

®

IBM Software Group

© 2008 IBM Corporation

Updated June 13, 2008

WebSphere® Enterprise Service Bus V6.1
WebSphere Process Server V6.1
WebSphere Integration Developer V6.1

Custom mediation primitive

This presentation provides a detailed look at the custom mediation primitive.

WBIV61_CustomPrimitive.ppt Page 1 of 26

IBM Software Group

2

Custom mediation primitive © 2008 IBM Corporation

Goals

�Understand the custom mediation primitive details

�Overview of function

�Use of terminals

�Definition of properties

�Basic code samples

�Changes since and migration from V6.0.2

�Error handling

�Examine custom code sample

Custom mediation

The goal of this presentation is to provide you with a full understanding of the custom

mediation primitive.

The presentation assumes that you are already familiar with the material presented in the

Mediation primitive common details presentation and the Common details –

Promoted properties presentation. These two presentations serve as a base for

understanding mediation primitives in general.

In this presentation, an overview of the custom mediation primitive is provided along with

information about the primitive’s use of terminals and its properties. There are some small

coding samples provided that are useful for helping you understand the basics about

developing code for a custom mediation primitive. This primitive has changed

considerably between version 6.0.2 and version 6.1. A review of those changes is

provided along with details about how to migrate custom mediation primitives developed in

version 6.0.2 to implementations that are compatible with version 6.1. Some error

conditions you might encounter are described. Finally, a realistic example examining some

of the new capabilities of custom mediation primitives is presented, including the complete

code used to implement the example.

WBIV61_CustomPrimitive.ppt Page 2 of 26

IBM Software Group

3

Custom mediation primitive © 2008 IBM Corporation

Overview of function

� Enables the use of custom mediation logic
�Use when no built-in primitive provides a needed function

�Logic might be simple tasks (such as printing to system log file)

�Also enables complex routing and transformation logic

� Logic implemented in Java™ and defined as a:
�Visual snippet

�Java snippet

� Access to entire SMO using:
�ServiceMessageObject APIs

�DataObject APIs

� Variable number of user defined input and output terminals

� User defined properties that are promotable

The custom mediation primitive enables you to define your own custom mediation logic for
use when the built-in primitives do not provide the needed functionality. In some cases
this might be simple logic such as printing a message to the system log file. However, the
custom mediation primitive is able to be used for complex transformation and routing logic,
which enhances the overall possibilities for what you can do in a mediation flow.

The logic in a custom mediation primitive is implemented in Java. There are two
approaches to doing this, using either a visual snippet or a Java snippet.

Within a custom mediation primitive, you have access to the entire SMO, which is both a
ServiceMessageObject and a DataObject type. This enables you to use either the strongly
types ServiceMessageObject APIs or the loosely typed DataObject APIs for accessing
and manipulating the contents of the SMO.

The custom mediation primitive allows you to define how many input and output terminals
you require, each of which can support a different message type. This is one of the key
elements that makes the custom mediation primitive capable of complex transformation
and routing logic.

The ability to define user properties which are promotable enables you to expose aspects
of your custom mediation primitive implementation so that its behavior can be
administered at runtime.

WBIV61_CustomPrimitive.ppt Page 3 of 26

IBM Software Group

4

Custom mediation primitive © 2008 IBM Corporation

Terminals

� Input terminals
�One by default
�From one to n allowed

�Output terminals
�One by default

�From zero to n allowed

� Fail terminal

�Message types:
�All input and output terminals can be of different types

�Fail terminal same type as the default in terminal

This slide examines the use of terminals for the custom mediation primitive. The upper two
screen captures show the default terminal configuration. The bottom two screen captures
show a custom mediation primitive with additional terminals configured.

The custom mediation primitive has one input terminal by default. It is required to have at
least one input terminal but can be configured with any number of additional input
terminals.

There is one output terminal configured by default. Like input terminals, there can be any
number of output terminals configured. However, unlike input terminals, there is not a
requirement for an output terminal. Therefore, you can delete the default output terminal if
it is not needed by your implementation.

As with all mediation primitives, there is a fail terminal used when the custom mediation
encounters an exception during its processing.

The message types of all the input and output terminals are allowed to be different. When
the message type of the input terminal is different from the output terminal, the code in the
custom mediation must modify the SMO structure. The message body of the SMO must
conform to the output terminal’s message type.

