives
�Where they fit in the overall mediation picture

�Types of primitives

�High level look at the mediation flow editor

� Described common elements of mediation primitives
�Properties view panels

�Terminals

�Wiring

�Exceptions and error handling

�XPath

� Provided the base knowledge needed to look at details of
individual primitives

In this presentation, the basic concepts of mediation primitives were reviewed. This
included a description of where mediation primitives fit into the overall mediation picture,
what types of mediation primitives there are and an introduction to how they are edited in
the mediation flow editor.

Some of the common elements of mediation primitives were examined. These include the
properties view panels, terminals, wiring, exceptions, error handling and XPath usage.

With the understanding provided by this presentation, you should now be better prepared
to understand the specifics of each individual mediation primitive.

WBIV61_CommonPrimitiveDetails.ppt Page 19 of 21

IBM Software Group

20

Mediation primitive common details © 2008 IBM Corporation

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_WBIV61_CommonPrimitiveDetails.ppt

This module is also available in PDF format at: ../WBIV61_CommonPrimitiveDetails.pdf

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WBIV61_CommonPrimitiveDetails.ppt Page 20 of 21

IBM Software Group

21

Mediation primitive common details © 2008 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM WebSphere

A current list of other IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

Java, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include
technical inaccuracies or typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any
statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this
document to IBM products, programs, or services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM
operates or does business. Any reference to an IBM Program Product in this document is not intended to state or imply that only that program product may be used.
Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY
WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and
conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License Agreement, etc.) under which
they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly
available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other
claims related to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding
patent or copyright licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented
as illustrations of how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will
experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration,
and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements equivalent to the
ratios stated here.

© Copyright International Business Machines Corporation 2008. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule
Contract and IBM Corp.

WBIV61_CommonPrimitiveDetails.ppt Page 21 of 21

