

®

IBM Software Group

© 2008 IBM Corporation

Updated June 2, 2008

WebSphere® Enterprise Service Bus V6.1
WebSphere Process Server V6.1
WebSphere Integration Developer V6.1

Message element setter mediation primitive

This presentation provides a detailed look at the message element setter mediation
primitive.

WBIV61_MessageElementSetterPrimitive.ppt Page 1 of 13

IBM Software Group

2

Message element setter mediation primitive © 2008 IBM Corporation

Goals

�Understand the message element setter primitive

�Overview of function

�Use of terminals

�Definition of properties

�Processing details

�Error handling

�Example usage

Message element setter

The goal of this presentation is to provide you with a full understanding of the message

element setter mediation primitive.

The presentation assumes that you are already familiar with the material presented in the

Mediation Primitive Common Details presentation and the Common Details –

Promoted Properties presentation. These two presentations serve as a base for

understanding mediation primitives in general.

An overview of the function provided by the message element setter primitive is presented,

along with information about the primitive’s use of terminals and its properties. Specific

details of the processing behavior are described, followed by the error handling

characteristics. Finally, a usage example of the message element setter primitive is

provided.

WBIV61_MessageElementSetterPrimitive.ppt Page 2 of 13

IBM Software Group

3

Message element setter mediation primitive © 2008 IBM Corporation

Overview of function
� Updates to the service message object (SMO)

�Assignment of a constant value
�Copying from one part of an SMO to another

� Leaf element
� Sub-trees, provided source and target types match

�Appending to an array
�Deleting elements

� Setting the element value to “null”

� XPath expressions used to identify elements
�Target elements
�Source elements of a copy operation

� Multiple elements can be set within the same primitive

� Easier than coding a custom mediation, XSL transformation or business
object map primitives

� More efficient than XSL transformation and business object map
primitives (updates are made in place)

The function of the message element setter primitive is to enable an easy and efficient
mechanism to make updates to the service message object (SMO). There are four
different types of updates that can be made. The first capability is the assignment of a
constant value to a leaf element of the SMO. Secondly, a copy capability is provided which
allows you to copy from one part of the SMO to another. The copy might be for a leaf
element or for a sub-tree, provided that the source and target sub-trees have a matching
structure. Similar to the copy operation is the append, which enables you to add an
element to the end of an array, providing the array target and source types match. Finally,
an element can be deleted. This does not actually delete the element completely from the
SMO, but rather sets the value of the element to null.

XPath expressions are used to identify the target elements in the SMO that are updated
by the primitive. The source elements of copy and append operations are also identified
using XPath expressions.

The message element setter primitive allows multiple elements to be updated. It makes
use of a table property where each row of the table defines a single update.

The other primitives that can be used to perform the same kind of function are the custom
mediation, business object map and the XSL transformation primitives. The message
element setter primitive provides an easier mechanism to define the updates than these
other primitives. In addition, the updates made by a message element setter are done in
place rather than making a totally new copy of the SMO. Therefore, it is much more
efficient at runtime than the XSL transformation or business object map primitives.

WBIV61_MessageElementSetterPrimitive.ppt Page 3 of 13

IBM Software Group

4

Message element setter mediation primitive © 2008 IBM Corporation

Terminals

� Terminals:
�Input terminal

�One Output terminal

�Fail terminal

� All terminals must be for the same message type

The message element setter primitive has one input terminal, one output terminal and a
fail terminal. The output terminal must be for the same message type as the input
terminal, since the message element setter primitive does not modify the type of the
message body. Shown here is a message element setter primitive with its terminals and
the terminals as seen in the properties view.

WBIV61_MessageElementSetterPrimitive.ppt Page 4 of 13

IBM Software Group

5

Message element setter mediation primitive © 2008 IBM Corporation

Properties

� Message elements
�Table defining the ordered list of elements to be set

�Full description on next slide

� Validate input
�Validate incoming message is of the expected type
�Ensure it meets constraints defined by its type

� For example: minOccurs, maxValue

The message element setter primitive has two properties.

The first, the Message Elements property, is a table that provides an ordered list of

elements in the SMO that are updated by the primitive. This table is examined in detail on

the next slide.

The Validate input property performs a validation of the incoming SMO to ensure it is of

the expected type and that it meets the constraints defined by its type. Performing the

validation involves runtime processing overhead. Therefore, this should only be selected

where there is a possibility that the input SMO might not conform to the specified type.