The fail terminal has the same message type as the default input terminal.

WBIV61_CustomPrimitive.ppt Page 4 of 26

IBM Software Group

5

Custom mediation primitive © 2008 IBM Corporation

Properties – Details - Java implementation

� Contains the code

� Initial default code shown
�Sends SMO to out terminal

� Code details in comments

The next few slides examine the various properties that are associated with a custom mediation primitive.

The Details panel of the Properties view is where you select the implementation type and provide the code

for the implementation. This slide looks at the Java snippet implementation. There is a text entry box which

behaves like a mini Java editor, providing features such as content assist and context sensitive highlighting.

The code shown in the text entry box is the actual default implementation that appears when you first create

a custom mediation with a Java implementation. There are several comments and one line of code provided.

This discussion starts with the comments, because they provide valuable information useful to you when

writing code. Notice in the text box, the comments start by stating “GENERATED COMMENT – DO NOT

MODIFY”. It is best to follow this advice, because when you modify the comments, the editor will place a new

copy of these comments into the source before the copy that you modified. However, because the comments

use long lines, you can see on this slide a copy that was extracted and edited so that some of the important

items in the comments can be brought to your attention. First the variables for the output terminals and user

properties are documented. In this case, there is one default output terminal named out, and no user defined

properties. Next are the inputs, the inputTerminal and the SMO. The inputTerminal object enables you to

determine information about the terminal that the incoming message flowed through. This is useful when you

have multiple input terminals. The SMO input contains the entire SMO typed as a ServiceMessageObject.

Finally, the MediationConfigurationException and the MediationBusinessException are listed, as these are

the two exceptions that you can raise from your code.

These comments are dynamic. When configuring the custom mediation primitive, any new user properties or

output terminals that you define are automatically added to the comments section.

The single line of code provided takes the smo and fires it on the output terminal. Typically, this code is

needed as is, unless your implementation has modified the number of output terminals defined for the

primitive.

Notice the Show Me icon in the slide. This is a link to a demonstration illustrating how to build a custom

mediation primitive with a Java implementation.

WBIV61_CustomPrimitive.ppt Page 5 of 26

IBM Software Group

6

Custom mediation primitive © 2008 IBM Corporation

Properties – Details - Visual implementation

� Initial default code shown - sends SMO to out terminal

� Same inputs, variables and exceptions as Java implementation

� Construct logic on canvas, dragging from palette and tray

� See Information Center - Customizing behavior with visual snippets:
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.ibm.wbit.610.help.activity.ui.doc/topics/cactint.html

The visual snippet implementation provides a visual snippet editor in which you can create

the logic for your custom mediation primitive. It consists of a palette, canvas and tray. In

the center is the canvas, which is where you build up your logic through connecting visual

constructs that provide various different capabilities. The shaded area to the left of the

canvas is the palette. It contains icons representing the various constructs used to define

the logic of your snippet. You click on these icons, drop them onto the canvas and wire

them together to build your snippet. On the right is the tray, from which you can drag

inputs, variables and exceptions onto the canvas. Notice that the tray contains the same

items that are described in the comments for a Java implementation.

The default implementation provides the same functionality that the Java implementation

does, code to fire the output terminal passing it the SMO.

Notice the Show Me icon in the slide. This is a link to a demonstration illustrating how to

build a custom mediation primitive with a visual implementation.

Usage of the visual snippet editor goes beyond the scope of this presentation. You should

see the Information Center topic entitled “Customizing behavior with visual snippets” to

learn how this editor is used.

WBIV61_CustomPrimitive.ppt Page 6 of 26

IBM Software Group

7

Custom mediation primitive © 2008 IBM Corporation

Properties – Java Imports
�Contains imports needed to compile

�Can be directly typed into field

�Can be set using Source -> Organize Imports

The Java Imports panel in the Properties view provides a text box where Java import
statements are listed. These are the imports of classes needed by your implementation.
These import statements can be typed directly into this field. However, it is generally
easier to let the Java editor, on the Details panel, do this work for you. When writing Java
code, any class referenced that the editor can’t resolve is flagged as an error. From the
editor pop-up menu, select Source and then Organize Imports. The imports needed will
automatically be added. In the case where there are multiple classes with the same name,
you are presented with a list of fully qualified class names from which you can select the
required class to be imported.

