
  

  

  

   

    
   
   

   

           

® 

IBM Software Group 

© 2008 IBM Corporation 

Updated June 6, 2008 

WebSphere® Enterprise Service Bus V6.1 
WebSphere Process Server V6.1 
WebSphere Integration Developer V6.1 

Service invoke mediation primitive 

This presentation provides a detailed look at the service invoke mediation primitive. 

WBIV61_ServiceInvokePrimitive.ppt Page 1 of 16 



  

  

     

     

  

  

  

 

 

 

 

                
   

              
         
          

     

             
               

               
             

          

IBM Software Group 

2 

Service invoke mediation primitive © 2008 IBM Corporation 

Goals 

�Understand the service invoke mediation primitive 

�Overview of function 

�Use of terminals 

�Definition of properties 

�Invocation styles 

�Error handling 

�Example usage 

Service invoke 

The goal of this presentation is to provide you with a full understanding of the service
 
invoke mediation primitive.
 

The presentation assumes that you are already familiar with the material presented in the
 
Mediation primitive common details presentation and the Common details –
 
Promoted properties presentation. These two presentations serve as a base for
 
understanding mediation primitives in general.
 

This presentation starts with an overview of the service invoke primitive and information
 
about the primitive’s use of terminals and its properties. A discussion of invocation styles is
 
then presented, as it is important for helping you understand the behavior of a mediation
 
flow containing a service invoke. Some error handling information is discussed and an
 
example use case of the service invoke primitive is provided.
 

WBIV61_ServiceInvokePrimitive.ppt Page 2 of 16 



  

  

     

  

      
         

      
 

  

  

 
          

     
      

          

                
             

                 
              

            
                
       

             
               

                
              

                
   

IBM Software Group 

3 

Service invoke mediation primitive © 2008 IBM Corporation 

Overview of function 

� Invokes a service from within a flow 
�Can be used in either a request or response flow 

� Conceptually similar to the combination of: 
� Callout node 

� Callout response node 

� Callout fault node 

� Associated with: 
�A reference on the mediation flow component in the module assembly 

�A specific operation on the reference 
� Operation can be request/response or one way 

�Reference can be wired or dynamic endpoints can be used 

The purpose of the service invoke primitive is to enable you to call an external service 
from within a mediation flow, either a request flow or a response flow. 

In many ways, it is similar to a combination of a callout node and its associated callout 
response node and callout fault node. This is illustrated in the graphic, where the service 
invoke is represented as the enclosing rectangle and the relationship between the 
terminals of a service invoke and the terminals of the three nodes are shown. This is 
described in more detail later in the presentation. 

A service invoke primitive is associated with a reference on the mediation flow component 
in the assembly diagram, and to a specific operation on the interface of that reference. 
The operation can be a request response operation or can be a one way operation. The 
service invoke primitive can be configured to make use of a dynamic endpoint address 
taken from the SMO rather than using the import or component the reference is wired to in 
the assembly. 

WBIV61_ServiceInvokePrimitive.ppt Page 3 of 16 



  

  

     

  

       
       

      

       
    

        

  
       

    

  

   

                 
                 

            
            

    

              
               

             
             

    

             
              

               
          

IBM Software Group 

4 

Service invoke mediation primitive © 2008 IBM Corporation 

Overview of function 

� Possible to be asynchronous to the mediation flow 
�Asynchronous with callback style of service invocation 

�Resumption of mediation flow upon callback 

� A flow can have multiple service invoke instances 
�A series of service invocations 

�Parallelism possible using asynchronous with callback 

� Configurable retry behavior 
�Retry invocation after a modeled or unmodeled fault 

�Number of times to retry 

�Delay between retries 

�Use of alternate endpoints 

When a service invoke primitive makes a call to an external service, it is possible for that 
call to be either synchronous or asynchronous to the mediation flow. In the case where it is 
asynchronous, the mediation flow is resumed upon callback. A complete discussion of 
invocation styles and the effect of synchronous versus asynchronous calls are discussed 
later in this presentation. 

