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Dynamic invocation 

This presentation provides a look at the dynamic invocation capabilities in service 
component architecture, which enables the dynamic specification of service provider 
endpoints. It looks at dynamic invocation from both a Java™ code perspective and from a 
mediation flow perspective. 
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Goals 

� The goal is to provide 
�An introduction to dynamic invocation in SCA 

�Usage from Java components and mediation flow components 

� Agenda 
�Review normal service invocation in SCA 

�Overview of dynamic invocation 
� Introduce elements affecting dynamic invocation behavior 

�Describe behavior based on differing combinations of elements 

�A look at the Java API used in a Java component 

�A look at usage in a mediation flow component 

The goal of this presentation is to provide you with an introduction to dynamic invocation in 
service component architecture (SCA). It is looked at it from both the perspective of the 
Java API and from the use in a mediation flow. To accomplish this goal, the presentation 
starts out with a review of how service invocation normally occurs in SCA, looking at both 
the Java API and mediation flow capabilities. An overview of dynamic invocation is then 
presented. This includes describing the various elements that affect the behavior of 
dynamic invocation. Having understood the contributing elements, you are then provided 
with the exact behavior for each of several variations. The discussion of the variations is 
applicable to both the Java API and mediation flow components. Sample code for the Java 
API is provided, showing the code required to do a dynamic invocation from a Java 
component. Finally, the usage of dynamic invocation within a mediation flow is described. 
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Review SCA invocation basics 

� Static endpoint information contained in an import binding 

� Component contains a reference (partner reference) 

� Reference is wired to the import 

� Component uses reference to invoke an operation on the 
service 

� Service at static endpoint called 

Component 

Import Import Binding 

Reference Wire 

The basics of SCA invocation are addressed in the next couple of slides. The illustration at 
the top shows an SCA component and an import as they appear in an SCA assembly 
diagram. The binding properties for the import are also shown. The basic requirements for 
SCA service invocation are these. First, you need to have an import, whose binding 
contains static endpoint information for the target service, and defines the protocol that is 
used to invoke it. You also need to have an SCA component that contains a reference, 
sometimes referred to as a partner reference. In the assembly, the reference on the 
component is wired to the import. The fact that they are wired implies that they also 
support the same WSDL interface definition. Within the component, there is an invocation 
of an operation defined on the interface supported by the reference. The result is a call to 
the external service at the endpoint defined in the import, using the protocol defined by the 
import’s binding. 
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Review SCA invocation basics (continue) 

� Java component Service API 

�Mediation flow component callout node 

�Mediation flow component service invoke primitive 

ServiceManager serviceManager = new ServiceManager(); 
Service itemService = (Service) serviceManager.locateService( "ItemServicePartner" ); 
DataObject wrappedResponse = (DataObject) itemService.invoke( "getItemType" , "12345" ); 
String itemType = (String) wrappedResponse.getString( "itemType" ); 

Reference 

Operation Invoke 

Reference 

Operation 

Invoke 

Invoke 

Reference 

Operation 

How the component does the invocation is shown here. At the top is an example of using 
the Java APIs from a Java component. The locateService operation on the 
ServiceManager is passed the name of the reference. The ServiceManager returns a 
Service object that represents the external service defined by the import the reference is 
wired to. The invoke operation on the Service object is then used to invoke a specific 
operation on the external service, passing it any input parameters it is expecting. The 
response is returned in a DataObject from which the output can be extracted. 

In the middle of the slide is a screen capture, illustrating the use of a callout node in a 
mediation flow component. There is an operations connections section, which is the top 
portion of the screen capture. In there, the source and target of the flow are defined by 
drawing a wire between a source operation and a target operation. The target operation is 
associated with a reference as you can see in the screen capture. It is the import wired to 
the specified reference that defines the external service. In the lower portion of the screen 
capture is shown the callout node for the flow. When the flow runs, the message arriving 
at the callout node contains the input parameters which are needed to invoke the 
operation on the external service. 