WBIV61_CustomPrimitive.ppt Page 7 of 26

IBM Software Group

8

Custom mediation primitive © 2008 IBM Corporation

Properties – User Properties

� User properties are accessible
in code as Java variables

� Can provide initial value

� Can be required

� Restriction: Name must start
with lower case character

� Types and Java types:
�String String

�Boolean boolean
�Integer int
�Float float

�XPath String

The User Properties panel allows you to define user properties using a table based entry
area. These user properties appear in your code as variables. The table provides you with
columns to define the property name, its type, value and if it is a required property. The
value specified in this table is used as the initial value for the property in your custom
mediation code. Note the restriction that property names must begin with a lower case
character. WebSphere Integration Developer does not enforce this restriction, but
properties beginning with upper case letters cause runtime exceptions to occur when the
mediation flow is initialized. The types that can be specified for a property are shown on
the slide, along with the corresponding Java type that is used for the property in the code.

WBIV61_CustomPrimitive.ppt Page 8 of 26

IBM Software Group

9

Custom mediation primitive © 2008 IBM Corporation

Promoted Properties

�User property values are promotable

�Provides ability to apply runtime administrative
control of behavior
�This is the key purpose of promoted properties

�No other properties are promotable

The Promoted Properties panel allows you to specify which of the custom mediation
primitive’s properties are promoted. The only properties that are promotable are the user
properties. Consistent with the promotion of a table based property, only one column is
actually promotable. In this case, it is the value column. Individual user properties can be
selected to have their value promoted.

Promotion of user properties provides a mechanism to enable administrative control over
the behavior of a custom mediation primitive. The code in the custom mediation can make
decisions based on user property values that are settable by administrators at runtime. In
reality, it is this capability than makes user properties useful. A user property that is not
promoted can just as easily be defined directly in the Java code rather than as a property.

WBIV61_CustomPrimitive.ppt Page 9 of 26

IBM Software Group

10

Custom mediation primitive © 2008 IBM Corporation

Sample code accessing SMO

This slide shows some simple code illustrating both Java and visual implementations of a
custom mediation primitive. These are not code segments, but show the entire
implementation of the primitive. The code illustrates the use of the ServiceMessageObject
APIs to access the UUID for the message, which is contained in the SMOHeader. It is
then printed to the SystemOut.log file, which also appears in the Console view of
WebSphere Integration Developer. The SMO is then fired on the output terminal named
out, passing the unchanged SMO.

WBIV61_CustomPrimitive.ppt Page 10 of 26

IBM Software Group

11

Custom mediation primitive © 2008 IBM Corporation

Sample code determining input terminal used

This is another code sample showing both the Java and visual implementations. In this
case, only code segments are shown, rather than the entire implementation of the
primitive.

Notice that the custom mediation primitive in the upper left has two input terminals. These
code segments provide the code needed to determine which input terminal received the
message, so that the appropriate processing can be done. The code uses the
inputTerminal object to access the name of the terminal through which the message was
received. This is then used in conditional statements checking if the terminal named “in” or
“myInputTerminal” was used, thus determining what processing is required.

WBIV61_CustomPrimitive.ppt Page 11 of 26

IBM Software Group

12

Custom mediation primitive © 2008 IBM Corporation

Sample code determining
input message types and context types

This sample is only shown in the Java implementation. It is used to illustrate code that can
determine the message type of the incoming SMO and determine the existence and type
of the transient, correlation and shared contexts.

Similar to the previous example, the inputTerminal is the starting point. This time it is used
to obtain an ESBTerminalType object describing the input terminal through which the
message arrived. From this the body type can be determined, which is the same as the
message type of the SMO. In this example, the fully qualified type is printout out.

The next section of code is used to check the message type of the SMO and make a
decision about what processing to do based on the type. This is very similar to the
previous example, except the message type of the input terminal is used rather than the
name of the input terminal.

The last section gets the type for each of the transient, correlation and shared contexts.
Since these contexts are optional, the code needs to check to see if a null is returned from
the ESBTerminalType object when getting the context type. If a type is returned, the code
prints it out.