There can be multiple service invoke primitive instances in the same mediation flow. This 
might be a series of service invocations in a sequential flow. Additionally, when there are 
multiple paths through a flow with each containing a service invoke, the service 
invocations have the possibility of being processed in parallel if the asynchronous with 
callback invocation style is used. 

The service invoke primitive can be configured to retry failing service calls. The 
configuration allows you to specify if it should be done for modeled faults, unmodeled 
faults or both. Additional configuration properties specify a retry count, a retry delay and if 
alternate endpoints should be used when retrying the call. 

WBIV61_ServiceInvokePrimitive.ppt Page 4 of 16 



  

  

     

 

  
     

  
    

     
       

      

    
       

    

         
         

  
       

                 
                   

                 
              

               
  

              
                
      

                
                

                 
     

              
               

               
               

        
             
                 

            
                 

                
 

IBM Software Group 

5 

Service invoke mediation primitive © 2008 IBM Corporation 

Terminals 

� One input terminal 
�Message type = request message 

for the operation 
� 1 to n output terminals 
�One output terminal for the response 

� Message type = response message for the operation 

� Does not exist for one way operations 

�One output terminal for timeouts 
� Message type = request message for the operation 

� Only used for asynchronous timeouts 

�One output terminal for each modeled fault for the operation 
� Message type = fault message for the operation and fault 

� One fail terminal 
�Message type = request message for the operation 

This slide looks at the terminals that are used with a service invoke primitive. In the top 
center of the slide is a screen capture of a service invoke primitive as it appears in a flow. 
On the center right is a screen capture of the terminals panel from the properties view. As 
was mentioned earlier, the service invoke can be thought of as a combination of the 
callout node, callout response node and callout fault node, which is illustrated in the upper 
right corner. 
A service invoke primitive has one input terminal, called in, whose message type is 
defined by the operation being called on the external service. This is similar to the in 
terminal of a callout node. 
The service invoke can have from one to n output terminals. The first output terminal is 
called out. It has a message type defined by the response for the operation being called. 
This can be compared to the out terminal of a callout response node. For a one way 
operation, this terminal does not exist. 
The next output terminal is called timeout and is used when an asynchronous timeout 
occurs waiting for the response. The message type is the same as the message type of 
the in terminal. For synchronous operations, this terminal is present but will never be fired. 
Callouts have no equivalent terminal to the timeout terminal. They use the fail terminal of 
the callout response node to return asynchronous timeouts. 
The remaining output terminals represent the faults defined for the operation being called, 
with one terminal for each fault. The message type of each terminal is defined by the fault. 
These are the same as the terminals of the callout fault node. 
Finally, there is the fail terminal whose message type is the same as the message type of 
the in terminal. This terminal can be compared to the fail terminal of a callout response 
node. 

WBIV61_ServiceInvokePrimitive.ppt Page 5 of 16 



  

  

     

 

   
 

 

  
 

    

          

           
              
              

              
  

             
              

           
                  

      

             
               

               
                

              
            

               
               
              

IBM Software Group 

6 

Service invoke mediation primitive © 2008 IBM Corporation 

Properties 

�Properties controlling service invocation 
�Reference name 

�Operation name 

�Use dynamic endpoint 
�Async timeout 

�Asynchronous with callback not allowed 

The Details panel of the Properties view is shown here. 

The first two properties are the Reference name and the Operation name. They define 
the reference, and therefore the interface, that this service invoke is associated with and 
the specific operation on that interface to call. On this panel, these properties are read 
only. They are specified when the service invoke primitive is created and cannot be 
changed. 

The Use dynamic endpoint, if set in the message header property, causes the service 
invoke primitive to check the SMO for a target URL address in the field 
headers/SMOHeader/Target/address. If there is one set, that endpoint URL is used rather 
than the reference’s wire target. If a target URL address is not set in the SMO, the wire 
target of the reference is used. 