On the bottom of the slide is a service invoke primitive that is used within a mediation flow. 
Its properties are also shown. The properties for the service invoke primitive define the 
reference and operation. It is the import wired to the reference that defines the external 
service. When the message arrives at the service invoke primitive it contains the input 
parameters needed to invoke the service. The message flowing out from the service 
invoke primitive contains the output from the service. 
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Overview of dynamic invocation 

� Dynamic invocation requires: 
�A reference on the invoking component 

�An endpoint reference (EPR) defining the endpoint 

� The EPR is composed of: 
�Address – URL defining the endpoint 

�Import – name of import containing configuration information 

�Binding type – defines the binding type used with the URL 

� The EPR is defined by: 
�Java API - an EndpointReference object 

�Mediation flow – a TargetAddressType element in the SMO 

The next few slides provide an overview of dynamic invocation and the elements that 
participate in enabling this capability. For there to be a dynamic invocation there are two 
things required, a reference on the invoking component and an endpoint reference 
defining the endpoint. The endpoint reference is composed of an address, import name 
and binding type. The address is a URL defining the endpoint of the target service. The 
import is the name of an import, in the same module, that contains configuration 
information used when invoking the service. Finally, the binding type defines the type of 
SCA binding applicable for invoking the service. This endpoint reference is represented by 
an EndpointReference object when using the Java API. In a mediation flow, the endpoint 
reference is represented by an element in the service message object defined as a 
TargetAddressType. 

WBPMv62_DynamicInvocation.ppt Page 5 of 17 



  

  

   

    

    
          
         
             

      
         

      
       

    

 
  

 
  

 
   

 

 

           
               

                 
                 

              
                  

                 
                

           

              
              

    

IBM Software Group 

6 

Dynamic invocation © 2009 IBM Corporation 

Overview of dynamic invocation (continue) 

� Variations in dynamic invocation settings 
�The wiring of the reference to an import is optional 
�Not all values in the EPR need to be set 

� At a minimum, the EPR must have either the address or import specified 
� Import and address can both be specified 
� Binding type can be specified if address is also specified 

� Dynamic invocation behavior varies based on: 
�The combination of settings in the EPR 
�Whether the reference is wired 

Invoking component 
POJO or MFC 

Reference A 
wired to import 

Reference B 
not wired to import 

Wired import 

Unwired import 

When considering the reference and endpoint reference used for dynamic invocation, 
there are variations in what can be specified. First of all, the reference used for dynamic 
invocation might be wired to an import, as it is in the static invocation case. However, it 
can also be left unwired so that it is not associated with an import. Then, the endpoint 
reference does not have to have all three elements specified. At a minimum, the endpoint 
reference needs to have either the address set to a URL or the import set to an import 
name. It is also acceptable to have both the address and import set. As for the binding 
type, it can be set when the address is also set. The overall behavior of dynamic 
invocation is dependent upon the particular combination of these various possible settings. 

The illustration at the bottom of the slide is showing that when using dynamic invocation, 
your assembly diagram can have wired or unwired references and that imports also might 
be wired or unwired. 
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Overview of dynamic invocation (continue) 

� The invocation can take these forms: 
�Uses an import containing a static endpoint URL 

� Import is the named import in the EPR 

�Uses an import and a dynamically specified URL 
� May be the wired import or the named import in the EPR 

� URL contained in the EPR 

�No import, uses a dynamically specified URL 
� URL contained in the EPR 

� Invocation with URL only can be ambiguous 
�For example, an HTTP URL might be for any of these: 