The bottom of the slide shows sample output from when this code segment is run. In this
particular case, there was no correlation context, so you see the output for the message
type, transient context and shared context, but not for the correlation context. Notice that
in the printed output and in the code that is checking for the message type, the fully
qualified type names are being used.

WBIV61_CustomPrimitive.ppt Page 12 of 26

IBM Software Group

13

Custom mediation primitive © 2008 IBM Corporation

Understanding the firing of output terminals

� Code to fire a terminal can be anywhere in code logic
�Contents of SMO at this time defines what is propagated

�Terminal does not actually fire until code completes

� Multiple output terminals can be fired from the code
�Actual fire of terminals happens in the same order

This slide is used to highlight an important concept that you need to understand regarding
the firing of an output terminal. The code to fire an output terminal can appear at any point
in your custom mediation primitive’s logic. The contents of the SMO at the time the fire
method is invoked on the output terminal determines the content of the SMO that is
propagated through that terminal. However, the SMO is not actually propagated through
the terminal at that time. It is propagated after all of the code in the custom mediation has
completed.

If there are multiple output terminals that should be fired, the fire method can be invoked
on each of them. When the custom mediation code completes, the SMOs are propagated
through these terminals in the order the fire methods were invoked in the code.

The sample code, along with the comments, illustrate the processing that occurs. In this
code, the customerID field in the SMO body is set to a value of cust001 and then the
terminal outTerminal_A is fired with the SMO. Then the customerID field in the SMO body
is set to a value of cust002 and outTerminal_B is fired. In actuality, neither SMO has been
propagated through either of these terminals. Now the custom mediation is complete, so
the SMO containing a customerID of cust001 is propagated through terminal
outTerminal_A. The mediation flow continues along the path wired from that terminal.
Once that flow path completes, the SMO containing a customerID of cust002 is
propagated through terminal outTerminal_B and the flow continues along that path.

WBIV61_CustomPrimitive.ppt Page 13 of 26

IBM Software Group

14

Custom mediation primitive © 2008 IBM Corporation

Changes from V6.0.2

�Enhancements for custom mediation primitives

Reuse by copy/paste or configured primitive No reuse

User defined properties that are promotable No user defined properties

Invoke not supported – replaced with service invoke
primitive usable with any method signature

Invoke option with fixed
method signature

Snippets – Java and visual Snippets – Java and visual

Always the entire SMO Entire SMO or just the body

SMO to be propagated explicitly fired on any output terminal
or terminals

Returned SMO propagated
through out terminal

SMO as ServiceMessageObject SMO as DataObject

Zero to n output terminals One output terminal

One to n input terminals One input terminal

V6.1 V6.0.2

There were many significant changes that occurred to the capabilities of the custom
mediation primitive between versions 6.0.2 and 6.1. This slide summarizes those
differences and the subsequent slides look at migration considerations when moving a
custom mediation primitive implementation from version 6.0.2 to version 6.1.

Rather than go through the table line by line, the key things to highlight are these. The use
of terminals is much more flexible, allowing variable numbers of them and enabling control
over the firing of the output terminals. The handling of the SMO now is consistent, with the
entire SMO treated as a ServiceMessageObject, as opposed to a DataObject that might
be the body or the entire SMO. The removal of the invoke option with a fixed signature
from custom mediations has been replaced with the service invoke primitive enabling
flexible method signatures. User defined properties that are promotable have enabled the
administrative control of a custom mediation primitive’s behavior. And finally, the ability to
reuse a custom mediation primitive’s implementation has been enabled through copy and
paste.

WBIV61_CustomPrimitive.ppt Page 14 of 26

IBM Software Group

15

Custom mediation primitive © 2008 IBM Corporation

Migration

� Migrating a V6.0.2 custom mediation to V6.1
�Warning messages are produced

� The warning messages are worded very poorly

� Not clear what they are trying to tell you

� Visual and Java have same message, Invoke has a different message

�Right click on message to get pop-up menu, select Quick Fix

The migration of a custom mediation primitive from version 6.0.2 to version 6.1 is quite
easy. However, since the user interface is not at all intuitive, the next couple of slides
explain the process.

