

®

IBM Software Group

© 2009 IBM Corporation

Updated June 26, 2009

WebSphere Enterprise Service Bus V6.2
WebSphere Process Server V6.2
WebSphere Integration Developer V6.2

Dynamic invocation

This presentation provides a look at the dynamic invocation capabilities in service
component architecture, which enables the dynamic specification of service provider
endpoints. It looks at dynamic invocation from both a Java™ code perspective and from a
mediation flow perspective.

WBPMv62_DynamicInvocation.ppt Page 1 of 17

IBM Software Group

2

Dynamic invocation © 2009 IBM Corporation

Goals

� The goal is to provide
�An introduction to dynamic invocation in SCA

�Usage from Java components and mediation flow components

� Agenda
�Review normal service invocation in SCA

�Overview of dynamic invocation
� Introduce elements affecting dynamic invocation behavior

�Describe behavior based on differing combinations of elements

�A look at the Java API used in a Java component

�A look at usage in a mediation flow component

The goal of this presentation is to provide you with an introduction to dynamic invocation in
service component architecture (SCA). It is looked at it from both the perspective of the
Java API and from the use in a mediation flow. To accomplish this goal, the presentation
starts out with a review of how service invocation normally occurs in SCA, looking at both
the Java API and mediation flow capabilities. An overview of dynamic invocation is then
presented. This includes describing the various elements that affect the behavior of
dynamic invocation. Having understood the contributing elements, you are then provided
with the exact behavior for each of several variations. The discussion of the variations is
applicable to both the Java API and mediation flow components. Sample code for the Java
API is provided, showing the code required to do a dynamic invocation from a Java
component. Finally, the usage of dynamic invocation within a mediation flow is described.

WBPMv62_DynamicInvocation.ppt Page 2 of 17

IBM Software Group

3

Dynamic invocation © 2009 IBM Corporation

Review SCA invocation basics

� Static endpoint information contained in an import binding

� Component contains a reference (partner reference)

� Reference is wired to the import

� Component uses reference to invoke an operation on the
service

� Service at static endpoint called

Component

Import Import Binding

Reference Wire

The basics of SCA invocation are addressed in the next couple of slides. The illustration at
the top shows an SCA component and an import as they appear in an SCA assembly
diagram. The binding properties for the import are also shown. The basic requirements for
SCA service invocation are these. First, you need to have an import, whose binding
contains static endpoint information for the target service, and defines the protocol that is
used to invoke it. You also need to have an SCA component that contains a reference,
sometimes referred to as a partner reference. In the assembly, the reference on the
component is wired to the import. The fact that they are wired implies that they also
support the same WSDL interface definition. Within the component, there is an invocation
of an operation defined on the interface supported by the reference. The result is a call to
the external service at the endpoint defined in the import, using the protocol defined by the
import’s binding.

WBPMv62_DynamicInvocation.ppt Page 3 of 17

IBM Software Group

4

Dynamic invocation © 2009 IBM Corporation

Review SCA invocation basics (continue)

� Java component Service API

�Mediation flow component callout node

�Mediation flow component service invoke primitive

ServiceManager serviceManager = new ServiceManager();
Service itemService = (Service) serviceManager.locateService("ItemServicePartner");
DataObject wrappedResponse = (DataObject) itemService.invoke("getItemType" , "12345");
String itemType = (String) wrappedResponse.getString("itemType");

Reference

Operation Invoke

Reference

Operation

Invoke

Invoke

Reference

Operation

How the component does the invocation is shown here. At the top is an example of using
the Java APIs from a Java component. The locateService operation on the
ServiceManager is passed the name of the reference. The ServiceManager returns a
Service object that represents the external service defined by the import the reference is
wired to. The invoke operation on the Service object is then used to invoke a specific
operation on the external service, passing it any input parameters it is expecting. The
response is returned in a DataObject from which the output can be extracted.

In the middle of the slide is a screen capture, illustrating the use of a callout node in a
mediation flow component. There is an operations connections section, which is the top
portion of the screen capture. In there, the source and target of the flow are defined by
drawing a wire between a source operation and a target operation. The target operation is
associated with a reference as you can see in the screen capture. It is the import wired to
the specified reference that defines the external service. In the lower portion of the screen
capture is shown the callout node for the flow. When the flow runs, the message arriving
at the callout node contains the input parameters which are needed to invoke the
operation on the external service.