� JAX-RPC SOAP 1.1 

� JAX-WS SOAP 1.1 or 1.2 

� HTTP w/o SOAP 

The basic variations of dynamic invocation are listed here. One possibility is to have an 
import name, which is dynamically specified in the endpoint reference. All endpoint 
information, including the URL, is obtained from the specified import. Another basic 
variation is to have a dynamically specified URL in the endpoint reference, that is 
combined with either a dynamically specified import or with an import wired to the 
reference. The last basic variation does not use an import, but just uses a dynamically 
specified URL from the endpoint reference. In this last case, the URL used for the 
invocation might in fact be ambiguous, as is illustrated in the example. Given an HTTP 
URL, the intention might be for the invocation to be a Web service call using JAX-RPC 
with SOAP 1.1. However, it might also be intended for a JAX-WS Web service call using 
SOAP 1.1 or SOAP 1.2. And finally, it might represent an HTTP call that is not a Web 
service at all, and does not contain a SOAP payload. Because of these ambiguities, there 
are rules regarding the URL only case, that are explained in an upcoming slide. 
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Dynamic invocation behaviors 

� No EPR 
�There is no dynamic invocation 

�The reference must be wired 

�The wired import fully defines the endpoint 

� EPR with import only specified 
�The reference: 

� Does not need to be wired 

� If wired, the wire is ignored 

�The specified import fully defines the endpoint 

The next several slides look at specific variations of dynamic invocation and describe the 
behavior that you will see for each. It is important to understand these behaviors to ensure 
that you obtain the expected result when defining dynamic invocation to be used by your 
Java or mediation flow components. 

The first case is when there is no endpoint reference specified. Since the endpoint 
reference is required, there is no dynamic invocation in this case. Therefore, it is a static 
invocation, and the reference must be wired to an import that fully defines the endpoint. 

The first real case of dynamic invocation is when the endpoint reference only contains a 
named import. For this case, the reference on your component does not need to be wired, 
but if it is, the wired import is ignored. The import specified in the endpoint reference fully 
defines the endpoint for the target service. 
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Dynamic invocation behaviors (continue) 

� EPR with URL only specified 
�If the reference is unwired 

� This is the ambiguous case mentioned earlier 
� The default behavior is consistent with how dynamic invocation worked in version 6.1 
� These are the valid URL types and the default behavior 

– HTTP URL – invokes a JAX-RPC SOAP 1.1 Web service 

– JMS URL – invokes a JMS SOAP 1.1 Web service 

– SCA URL – invokes the specified export in the specified module using SCA bindings 

– Local URL – invocation defined by the specified import contained in this module 

�If the reference is wired 
� If the URL and wired import are compatible 

– The specified URL overrides the URL contained in the import 

– Other configuration information in the import is applied 

� If the URL and wired import are incompatible 
– Import is ignored 

– Same behavior as an unwired reference 

The next case to consider is when the endpoint reference only contains the address with a 
URL. In this case, the behavior is different, depending upon whether the reference is wired 
to an import. When the reference is unwired, there exists the ambiguous situation that was 
mentioned earlier, and therefore there are rules defining the behavior. These rules are 
consistent with how dynamic invocation worked in version 6.1 and earlier releases, and 
eliminate the ambiguity. Only a subset of URL types are allowed. When the URL is for 
HTTP, the behavior is to invoke a JAX-RPC Web service using SOAP 1.1. When the URL 
is for JMS it results in a JMS Web service call using SOAP 1.1. SCA URLs are also 
allowed, which specify a module and export to be invoked using SCA default bindings. 
Finally, a local URL is allowed, which identifies the name of an import within the same 
module. The invocation is based on the binding type and configuration of the specified 
import. 

The other situation is that the reference on the assembly is wired to an import. Assuming 
that the URL type and the binding type of the import are compatible, the URL from the 
endpoint reference overrides the URL from the import, and all other information is obtained 
from the import. However, if the URL type and the binding type of the import are not 
compatible, the wired import is ignored and the behavior is the same as that described for 
an unwired reference. 
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Dynamic invocation behaviors (continue) 

� EPR with both URL and import specified 
�The reference: 

� Does not need to be wired 
� If wired, the wire is ignored 

�If the URL and specified import are compatible 
� The specified URL overrides the URL contained in the import 
� Other configuration information in the import is applied 