WBIV61_MessageElementSetterPrimitive.ppt Page 5 of 13

IBM Software Group

6

Message element setter mediation primitive © 2008 IBM Corporation

Message elements

� Each message element in the table defined by:
�Target – XPath defining the target element

�Value – value to set target element (defined by type)

�Type

� <SET> = String, int, long, boolean, double, short, byte, float
– Value contains constant of specified type which must match the target type

� copy – value contains XPath to source, type must match target

� append – value contains XPath to source, type must match target array

� delete – value is empty

The Message Elements table based property defines an ordered list of updates made to

the SMO, where each row of the table defines an individual update. The table contains

three columns used to define the updates.

The Target column contains an XPath expression defining the element in the SMO that is

to be updated.

The Value column defines what is to be set in the target element. How the value is

interpreted depends upon what operation is defined by the Type column.

When the setting of a constant value into the target element is required, the Type column

defines the type of the constant, such as String or int. It must match the type of the target

element as defined in the SMO. Valid values for a constant type are shown on the slide.

When the update is a copy operation, the Type column contains copy and the Value

column contains an XPath expression identifying the source element that is to be copied.

The source and target types can be simple or complex, but must be of the same type.

When the type column contains append, the Value column contains an XPath expression

identifying the source element that is to be appended to the target array. Similar to copy,

the source and target types must match.

Finally, the Type column can contain ‘delete’ to signify that the element is to be set to null.

In this case the Value column is left blank.

WBIV61_MessageElementSetterPrimitive.ppt Page 6 of 13

IBM Software Group

7

Message element setter mediation primitive © 2008 IBM Corporation

Promoted properties

� Promotable
�Validate input
�Message elements table (Value column)

This slide examines the Promoted Properties panel for the message element setter
primitive. Both of the primitive’s properties are promotable.

Promoting the Validate input property allows an administrator to turn validation of the SMO
on and off. This enables the performance advantage realized by not doing validation of the
input SMO, while at the same time enabling the administrator to turn on validation for
problem determination if the need arises to debug a problem.

In the Message Elements table based property, the Value column can be promoted. In the
above screen captures, the four types of SMO updates are shown in the Message
Elements table, with pointers to how they appear in the Promoted Properties table.
Promoting a set constant, copy or append can be useful, depending upon your application
scenario. Since the delete does not contain a value, it does not make sense to promote a
row for a delete. However, the entry still appears in the Promoted Properties table.

WBIV61_MessageElementSetterPrimitive.ppt Page 7 of 13

IBM Software Group

8

Message element setter mediation primitive © 2008 IBM Corporation

Processing details
� Target element is created if it does not exist

� Deleting elements
�Only optional or repeating elements can be deleted
�Deleting an element sets it to null
�For non-leaf node elements, this results in the sub-tree being deleted

� When multiple elements are set it appears simultaneous
� Example:

– Original values: A=1, B=2, C=3
– Message Element table: (1) copy A to B (2) copy B to C
– Result: A=1, B=1, C=2 (not 1)

� The order of elements in the table is not important

� When same element set more than once, the last one wins
�Example:

� Original values: A=1, B=2, C=3
– Message Element table: (1) copy A to C (2) copy B to C
– Result: A=1, B=2, C=2 (not 1)

� The order of elements in the table is important

For some cases, it can be important to understand the nuances of behavior exhibited by
the message element setter primitive. Several of the processing details for the primitive
are provided here.

When the target XPath expression identifies an element in the SMO that does not
currently exist in the SMO, it is created.

When deleting elements, there are a few things to be considered. First of all, only optional
or repeating elements can be deleted. When an element is deleted, it is not removed from
the SMO, rather it is set to null. Also, if the element is not a leaf node element, setting it to
null results in the sub-tree for that element being deleted.

Although the table is an ordered list of updates, the results of processing updates to
multiple elements appears to have occurred simultaneously. For example, suppose the
table specifies to copy A to B, and then specifies to copy B to C. The result is that C is set
to the original value for B, not to the value for A.

Order is important when the same element is updated more than once. In this case, the
last update is the effective one. For example, suppose the table specifies to copy A to C,
and then specifies to copy B to C. The result is C contains the original value for B since
that was the last update to C.