On the bottom of the slide is a service invoke primitive that is used within a mediation flow.
Its properties are also shown. The properties for the service invoke primitive define the
reference and operation. It is the import wired to the reference that defines the external
service. When the message arrives at the service invoke primitive it contains the input
parameters needed to invoke the service. The message flowing out from the service
invoke primitive contains the output from the service.

WBPMv62_DynamicInvocation.ppt Page 4 of 17

IBM Software Group

5

Dynamic invocation © 2009 IBM Corporation

Overview of dynamic invocation

� Dynamic invocation requires:
�A reference on the invoking component

�An endpoint reference (EPR) defining the endpoint

� The EPR is composed of:
�Address – URL defining the endpoint

�Import – name of import containing configuration information

�Binding type – defines the binding type used with the URL

� The EPR is defined by:
�Java API - an EndpointReference object

�Mediation flow – a TargetAddressType element in the SMO

The next few slides provide an overview of dynamic invocation and the elements that
participate in enabling this capability. For there to be a dynamic invocation there are two
things required, a reference on the invoking component and an endpoint reference
defining the endpoint. The endpoint reference is composed of an address, import name
and binding type. The address is a URL defining the endpoint of the target service. The
import is the name of an import, in the same module, that contains configuration
information used when invoking the service. Finally, the binding type defines the type of
SCA binding applicable for invoking the service. This endpoint reference is represented by
an EndpointReference object when using the Java API. In a mediation flow, the endpoint
reference is represented by an element in the service message object defined as a
TargetAddressType.

WBPMv62_DynamicInvocation.ppt Page 5 of 17

IBM Software Group

6

Dynamic invocation © 2009 IBM Corporation

Overview of dynamic invocation (continue)

� Variations in dynamic invocation settings
�The wiring of the reference to an import is optional
�Not all values in the EPR need to be set

� At a minimum, the EPR must have either the address or import specified
� Import and address can both be specified
� Binding type can be specified if address is also specified

� Dynamic invocation behavior varies based on:
�The combination of settings in the EPR
�Whether the reference is wired

Invoking component
POJO or MFC

Reference A
wired to import

Reference B
not wired to import

Wired import

Unwired import

When considering the reference and endpoint reference used for dynamic invocation,
there are variations in what can be specified. First of all, the reference used for dynamic
invocation might be wired to an import, as it is in the static invocation case. However, it
can also be left unwired so that it is not associated with an import. Then, the endpoint
reference does not have to have all three elements specified. At a minimum, the endpoint
reference needs to have either the address set to a URL or the import set to an import
name. It is also acceptable to have both the address and import set. As for the binding
type, it can be set when the address is also set. The overall behavior of dynamic
invocation is dependent upon the particular combination of these various possible settings.

The illustration at the bottom of the slide is showing that when using dynamic invocation,
your assembly diagram can have wired or unwired references and that imports also might
be wired or unwired.

WBPMv62_DynamicInvocation.ppt Page 6 of 17

IBM Software Group

7

Dynamic invocation © 2009 IBM Corporation

Overview of dynamic invocation (continue)

� The invocation can take these forms:
�Uses an import containing a static endpoint URL

� Import is the named import in the EPR

�Uses an import and a dynamically specified URL
� May be the wired import or the named import in the EPR

� URL contained in the EPR

�No import, uses a dynamically specified URL
� URL contained in the EPR

� Invocation with URL only can be ambiguous
�For example, an HTTP URL might be for any of these:

� JAX-RPC SOAP 1.1

� JAX-WS SOAP 1.1 or 1.2

� HTTP w/o SOAP

The basic variations of dynamic invocation are listed here. One possibility is to have an
import name, which is dynamically specified in the endpoint reference. All endpoint
information, including the URL, is obtained from the specified import. Another basic
variation is to have a dynamically specified URL in the endpoint reference, that is
combined with either a dynamically specified import or with an import wired to the
reference. The last basic variation does not use an import, but just uses a dynamically
specified URL from the endpoint reference. In this last case, the URL used for the
invocation might in fact be ambiguous, as is illustrated in the example. Given an HTTP
URL, the intention might be for the invocation to be a Web service call using JAX-RPC
with SOAP 1.1. However, it might also be intended for a JAX-WS Web service call using
SOAP 1.1 or SOAP 1.2. And finally, it might represent an HTTP call that is not a Web
service at all, and does not contain a SOAP payload. Because of these ambiguities, there
are rules regarding the URL only case, that are explained in an upcoming slide.