�If the URL and specified import are incompatible 
� An exception is raised 

The next situation is when the endpoint reference contains both a URL address and a 
named import. In this case, it doesn’t matter if the reference on the assembly is wired or 
not. If it is wired, the wired import is ignored. If the URL type and the binding type of the 
specified import are compatible, the URL from the endpoint reference overrides the URL 
from the import, and all other information is obtained from the import. However, if the URL 
type and the binding type of the import are not compatible, an exception is raised. 
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Dynamic invocation behaviors (continue) 

� EPR with both URL and binding type specified 
�If the reference is unwired 

� Only certain combinations of URL and binding type are valid 

� These are the valid URL type and binding type combinations 
– HTTP URL and Web service binding type – invokes a JAX-RPC SOAP 1.1 Web service 

– JMS URL and Web service binding type – invokes a JMS SOAP 1.1 Web service 

– SCA URL and SCA binding type – invokes the specified export in the specified module using 
SCA bindings 

� Other combinations result in an exception being raised 

�If the reference is wired 
� If the URL, binding type and wired import are compatible 

– The specified URL overrides the URL contained in the import 

– Other configuration information in the import is applied 

� If the URL and binding type are compatible, but the wired import is incompatible 
– Import is ignored 

– Same behavior as an unwired reference 

Another variation is when the endpoint reference contains both a URL address and a 
binding type specification. There is really little difference between this case and the 
previous one described, when only the URL is specified. However, in this case, there is a 
check that the binding type specified is compatible with the URL type. 

For an unwired reference, these are the possibilities. In the case of an HTTP URL, the 
binding type must be specified as Web service and the result is a JAX-RPC Web service 
call using SOAP 1.1. For a JMS URL, the binding type also has to be Web service, and 
the result is a JMS Web service call using SOAP 1.1. When an SCA URL is specified, the 
binding type must be SCA, and the specified export in the specified module is invoked 
using the SCA default bindings. For any other combination of URL type and binding type, 
an exception is raised. 
If the reference is wired, and the URL, binding type, and wired import are all compatible, 
the specified URL overrides the URL contained in the wired import. All the other 
configuration information is obtained from the import. However, if the wired import is not 
compatible, it is ignored. The effective behavior is the same as that described for the 
unwired reference. 
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Dynamic invocation behaviors (continue) 

� EPR with URL, binding type and import specified 
�The reference: 

� Does not need to be wired 

� If wired, the wire is ignored 

�If the URL, binding type and specified import are compatible 
� The specified URL overrides the URL contained in the import 

� Other configuration information in the import is applied 

�If the URL, binding type or specified import are incompatible 
� An exception is raised 

The last case is when the endpoint reference contains all three, the URL address, the 
named import, and the binding type. In this case, it doesn’t matter if the reference on the 
assembly is wired or not. If it is wired, the wired import is ignored. If the URL type, the 
binding type, and the specified import are compatible, the URL from the endpoint 
reference overrides the URL from the specified import. All other information is obtained 
from the import. However, if the URL type, the binding type or the type of the specified 
import are not compatible, an exception is raised. 
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Dynamic invocation using Java APIs 

� Dynamic invocation from a POJO component 
�Uses EndPointReference, ServiceManager and Service APIs 

import com.ibm.websphere.sca.addressing.EndpointReference; 

import com.ibm.websphere.sca.addressing.EndpointReferenceFactory; 

import com.ibm.websphere.sca.Service; 

import com.ibm.websphere.sca.ServiceManager; 

import commonj.sdo.DataObject; 

// Initialize name of reference to use 

String refName = "myReference" ; 

// Get an EPR and initialize it 

EndpointReference epr = EndpointReferenceFactory.INSTANCE.createEndpointReference(); 

epr.setAddress( "http://myHost:9080/MyDynamicService" ); 

epr.setBindingType(EndpointReference.BINDING_TYPE_HTTP); 

epr.setImport( "myUnwiredHttpImport" ); 

// Get the service passing in reference name and initialized EPR 

Service service = (Service) ServiceManager.INSTANCE.getService(refName, epr); 

// Invoke the operation 

DataObject resultDO = (DataObject) service.invoke( "myOperation" , ”inputParm” ); 

The Java API for dynamic invocation is illustrated here. The import statements seen in the 
code identify the Java classes that are used. Specifically, these are the 
EndpointReference, the EndpointReferenceFactory, the Service, and the ServiceManager. 
The DataObject API is also needed to handle the returned value from the invoked 
operation. 