WBIV61_MessageElementSetterPrimitive.ppt Page 8 of 13

IBM Software Group

9

Message element setter mediation primitive © 2008 IBM Corporation

Error processing

� MediationRuntimeException thrown for:
�Target or source XPath expression syntax is not valid

�Value does not match type set in table
� For example: Type=int, Value=abc

� MediationBusinessException (Fail terminal flow)
�Source XPath expression specifies non-existent location

�Validate Input is set and incoming SMO does not pass validation

�Copy between elements of incompatible types

� Empty Message Element table
�Setting no elements is not considered an error

�Mediation primitive is effectively a no-op

The error processing details and considerations are examined in this slide.

A MediationRuntimeException is thrown when either the source or target XPath
expression syntax is not valid. It is also thrown when the value in the table does not match
the type. An example of a type mismatch is when the type is integer and the value is an
alphabetic string, such as “abc”.

When a MediationBusinessException occurs, the flow passes through the fail terminal for
the message element setter if it is wired. This exception occurs if the source XPath
expression for a copy or append operation specifies a location that does not exist in the
SMO. It also occurs when the Validate input property is set and the SMO does not pass
validation. Another reason for the occurrence of a MediationBusinessException is when
the source and target elements of a copy or append operation are not of compatible types.

It is not considered an error condition when the message element table property contains
no rows. In this case, the message element setter primitive is effectively a no-op. The
SMO is not updated and no error is raised.

WBIV61_MessageElementSetterPrimitive.ppt Page 9 of 13

IBM Software Group

10

Message element setter mediation primitive © 2008 IBM Corporation

Usage example

� Raise event containing target address if service returns fault
�Request flow

� Has logic that includes setting the target address of the service

� Message element setter - saves the target address in the correlation context

�Response flow
� When a fault is returned an event is emitted

� Event contains entire SMO (includes fault information and target address)

Copy target address
from SMOHeader to the

correlation context

Event for fault contains
correlation context

NOTE: Version 6.0.2 screen capture

This slide describes an example usage of the message element setter primitive. The
screen capture is taken from the mediation flow editor using WebSphere Integration
Developer version 6.0.2. You might notice some differences in the visual appearance from
version 6.1, but the flow being described is the same between these versions.

The purpose of the scenario is to be able to raise an event that contains the target
address of the service provider if the service returns a fault. In the scenario, the callout to
the service provider is a dynamic callout, making use of the target address set into the
SMO by logic in the mediation flow. This might be a custom mediation with logic to set the
target address or possibly the result of an endpoint lookup primitive. In any case, the
target address needs to be preserved across the call in case the service provider returns a
fault. This is where the message element setter comes in, copying the target address from
the SMO header to an element in the correlation context. Then on the response flow, the
callout fault node is wired to an event emitter which places the entire SMO into the event.
This produces an event that contains the target address and the fault information.

WBIV61_MessageElementSetterPrimitive.ppt Page 10 of 13

IBM Software Group

11

Message element setter mediation primitive © 2008 IBM Corporation

Summary

�Examined the message element setter primitive

�Overview of function

�Use of terminals

�Definition of properties

�Processing details

�Error handling

�Example usage

Message element setter

In summary, this presentation provides an overview of the function provided by the
message element setter primitive, along with information about the primitive’s use of
terminals and its properties. Details of processing behavior were described followed by the
error handling characteristics. Finally, a usage example of the message element setter
primitive was provided.

WBIV61_MessageElementSetterPrimitive.ppt Page 11 of 13

IBM Software Group

12

Message element setter mediation primitive © 2008 IBM Corporation

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:
mailto:iea@us.ibm.com?subject=Feedback_about_WBIV61_MessageElementSetterPrimitive.ppt

This module is also available in PDF format at:
../WBIV61_MessageElementSetterPrimitive.pdf

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WBIV61_MessageElementSetterPrimitive.ppt Page 12 of 13

IBM Software Group

13

Message element setter mediation primitive © 2008 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM WebSphere

A current list of other IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include
technical inaccuracies or typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any
statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this
document to IBM products, programs, or services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM
operates or does business. Any reference to an IBM Program Product in this document is not intended to state or imply that only that program product may be used.
Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY
WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and
conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License Agreement, etc.) under which
they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly
available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other
claims related to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding
patent or copyright licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented
as illustrations of how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will
experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration,
and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements equivalent to the
ratios stated here.

© Copyright International Business Machines Corporation 2008. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule
Contract and IBM Corp.

WBIV61_MessageElementSetterPrimitive.ppt Page 13 of 13