WBPMv62_DynamicInvocation.ppt Page 7 of 17

IBM Software Group

8

Dynamic invocation © 2009 IBM Corporation

Dynamic invocation behaviors

� No EPR
�There is no dynamic invocation

�The reference must be wired

�The wired import fully defines the endpoint

� EPR with import only specified
�The reference:

� Does not need to be wired

� If wired, the wire is ignored

�The specified import fully defines the endpoint

The next several slides look at specific variations of dynamic invocation and describe the
behavior that you will see for each. It is important to understand these behaviors to ensure
that you obtain the expected result when defining dynamic invocation to be used by your
Java or mediation flow components.

The first case is when there is no endpoint reference specified. Since the endpoint
reference is required, there is no dynamic invocation in this case. Therefore, it is a static
invocation, and the reference must be wired to an import that fully defines the endpoint.

The first real case of dynamic invocation is when the endpoint reference only contains a
named import. For this case, the reference on your component does not need to be wired,
but if it is, the wired import is ignored. The import specified in the endpoint reference fully
defines the endpoint for the target service.

WBPMv62_DynamicInvocation.ppt Page 8 of 17

IBM Software Group

9

Dynamic invocation © 2009 IBM Corporation

Dynamic invocation behaviors (continue)

� EPR with URL only specified
�If the reference is unwired

� This is the ambiguous case mentioned earlier
� The default behavior is consistent with how dynamic invocation worked in version 6.1
� These are the valid URL types and the default behavior

– HTTP URL – invokes a JAX-RPC SOAP 1.1 Web service

– JMS URL – invokes a JMS SOAP 1.1 Web service

– SCA URL – invokes the specified export in the specified module using SCA bindings

– Local URL – invocation defined by the specified import contained in this module

�If the reference is wired
� If the URL and wired import are compatible

– The specified URL overrides the URL contained in the import

– Other configuration information in the import is applied

� If the URL and wired import are incompatible
– Import is ignored

– Same behavior as an unwired reference

The next case to consider is when the endpoint reference only contains the address with a
URL. In this case, the behavior is different, depending upon whether the reference is wired
to an import. When the reference is unwired, there exists the ambiguous situation that was
mentioned earlier, and therefore there are rules defining the behavior. These rules are
consistent with how dynamic invocation worked in version 6.1 and earlier releases, and
eliminate the ambiguity. Only a subset of URL types are allowed. When the URL is for
HTTP, the behavior is to invoke a JAX-RPC Web service using SOAP 1.1. When the URL
is for JMS it results in a JMS Web service call using SOAP 1.1. SCA URLs are also
allowed, which specify a module and export to be invoked using SCA default bindings.
Finally, a local URL is allowed, which identifies the name of an import within the same
module. The invocation is based on the binding type and configuration of the specified
import.

The other situation is that the reference on the assembly is wired to an import. Assuming
that the URL type and the binding type of the import are compatible, the URL from the
endpoint reference overrides the URL from the import, and all other information is obtained
from the import. However, if the URL type and the binding type of the import are not
compatible, the wired import is ignored and the behavior is the same as that described for
an unwired reference.

WBPMv62_DynamicInvocation.ppt Page 9 of 17

IBM Software Group

10

Dynamic invocation © 2009 IBM Corporation

Dynamic invocation behaviors (continue)

� EPR with both URL and import specified
�The reference:

� Does not need to be wired
� If wired, the wire is ignored

�If the URL and specified import are compatible
� The specified URL overrides the URL contained in the import
� Other configuration information in the import is applied

�If the URL and specified import are incompatible
� An exception is raised

The next situation is when the endpoint reference contains both a URL address and a
named import. In this case, it doesn’t matter if the reference on the assembly is wired or
not. If it is wired, the wired import is ignored. If the URL type and the binding type of the
specified import are compatible, the URL from the endpoint reference overrides the URL
from the import, and all other information is obtained from the import. However, if the URL
type and the binding type of the import are not compatible, an exception is raised.