The Async timeout property specifies how many seconds to wait before for a response 
before the timeout terminal is fired. If the call is synchronous, this property is ignored. 

The final property on this panel can be referred to as Asynchronous with callback not 
allowed or is sometimes referred to as force synch. The actual wording on the panel says: 
Require mediation flow to wait for service response when the flow component is invoked 
asynchronously with callback. This property setting is used to prevent the asynchronous 
with callback invocation style, thus not allowing the service invocation to run on a separate 
thread from the mediation flow. Note that this property is implicitly set for any service 
invoke primitives that exist in a flow between a fan out and fan in primitive. 

WBIV61_ServiceInvokePrimitive.ppt Page 6 of 16 



  

  

     

  

 

 

 

 

 

 

  

       

          

               
                

      

             
               
         

              
     

             
         

 

              
        

IBM Software Group 

7 

Service invoke mediation primitive © 2008 IBM Corporation 

Properties for retry 

� Retry on 
�Never 

�Any fault 

�Modeled fault 

�Unmodeled fault 

� Retry count 

� Retry delay 

� Try alternate endpoints 

* See separate Service call retry presentation for details 

The properties for retry are specified on their own panel.
 

The Retry on property can be set to never, indicating not to perform retry processing. It
 
can also be set to Modeled fault, Unmodeled fault or Any fault, indicating which type of
 
faults should result in retry processing.
 

The Retry count property specifies how many times to attempt a retry when faults
 
continue to occur during retry processing. Once the retry count is reached, the fault that
 
occurred on the final attempt is returned to the flow.
 

The Retry delay specifies how many seconds to wait between a fault being returned and
 
the next retry attempt.
 

Finally the Try alternate endpoints specifies that endpoint URLs from the SMO should be
 
used to perform the retries. These are located at
 
headers/SMOHeader/AlternateTarget/address.
 

Details of retry processing, as it applies to callouts and service invoke primitives, is
 
explained in a separate presentation entitled Service call retry.
 

WBIV61_ServiceInvokePrimitive.ppt Page 7 of 16 



  

  

     

 

  
 

 
 
 

  

 
 
 

    

            

         

            
         

           
          

            
         

IBM Software Group 

8 

Service invoke mediation primitive © 2008 IBM Corporation 

Promoted properties 

� Promotable 
�Use dynamic endpoint 
�Async timeout 
�Retry on 
�Retry count 
�Retry delay 
�Try alternate endpoints 

� Not promotable 
�Reference name 
�Operation name 
�Asynchronous with callback not allowed 

This slide shows the Promoted Properties panel for a service invoke primitive.
 

The properties Use dynamic endpoint and Async timeout are both promotable.
 

Also, all of the properties associated with retry processing are promotable, which are
 
Retry on, Retry count, Retry delay and Try alternate endpoints.
 

The Reference name and Operation name are not promotable. Changing either of these
 
requires corresponding development time changes to the flow. Likewise, the
 
Asynchronous with callback not allowed has the potential to require changes to the
 
logic of the flow and is therefore not promotable.
 

WBIV61_ServiceInvokePrimitive.ppt Page 8 of 16 



  

  

     

  

       
     

   
      

       

      

  
      

   
          

      

      
            

              
            
           

       

             
                

 

           
              

              
         

            
               
  

          
           

                 
               

                 
               

              
                 

 

IBM Software Group 

9 

Service invoke mediation primitive © 2008 IBM Corporation 

Invocation styles 
� Synchronous 

�Synchronous call to the service (SCA “invoke”) 
�Mediation thread blocked until service returns 

� Asynchronous with deferred response 
�Asynchronous call to the service (SCA “invokeAsync”) 
�Mediation thread blocked until response received (SCA “invokeResponse”) 

�Async timeout property specifies maximum wait time 

� Asynchronous with callback 
�Asynchronous call to the service (SCA “invokeAsyncWithCallback”) 

�Mediation thread continues 
� Anything additional wired on input side of service invoke primitive continues 

� Terminates once all additional processing is completed 

�Callback with response starts new mediation thread 
� Anything wired on output side of service invoke primitive runs on this thread 

These next few slides discuss the topic of invocation styles used by service invoke 
primitives. The invocation styles are the service component architecture defined styles of 
invocation which provide the underlying implementation. This slide describes these SCA 
defined styles as they apply to mediation flows. 