When you import a project into WebSphere Integration Developer that contains custom
mediation primitives developed in version 6.0.2, warning messages are produced. The
message text is not clear about what the warning is trying to tell you. For a custom
mediation primitive with a Java or a visual implementation, the message states: “Only the
visual or Java snippet of the XYZ custom mediation can be edited”, where XYZ is the
name of the custom mediation. For an invoke implementation, the message states: “The
reference and the operation that the XYZ custom mediation would invoke cannot be
modified”, with XYZ again being the name of the custom mediation. Custom mediations
from version 6.0.2 that produce these messages are able to run as is, but it is generally
better to migrate them to the version 6.1 style. To do that, get the pop-up menu from the
warning message and select the menu item Quick Fix, opening a dialog which is described
on the next slide.

WBIV61_CustomPrimitive.ppt Page 15 of 26

IBM Software Group

16

Custom mediation primitive © 2008 IBM Corporation

Migration – Quick fix dialog

� Quick Fix dialog
�Displays item for which Quick Fix

was selected

�Find Similar Problems button
used to locate others

�Dialog does not differentiate
� Identifies the flow the custom mediation

is in BUT DOES NOT identify which
custom mediation

� Therefore, you can only effectively do
all of them because you don’t know
which individual ones to select

The quick fix dialog displays the item for which the quick fix was selected, which is the
mediation primitive associated with the warning message whose pop-up menu was used.
In the problems list, the mediation flow component containing that custom mediation is
listed but the name of the custom mediation itself is not listed. There is a button you can
use to find similar problems. The result is that the mediation flow component for each
custom mediation with the same warning is listed, but again the actual custom mediation
names are not listed. You then have to select which ones you want to apply the quick fix
to. If you want to apply it to all of them you can select them all and proceed. However, if
you want to selectively apply the quick fix, this dialog is not useful. The best approach in
that case is to access this dialog for each individual custom mediation for which you want
to apply the fix by using the pop-up menu from each individual warning message.

WBIV61_CustomPrimitive.ppt Page 16 of 26

IBM Software Group

17

Custom mediation primitive © 2008 IBM Corporation

Migration – Java snippet implementation
� Results of a Quick Fix for a Java implementation
�Basic example, showing minimum code
�Method signatures are different
�V6.1 always passes the entire SMO

� Code operating on “input1” (the body) goes where shown

V6.0.2

V6.1 after Quick Fix

Code goes here

These next three slide look at the results of the quick fix processing for migrating a custom
mediation primitive from version 6.0.2 to version 6.1. This slide starts by looking at the
Java snippet implementation and is based on the minimum required code. Looking at the
implementation in version 6.0.2, you can see the root property indicating that only the body
of the SMO is being passed. The SMO is passed into the code as a DataObject named
input1 which is returned unmodified. In the migrated version, it is the entire SMO that is
passed in. The first thing that is done is to extract the body from the SMO, cast it to a
DataObject and assign it to the DataObject named input1. Any code that was in the
version 6.0.2 custom mediation before the return statement follows this. Because the code
from version 6.0.2 might have modified input1 before returning it, the last thing done in the
migrated code is to replace the SMO body with the contents of input1. The output terminal
is fired with the SMO.

WBIV61_CustomPrimitive.ppt Page 17 of 26

IBM Software Group

18

Custom mediation primitive © 2008 IBM Corporation

Migration – Visual snippet implementation

V6.0.2

V6.1 after Quick Fix

Code goes
here

� Results of a Quick Fix for a Visual implementation
�Basic example, showing minimum code

�Method signatures are different

�V6.1 always passes the entire SMO

This is exactly the same example applied to a visual snippet implementation, showing only
the minimum possible code. Again, looking at the implementation in version 6.0.2, you can
see the root property indicating that only the body of the SMO is being passed. The SMO
that is passed into the code is named input1, which is then returned unmodified. In the
migrated version, it is the entire SMO that is passed in. The first thing that is done is to
extract the body from the SMO and assign it to input1. Any code that was in the version
6.0.2 custom mediation before the return statement follows this. Similar to the previous
example, code from version 6.0.2 might have modified input1 before returning it.
Therefore, the last thing done in the migrated code is to replace the SMO body with the
contents of input1, and then fire the SMO on the output terminal.