WBPMv62_DynamicInvocation.ppt Page 10 of 17

IBM Software Group

11

Dynamic invocation © 2009 IBM Corporation

Dynamic invocation behaviors (continue)

� EPR with both URL and binding type specified
�If the reference is unwired

� Only certain combinations of URL and binding type are valid

� These are the valid URL type and binding type combinations
– HTTP URL and Web service binding type – invokes a JAX-RPC SOAP 1.1 Web service

– JMS URL and Web service binding type – invokes a JMS SOAP 1.1 Web service

– SCA URL and SCA binding type – invokes the specified export in the specified module using
SCA bindings

� Other combinations result in an exception being raised

�If the reference is wired
� If the URL, binding type and wired import are compatible

– The specified URL overrides the URL contained in the import

– Other configuration information in the import is applied

� If the URL and binding type are compatible, but the wired import is incompatible
– Import is ignored

– Same behavior as an unwired reference

Another variation is when the endpoint reference contains both a URL address and a
binding type specification. There is really little difference between this case and the
previous one described, when only the URL is specified. However, in this case, there is a
check that the binding type specified is compatible with the URL type.

For an unwired reference, these are the possibilities. In the case of an HTTP URL, the
binding type must be specified as Web service and the result is a JAX-RPC Web service
call using SOAP 1.1. For a JMS URL, the binding type also has to be Web service, and
the result is a JMS Web service call using SOAP 1.1. When an SCA URL is specified, the
binding type must be SCA, and the specified export in the specified module is invoked
using the SCA default bindings. For any other combination of URL type and binding type,
an exception is raised.
If the reference is wired, and the URL, binding type, and wired import are all compatible,
the specified URL overrides the URL contained in the wired import. All the other
configuration information is obtained from the import. However, if the wired import is not
compatible, it is ignored. The effective behavior is the same as that described for the
unwired reference.

WBPMv62_DynamicInvocation.ppt Page 11 of 17

IBM Software Group

12

Dynamic invocation © 2009 IBM Corporation

Dynamic invocation behaviors (continue)

� EPR with URL, binding type and import specified
�The reference:

� Does not need to be wired

� If wired, the wire is ignored

�If the URL, binding type and specified import are compatible
� The specified URL overrides the URL contained in the import

� Other configuration information in the import is applied

�If the URL, binding type or specified import are incompatible
� An exception is raised

The last case is when the endpoint reference contains all three, the URL address, the
named import, and the binding type. In this case, it doesn’t matter if the reference on the
assembly is wired or not. If it is wired, the wired import is ignored. If the URL type, the
binding type, and the specified import are compatible, the URL from the endpoint
reference overrides the URL from the specified import. All other information is obtained
from the import. However, if the URL type, the binding type or the type of the specified
import are not compatible, an exception is raised.

WBPMv62_DynamicInvocation.ppt Page 12 of 17

IBM Software Group

13

Dynamic invocation © 2009 IBM Corporation

Dynamic invocation using Java APIs

� Dynamic invocation from a POJO component
�Uses EndPointReference, ServiceManager and Service APIs

import com.ibm.websphere.sca.addressing.EndpointReference;

import com.ibm.websphere.sca.addressing.EndpointReferenceFactory;

import com.ibm.websphere.sca.Service;

import com.ibm.websphere.sca.ServiceManager;

import commonj.sdo.DataObject;

// Initialize name of reference to use

String refName = "myReference" ;

// Get an EPR and initialize it

EndpointReference epr = EndpointReferenceFactory.INSTANCE.createEndpointReference();

epr.setAddress("http://myHost:9080/MyDynamicService");

epr.setBindingType(EndpointReference.BINDING_TYPE_HTTP);

epr.setImport("myUnwiredHttpImport");

// Get the service passing in reference name and initialized EPR

Service service = (Service) ServiceManager.INSTANCE.getService(refName, epr);

// Invoke the operation

DataObject resultDO = (DataObject) service.invoke("myOperation" , ”inputParm”);

The Java API for dynamic invocation is illustrated here. The import statements seen in the
code identify the Java classes that are used. Specifically, these are the
EndpointReference, the EndpointReferenceFactory, the Service, and the ServiceManager.
The DataObject API is also needed to handle the returned value from the invoked
operation.