The Synchronous style of invocation uses the SCA API invoke operation to make the 
call. This causes the tread on which the mediation is running to block until the response is 
received. 

The Asynchronous with deferred response style of invocation uses the SCA API 
invokeAsync operation. From an SCA perspective, this allows the thread making the call to 
continue in parallel, and then it can use the SCA invokeResponse operation to receive the 
response. However, the service invoke primitive performs the invokeResponse 
immediately after the invokeAsync, so effectively no parallel processing occurs. It does 
allow the asynchronous timeout property to cause a timeout if the response is not received 
within that timeframe. 

The Asynchronous with callback style of invocation uses the SCA API 
invokeAsyncWithCallback. From an SCA perspective, this allows the thread making the 
call to continue in parallel, and the response to be received on a new thread kicked off by 
a callback. As this applies to the mediation flow, the thread on which the mediation is 
running will continue if there is more work to be done. Basically, this means that in a 
mediation with multiple flow paths, anything wired on the input side of the service invoke 
will continue until all is completed. The thread then terminates. The response is received 
on a new thread which is kicked off starting on the output side of the service invoke 
primitive. 

WBIV61_ServiceInvokePrimitive.ppt Page 9 of 16 



  

  

     

  

     
        
          

     

    
        

       

       

        

                
            

            
              

              
             
                 

            
             

              
             
     

                
                

               
              

           
               

 

IBM Software Group 

10 

Service invoke mediation primitive © 2008 IBM Corporation 

Invocation styles 

� Synchronous versus asynchronous with deferred response 
�Very little difference in overall behavior of the mediation 

� One way operations and reference qualifier: asynchronous invocation = commit 

� Async timeout property and timeout terminal 

� Invocation style determined by: 
�Invocation style used to call the mediation flow component 

�The preferred invocation style of the target service 

�Whether the request is one way or request/response 

�Value of the property asynchronous with callback not allowed 

In the context of the service invoke primitive, there is really very little difference in the 
behavior you will see between the synchronous and asynchronous with deferred response 
styles of invocation. This is because the service invoke primitive calls invokeResponse 
right after invokeAsync, and thus the mediation flow blocks waiting for the response similar 
to the synchronous style. There are a couple of differences that are seen between these 
two styles. There is a qualifier used on references called asynchronous invocation which 
can have a value of call or commit. When a one way operation is invoked using the 
asynchronous with deferred response style and asynchronous invocation is set to commit, 
the actual invocation of the service does not happen until the containing transaction 
commits. The second difference is that a timeout can occur with the asynchronous with 
deferred response style. Other than these differences, the two styles exhibit the same 
behavior in a mediation flow. 

Which invocation style is used by the service invoke is not based on a simple property 
setting, but rather on a combination of factors. One of the factors is the invocation style 
that was used to call the mediation flow component. Then, the preferred invocation style of 
the target service is considered and whether the operation is one way or request 
response. Finally, the property asynchronous with callback not allowed prevents an 
asynchronous with callback style invocation. This is explained in more detail on the next 
slide. 