WBIV61_CustomPrimitive.ppt Page 18 of 26

IBM Software Group

19

Custom mediation primitive © 2008 IBM Corporation

Migration – Invoke implementation

V6.0.2

� Results of a Quick Fix for an Invoke implementation
�Converted to Java implementation that calls the service defined by

the reference

V6.1 after Quick Fix

Since there is no equivalent implementation type to the invoke option from version 6.0.2,
the quick fix converts a custom mediation invoke into a Java snippet. The properties for
the invoke option include the name of the reference and the operation to invoke on that
reference. Similar to the other examples, only the body was being passed in version 6.0.2.
The migrated code uses the ServiceManager to locate the service for the reference, and
uses the service to obtain the operation type. The operation is then invoked on the service,
passing it the body extracted from the SMO. The returned body from the operation is then
used to update the SMO and the output terminal is then fired.

WBIV61_CustomPrimitive.ppt Page 19 of 26

IBM Software Group

20

Custom mediation primitive © 2008 IBM Corporation

Error processing
�MediationRuntimeException thrown for
�User property name starting with an upper case character

�User property value inconsistent with property type

�Exceptions thrown by your custom mediation code
�You can explicitly raise a MediationBusinessException or

MediationConfigurationException

�Any other exception occurring is wrapped by a
MediationBusinessException

�Fail terminal flow taken if wired

The error processing details and considerations are examined on the next couple of slides.

A MediationRuntimeException is thrown when a property name starts with an upper case
character. It is also thrown when the value for a property is inconsistent with the type
specified for the property. Examples of each of these are shown in the screen capture of
the user properties.

Exceptions can occur during the processing of the custom mediation primitive. In the case
where you have written code that raises an exception, the exception must be either a
MediationBusinessException or a MediationConfigurationException. When some other
exception occurs, such as a null pointer exception, it is wrapped in a
MediationBusinessException. For any of these exceptions, if the fail terminal is wired, the
flow will continue from the fail terminal.

WBIV61_CustomPrimitive.ppt Page 20 of 26

IBM Software Group

21

Custom mediation primitive © 2008 IBM Corporation

Error processing

� Null or incorrectly typed SMO fired from output terminal
�Does not produce an error at the custom mediation

�Errors occurring downstream in the flow depend upon flow definition

� Fail terminal message type
�Fail terminal’s message type defined by default input terminal’s

message type

�There can be multiple input terminals with different message types

�The actual SMO input message is fired on the fail terminal

�Therefore, the flow following the fail terminal cannot be dependent
upon the message type of the SMO

There is no checking of the message type of the SMO that is fired on an output terminal to
ensure it is compatible with the defined message type for the terminal. Therefore, when
this occurs, there is no error produced at the custom mediation itself. It is likely that this
will cause a problem somewhere downstream in the flow from the custom mediation. If
and how that problem is manifested depends upon your flow definition.

One of the error processing considerations for a custom mediation is the message type of
the fail terminal. Similar to other primitives, the message type of the fail terminal is defined
by the message type of the input terminal, in this case the default input terminal. However,
for a custom mediation primitive there can be multiple input terminals with different
message types. The message propagated through the fail terminal when an exception
occurs is the same type as the input terminal through which it was received. When you
have a custom mediation primitive which has multiple input terminals of different message
types, the definition of the flow from the fail terminal should not have any dependencies on
the message type of the SMO.

WBIV61_CustomPrimitive.ppt Page 21 of 26

IBM Software Group

22

Custom mediation primitive © 2008 IBM Corporation

Return modeled fault for flow errors

� Input operation has a FlowFailed fault defined
�Any problems in the flow are returned to caller using this fault

� Flow has several different message types
�Two XSL transformations and a service invoke including a modeled fault

� Single custom mediation used to construct the fault message
�All fail, service invoke timeout and modeled fault terminals wired to the custom

mediation
�Multiple input terminals for the various types

These next two slides take a look at the use of a custom mediation primitive, transforming
any errors that occur within the flow to a modeled fault. The modeled fault contains
information about the error that occurred and is returned to the caller. This slide sets up
and explains the scenario and the next slide provides a complete Java snippet
implementation.

This flow is for an operation called sendOrder, which is defined in the screen capture on
the lower left of the slide. Notice that the operation defines a fault called flowFailed which
passes back a FlowFailed business object, which is shown on the bottom center of the
slide. It contains two strings, a reason and the name of the primitive in which the error
occurred.