The EndpointReferenceFactory is used to obtain an EndpointReference object. You then
initialize it with the appropriate settings for address, binding type, and import to obtain the
required behavior for your scenario. The ServiceManager is passed the name of the
reference, and the EndpointReference object. It returns a Service object, which is
initialized according to the appropriate behavior as described in the previous slides. The
Service object can then be used to invoke an operation on the service, passing it the name
of the operation and the input parameters. The output values from the operation are
returned in a DataObject wrapper from which the output can be extracted.

WBPMv62_DynamicInvocation.ppt Page 13 of 17

IBM Software Group

14

Dynamic invocation © 2009 IBM Corporation

Dynamic invocation using mediation flows

� Dynamic invocation from a
mediation flow
�Can be used from either a callout node

or a service invoke primitive
� Must be configured to indicate dynamic

invocation is to be used

�Uses SMO target address or alternate
target address
� Alternate target address can be used when

retry is enabled

�SMO can be set using Endpoint lookup
� WebSphere® Service Registry and Repository

only allows Web service or SCA endpoints

�SMO can be set using any other
primitive based on flow logic, such as:
� Message element setter
� XSL transformation
� Database lookup

Just as with static invocation, as was described at the beginning of this presentation,
dynamic invocation from a mediation flow can happen through either a callout node or
service invoke primitive. Both of these contain configuration switches that are used to
indicate if dynamic invocation is allowed.

The service message object (SMO) contains elements in the SMOHeader section that are
used with dynamic invocation. The first is the Target, which is shown in yellow. It is a
TargetAddressType, containing the three values of an endpoint reference, namely the
address, import, and binding type. Then shown in green is the AlternateTarget, which is a
sequence of TargetAddressType. The endpoint reference information contained in this
sequence can be used by the callout, or service invoke, to perform retry processing when
a service invocation fails.

The values for Target and AlternateTarget in the SMO header can be set through the use
of the endpoint lookup primitive, which interacts with WebSphere Service Registry and
Repository. Endpoints obtained from WebSphere Service Registry and Repository can
only be for Web service and SCA endpoints.

In addition to the option of using the endpoint lookup primitive, the Target and
AlternateTarget elements can be set by any other mechanism within the mediation flow.
This might include, but is not limited to, the use of a message element setter, XSL
transformation, or database lookup primitive.

WBPMv62_DynamicInvocation.ppt Page 14 of 17

IBM Software Group

15

Dynamic invocation © 2009 IBM Corporation

Summary

� Provided an introduction to dynamic invocation in SCA
�Reviewed normal service invocation in SCA

�Presented an overview of dynamic invocation

�Described behavior based on differing combinations

�Looked at the Java API used in a Java component

�Looked at usage in a mediation flow component

In this presentation you were introduced to dynamic invocation in service component
architecture from both a Java API and mediation flow perspective. The presentation
started out with a review of how service invocation normally occurs in SCA, looking at both
the Java API and mediation flow capabilities. An overview of dynamic invocation was then
presented. This included describing the various elements that affect the behavior of
dynamic invocation. Having understood the contributing elements, you were provided with
the exact behavior for each of several variations. Sample code for the Java API was
provided, showing the code required to do a dynamic invocation from a Java component.
Finally, the usage of dynamic invocation within a mediation flow was described.

WBPMv62_DynamicInvocation.ppt Page 15 of 17

IBM Software Group

16

Dynamic invocation © 2009 IBM Corporation

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_WBPMv62_DynamicInvocation.ppt

This module is also available in PDF format at: ../WBPMv62_DynamicInvocation.pdf

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WBPMv62_DynamicInvocation.ppt Page 16 of 17

IBM Software Group

17

Dynamic invocation © 2009 IBM Corporation

Trademarks, copyrights, and disclaimers
IBM, the IBM logo, ibm.com, and the following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

WebSphere

If these and other IBM trademarked terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S. registered or common law
trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of other IBM
trademarks is available on the Web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Java, and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any statements regarding IBM's future direction
and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or services does not imply
that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program Product in this
document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be
used instead.

THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products
are warranted, if at all, according to the terms and conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License
Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other
publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other claims related
to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2009. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

WBPMv62_DynamicInvocation.ppt Page 17 of 17