WBIV61_ServiceInvokePrimitive.ppt Page 10 of 16 



  

  

     

  

      
       
       

    
         

              
               

            
                 

             
               

               
             

              
                

            
             

             
          

               
             
               

IBM Software Group 

11 

Service invoke mediation primitive © 2008 IBM Corporation 

Invocation styles 

� Asynchronous with callback used only when: 
�Mediation flow component invoked with asynchronous with callback 
�Preferred interaction style of target is not “sync” 
�The operation is a request/response 
�The asynchronous with callback not allowed property is not selected 

This slide contains a table defining the invocation style based on the various factors 
described on the previous page. The first column defines the invocation style used to call 
the mediation flow component. The second column defines the preferred interaction style 
of the target. The third column defines if the operation is one way or request response and 
the rightmost column indicates the invocation style used by the service invoke primitive. 
You might notice that the last column title indicates the invocation style used for callout, 
but the rules followed are the same for callouts and service invoke primitives. Rather than 
going through the entire table, it is provided for your reference. However, since 
asynchronous with callback is the only way to get parallel processing, it is worthwhile 
pointing out the limited set of circumstances where this interaction style is used. First of all 
the mediation flow component must have been called using the asynchronous with 
callback style and the preferred target interaction style cannot have been set to sync. 
Additionally, the request must be a request response operation and finally the property 
asynchronous with callback not allowed can not have been set. 

At this point it is worth mentioning that splitting and aggregating scenarios using fan out 
and fan in implicitly set the property asynchronous with callback not allowed. Therefore, 
one of the most likely places to exploit parallel processing cannot take advantage of it. 

WBIV61_ServiceInvokePrimitive.ppt Page 11 of 16 



  

  

     

 

  
    

      

          

      
       

   

       

       

            

            
            

              
                 

   

            
               

                
              

             
       

IBM Software Group 

12 

Service invoke mediation primitive © 2008 IBM Corporation 

Error processing 

�MediationRuntimeException thrown for: 
�Property value is not valid: 

� WebSphere Integration Developer ensures valid values 

� Possible if promoted property incorrectly value incorrectly set at runtime 

�Other possible exceptions you might see: 
�Shown in failInfo when fail terminal wired: 

� NullPointerException – Reference not wired 

� IllegalArgumentException – Reference wired to import with no binding 

�Same situations and fail terminal not wired: 
� SIBXFireFailTerminalException 

The error processing details and considerations are examined in this slide.
 

A MediationRuntimeException is thrown when a property value specified for the service
 
invoke is not valid. Because WebSphere Integration Developer validates property values,
 
this problem is only seen when the incorrect property value has been set administratively
 
for a property that has been promoted. The retry on property is an example of one for
 
which this can occur.
 

Other possible exceptions you might encounter involve problems with the assembly, and
 
vary depending upon whether the fail terminal is wired. When the fail terminal is wired, the
 
exceptions are seen in the failInfo section of the SMO. An unwired reference results in a
 
NullPointerException and a reference wired to an import with no binding results in an
 
IllegalArgumentException. For the case where the fail terminal is not wired, these same
 
two situations both result in an SIBXFireFailTerminalException.
 

WBIV61_ServiceInvokePrimitive.ppt Page 12 of 16 



  

  

     

 

       
      

     
  

     

      

                  
                    

                
                  
            

                  
               

                    
                 

                   
        

                    
                  

               
                   

               
              

                 
               

                
                 

                   

IBM Software Group 

13 

Service invoke mediation primitive © 2008 IBM Corporation 

Example usage 

�Combine result of two services into one response 
�Query information for a specific part number 

�Returns a business object containing 
� Part number 

� Detailed description (from the catalog service) 

� Stock on hand (from the inventory service) 

This slide illustrates one of the possible use cases for the service invoke primitive. In this scenario, the 
mediation is used to combine the results of calls to two services to build a response to the incoming request. 
The incoming request provides a part number, and the response is a business object containing the part 
number, a description of the part and the quantity currently in inventory. The description for the part is 
obtained from a catalog service and the quantity from an inventory service. 

In the slide you can see the assembly diagram showing the export exposing the part data service, the part 
data mediation containing the flow and the two imports for the catalog and inventory services. 