Now focus on the flow shown at the top of the slide. The normal processing of this flow
involves two XSL transformation primitives and a service invoke primitive. Each of the XSL
transformations has a fail terminal as does the service invoke primitive. In addition, the
service invoke has a timeout terminal and a terminal for a modeled fault that can be
returned by the service. Overall, there are four different message types defined across
these five terminals, all of which are wired to the custom mediation named Convert2Fault.
The bottom right screen capture shows the terminal names and message types for all the
terminals, including the four input terminals. The input terminals which are wired from the
fail and timeout terminals are named in, in1 and in3. The input terminal that is wired from
the modeled fault of the service invoke is named InventoryServiceFault.

WBIV61_CustomPrimitive.ppt Page 22 of 26

IBM Software Group

23

Custom mediation primitive © 2008 IBM Corporation

Return modeled fault for flow errors

-- Initialize the FlowFailed with reason

-- Create FlowFailed object

--Create body wrapper for FlowFailed object

-- Update SMO body and fire output terminal

This slide provides a complete implementation of the custom mediation primitive
functionality described on the previous slide.

The fault that is to be returned contains a FlowFailed business object, so the first thing that
is done is to create this object. This is done the way any business object is created in Java
code, by using the BOFactory.
The next thing to do is to initialize the FlowFailed object so that the reason and primitive
information is populated. At this point there is need to differentiate between an input
message resulting from the modeled fault versus the other sources of input messages,
because the location of the data in the SMO is different. The code checks to see if the
input terminal was named InventoryServiceFault, in which case it obtains the reason from
the body of the fault message. The name of the primitive does not exist in the SMO, so the
primitive name is set from a hard coded value. If the input message came from any of the
other input terminals, the reason and primitive values are obtained from the failInfo section
of the SMO context.

In order to place the FlowFailed business object into the SMO, it needs to be contained in
a body wrapper for the sendOrder operation’s flowFailed message. The body wrapper is
created using the ServiceMessageObjectFactory and the FlowFailed object is placed into
it.

Finally, the body wrapper for the fault is used to replace the existing body of the SMO, and
the result is fired on the output terminal.

WBIV61_CustomPrimitive.ppt Page 23 of 26

IBM Software Group

24

Custom mediation primitive © 2008 IBM Corporation

Summary

� Examined the custom mediation primitive details

�Overview of function

�Use of terminals

�Definition of properties

�Basic code samples

�Changes since and migration from V6.0.2

�Error handling

�Examine custom code sample

Custom mediation

In summary, this presentation provided details regarding the custom mediation primitive,
along with an overview of its function and information about the primitive’s use of terminals
and its properties. Some small coding samples were provided that are useful for helping
you understand the basics about developing code for a custom mediation primitive.
Because this primitive has changed considerably between version 6.0.2 and version 6.1, a
review of those changes was provided. Also provided were details about how to migrate
custom mediation primitives developed in version 6.0.2 to implementations that are
compatible with version 6.1. Some error conditions you might encounter were described.
Finally, a realistic example examining some of the new capabilities of custom mediation
primitives was presented, including the complete code used to implement the example.

WBIV61_CustomPrimitive.ppt Page 24 of 26

IBM Software Group

25

Custom mediation primitive © 2008 IBM Corporation

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_WBIV61_CustomPrimitive.ppt

This module is also available in PDF format at: ../WBIV61_CustomPrimitive.pdf

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WBIV61_CustomPrimitive.ppt Page 25 of 26

IBM Software Group

26

Custom mediation primitive © 2008 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM WebSphere

A current list of other IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

Java, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include
technical inaccuracies or typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any
statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this
document to IBM products, programs, or services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM
operates or does business. Any reference to an IBM Program Product in this document is not intended to state or imply that only that program product may be used.
Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY
WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and
conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License Agreement, etc.) under which
they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly
available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other
claims related to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding
patent or copyright licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented
as illustrations of how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will
experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration,
and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements equivalent to the
ratios stated here.

© Copyright International Business Machines Corporation 2008. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule
Contract and IBM Corp.

WBIV61_CustomPrimitive.ppt Page 26 of 26