The EndpointReferenceFactory is used to obtain an EndpointReference object. You then 
initialize it with the appropriate settings for address, binding type, and import to obtain the 
required behavior for your scenario. The ServiceManager is passed the name of the 
reference, and the EndpointReference object. It returns a Service object, which is 
initialized according to the appropriate behavior as described in the previous slides. The 
Service object can then be used to invoke an operation on the service, passing it the name 
of the operation and the input parameters. The output values from the operation are 
returned in a DataObject wrapper from which the output can be extracted. 
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Dynamic invocation using mediation flows 

� Dynamic invocation from a 
mediation flow 
�Can be used from either a callout node 

or a service invoke primitive 
� Must be configured to indicate dynamic 

invocation is to be used 

�Uses SMO target address or alternate 
target address 
� Alternate target address can be used when 

retry is enabled 

�SMO can be set using Endpoint lookup 
� WebSphere® Service Registry and Repository 

only allows Web service or SCA endpoints 

�SMO can be set using any other 
primitive based on flow logic, such as: 
� Message element setter 
� XSL transformation 
� Database lookup 

Just as with static invocation, as was described at the beginning of this presentation, 
dynamic invocation from a mediation flow can happen through either a callout node or 
service invoke primitive. Both of these contain configuration switches that are used to 
indicate if dynamic invocation is allowed. 

The service message object (SMO) contains elements in the SMOHeader section that are 
used with dynamic invocation. The first is the Target, which is shown in yellow. It is a 
TargetAddressType, containing the three values of an endpoint reference, namely the 
address, import, and binding type. Then shown in green is the AlternateTarget, which is a 
sequence of TargetAddressType. The endpoint reference information contained in this 
sequence can be used by the callout, or service invoke, to perform retry processing when 
a service invocation fails. 

The values for Target and AlternateTarget in the SMO header can be set through the use 
of the endpoint lookup primitive, which interacts with WebSphere Service Registry and 
Repository. Endpoints obtained from WebSphere Service Registry and Repository can 
only be for Web service and SCA endpoints. 

In addition to the option of using the endpoint lookup primitive, the Target and 
AlternateTarget elements can be set by any other mechanism within the mediation flow. 
This might include, but is not limited to, the use of a message element setter, XSL 
transformation, or database lookup primitive. 
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Summary 

� Provided an introduction to dynamic invocation in SCA 
�Reviewed normal service invocation in SCA 

�Presented an overview of dynamic invocation 

�Described behavior based on differing combinations 

�Looked at the Java API used in a Java component 

�Looked at usage in a mediation flow component 

In this presentation you were introduced to dynamic invocation in service component 
architecture from both a Java API and mediation flow perspective. The presentation 
started out with a review of how service invocation normally occurs in SCA, looking at both 
the Java API and mediation flow capabilities. An overview of dynamic invocation was then 
presented. This included describing the various elements that affect the behavior of 
dynamic invocation. Having understood the contributing elements, you were provided with 
the exact behavior for each of several variations. Sample code for the Java API was 
provided, showing the code required to do a dynamic invocation from a Java component. 
Finally, the usage of dynamic invocation within a mediation flow was described. 
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Feedback 

Your feedback is valuable 
You can help improve the quality of IBM Education Assistant content to better 

meet your needs by providing feedback. 

� Did you find this module useful? 

� Did it help you solve a problem or answer a question? 

� Do you have suggestions for improvements? 

Click to send e-mail feedback: 

mailto:iea@us.ibm.com?subject=Feedback_about_WBPMv62_DynamicInvocation.ppt 

This module is also available in PDF format at: ../WBPMv62_DynamicInvocation.pdf 

You can help improve the quality of IBM Education Assistant content by providing 
feedback. 
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