Below the assembly diagram is the mediation flow. Notice that there is no callout for this flow. Calls to the 
catalog service and inventory service are both required to build the response, so these are both done using 
the service invoke primitive. The response is then built within the request flow and returned to the caller using 
the input response node in the request flow. 

In order to make use of the service invoke primitives, the message type of the SMO must be transformed to 
setup each request and to process each response. Therefore, looking at the flow, you see that the first 
primitive is an XSL transformation, called XForm2Catalog. It takes the part data request message received 
as input and transforms it into a catalog request message. It also saves the incoming part number in the 
transient context. The QueryCatalog service invoke primitive calls the catalog service and the resulting SMO 
is a catalog response message. The next XSL transformation, XForm2Inventory, saves the description from 
the response in the transient context and sets up the message to be an inventory request message. The 
QueryInventory service invoke primitive now calls the inventory service and the resulting SMO is an 
inventory response message. The final step is for the XSL transformation, XForm2Response, to build a part 
data response message. It gets the part number and description from the transient context and the inventory 
quantity from the inventory response message body. The input response node then returns this to the caller. 

WBIV61_ServiceInvokePrimitive.ppt Page 13 of 16 



  

  

     

 

     

  

  

  

 

 

 

 

           
              

              
             

              
  

IBM Software Group 

14 

Service invoke mediation primitive © 2008 IBM Corporation 

Summary 

�Examined the service invoke mediation primitive 

�Overview of function 

�Use of terminals 

�Definition of properties 

�Invocation styles 

�Error handling 

�Example usage 

Service invoke 

In summary, this presentation provided details regarding the service invoke primitive, 
providing an overview of its function and information about the primitive’s use of terminals 
and its properties. A discussion of invocation styles was presented to help you understand 
the behavior of a mediation flow containing a service invoke. Some error handling 
information was discussed and an example use case for the service invoke primitive was 
described. 

WBIV61_ServiceInvokePrimitive.ppt Page 14 of 16 



  

  

     

   
             

     

     

          

     

    

         

             

IBM Software Group 

15 

Service invoke mediation primitive © 2008 IBM Corporation 

Feedback 

Your feedback is valuable 
You can help improve the quality of IBM Education Assistant content to better 

meet your needs by providing feedback. 

� Did you find this module useful? 

� Did it help you solve a problem or answer a question? 

� Do you have suggestions for improvements? 

Click to send e-mail feedback: 

mailto:iea@us.ibm.com?subject=Feedback_about_WBIV61_ServiceInvokePrimitive.ppt 

This module is also available in PDF format at: ../WBIV61_ServiceInvokePrimitive.pdf 

You can help improve the quality of IBM Education Assistant content by providing 
feedback. 

WBIV61_ServiceInvokePrimitive.ppt Page 15 of 16
 



  

  

     

   

IBM Software Group 

16 

Service invoke mediation primitive © 2008 IBM Corporation 

Trademarks, copyrights, and disclaimers 
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both: 

IBM WebSphere 

A current list of other IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml 

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include 
technical inaccuracies or typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any 
statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this 
document to IBM products, programs, or services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM 
operates or does business. Any reference to an IBM Program Product in this document is not intended to state or imply that only that program product may be used. 
Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be used instead. 

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY 
WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR 
PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and 
conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License Agreement, etc.) under which 
they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly 
available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other 
claims related to non-IBM products. 

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services. 

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding 
patent or copyright licenses should be made, in writing, to: 

IBM Director of Licensing 
IBM Corporation 
North Castle Drive 
Armonk, NY 10504-1785 
U.S.A. 

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented 
as illustrations of how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will 
experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, 
and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements equivalent to the 
ratios stated here. 

© Copyright International Business Machines Corporation 2008. All rights reserved. 

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule 
Contract and IBM Corp. 

WBIV61_ServiceInvokePrimitive.ppt Page 16 of 16 


