
  

  

  

   

     
   
   

   

            

® 

IBM Software Group 

© 2009 IBM Corporation 

Updated June 2, 2009 

WebSphere Enterprise Service Bus V6.2 
WebSphere Process Server V6.2 
WebSphere Integration Developer V6.2 

Fan out mediation primitive 

This presentation provides a detailed look at the fan out mediation primitive. 

WBPMv62_FanOutPrimitive.ppt Page 1 of 20 



  

  

     

     

  

  

  

   

 

    

 

                 
  

              
            

             
              

 

              
             

            
             

            

IBM Software Group 

2 

Fan out mediation primitive © 2009 IBM Corporation 

Goals 

�Understand the fan out mediation primitive 

�Overview of function 

�Use of terminals 

�Definition of properties 

�Parallel processing of aggregations 

�Error handling 

�Details of usage scenarios 

Fan out 

The goal of this presentation is to provide you with a full understanding of the fan out 
mediation primitive. 

The presentation assumes that you are already familiar with the material presented in the 
presentations that cover common elements of all mediation primitives, such as properties, 
terminals, wiring and the use of promoted properties. The general knowledge of mediation 
primitives they provide is needed to understand the fan out primitive specific material in 
this presentation. 

An overview of the fan out primitive is presented along with information about the 
primitive’s use of terminals and its properties. How parallel processing is performed during 
an aggregation that calls external services is then discussed. Some error handling 
considerations are provided, followed by a series of usage scenarios showing the various 
ways in which a fan out can be used in a flow. 

WBPMv62_FanOutPrimitive.ppt Page 2 of 20 



  

  

     

  

      
     

  

   
            

           

       
 

         
       
         

 
     

               

       

                 
            
                

                     
                  
      

                 
               

                
              

              
         

                  
               

                 
              

IBM Software Group 

3 

Fan out mediation primitive © 2009 IBM Corporation 

Overview of function 

� The fan out primitive provides either: 
�The front of an aggregation scenario 
�Message broadcast 

� For an aggregation scenario 
�There is a fan in primitive which acts as the point of aggregation 
�A fan in must be associated with a specific fan out instance 

� Fan out has two modes of operation 
�Iterate mode 

� Iterates though a repeating element contained within the input message 
� Output terminal fired once for each element instance 
� Output message contains input message plus copy of element instance 

�Once mode 
� Output terminal is fired once 

– Causes the message to be propagated on each of multiple flow paths wired to the terminal 

� Output message is identical to the input message 

When considering a fan out primitive, there are two basic ways in which it can be used, 
either participating in an aggregation scenario or used for enabling message broadcast. 
When used as part of an aggregation scenario, there is a specific fan in primitive instance 
in the flow that is associated with the fan out. The fan out is the beginning and the fan in is 
the end of the flow segment that performs the aggregation. You can think if it as the start 
and end of a processing loop. 

The fan out primitive has two modes of operation, the first being the iterate mode. In this 
mode, the fan out iterates through a repeating element that is contained in the input 
message. The output terminal of the fan out is fired once for each element. When the 
output terminal is fired, the SMO contains the original message, plus a copy of the 
element instance to be processed during this iteration. The copy of the element instance is 
contained in a designated location in the SMO context. 

When in once mode, the output terminal is fired once. For this mode to be used in an 
aggregation, the flow must be constructed with multiple flow paths following the fan out. So 
in actuality, each flow path wired to the output terminal is driven. In this case, the SMO 
that is passed to each path is unchanged from the fan out’s inbound SMO. 

WBPMv62_FanOutPrimitive.ppt Page 3 of 20 



  

  

     

  

     
   

   

   

   

      
       

     
       

     

           
 

                 
                 
                

              
             

                 
                 

                  
                

                
                 

             
              

                 
               

  

             
             

                 
                

                 
               
     

IBM Software Group 

4 

Fan out mediation primitive © 2009 IBM Corporation 

Overview of function 

� There are four basic scenarios possible 
�Aggregation with iterate mode 

�Aggregation with once mode 

�Broadcast with iterate mode 

�Broadcast with once node 

� Aggregation scenarios and fan in completion criteria 
�A fan in is configured with completion criteria 

�Completion criteria affects overall flow path 
� Between the fan out and fan in 

� Flow following the fan in 

�Configuration of fan out and fan in completion criteria must be 
complementary 

Consider that a fan out can be used in an aggregation or broadcast scenario and that it 
also has two modes of operation, iterate mode or once mode. The result is that there are 
four overall basic usage scenarios in which a fan out can participate. The first is an 
aggregation using iterate mode to loop through an array of elements, performing the same 
processing for each element. When all the elements have been processed, the associated 
fan in completes and the results of the aggregation are constructed in the SMO by the flow 
following the fan in. The next is also an aggregation, with the fan out configured in once 
mode. In this case, there are multiple flow paths between the fan out and fan in, with each 
flow path running once. When all the flow paths have completed, the fan in completes and 
the results of the aggregation are constructed in the SMO by the flow following the fan in. 
The third is a broadcast with iterate mode. This allows each element of an array in the 
incoming message to have the same processing performed. However, there is no fan in 
and the results of processing each element are not aggregated together. Finally, there is 
broadcast with once mode. In this case, the fan out serves as the head of multiple flow 
paths, each of which is passed the same message, and the results of processing are not 
aggregated together. 

In aggregation scenarios, the fan in associated with the fan out is configured with 
completion criteria. The completion criteria will affect the overall flow, controlling the flow 
between the fan out and fan in and determining when the flow following the fan in should 
be driven. Because of this, it is important that the configuration of the fan out, the 
construction of the flow between the fan out and fan in and the completion criteria of the 
fan in complement each other. More details on fan in completion criteria are provided in 
the fan in primitive presentation. 

WBPMv62_FanOutPrimitive.ppt Page 4 of 20 



  

  

     

    

                
 

                
 

   
         

 
     
         

        

            
               

               
                 

                
              

                  
                 

             
                  

          
                 

                   
                 

                
              

           

IBM Software Group 

5 

Fan out mediation primitive © 2009 IBM Corporation 

FanOutContext 

� Iterative scenarios and the FanOutContext 
�Problem 

� Each time the fan out output terminal is fired the entire message body is included in 
the SMO 

� How do the primitives in the flow know which iteration this is and which element to 
process? 

�Solution 
� FanOutContext in the SMO 
� Contains the array index and array element for this iteration 

�FanOutContext usage 
� Located in the SMO at context/primitiveContext/FanOutContext 
� iteration – zero based integer index identifying the element being processed 
� occurrence – a copy of the array element being processed 

The FanOutContext is a key element that is used during iterative processing scenarios. 
This slide examines why it is needed, what it provides and how it is used. 

When processing in iterate mode, the fan out fires the output terminal once for each 
element of an array. The SMO that gets propagated contains the entire array as part of the 
SMO body. The problem is that the primitives downstream from the fan out need to have a 
way of knowing which of the repeating elements should be processed during this iteration. 

The solution to this is provided by the fan out context. It is initialized by the fan out 
primitive to contain an array index and a copy of the array element found at that index. 

When building your aggregation flow, you define your primitives to access the array 
element from the fan out context rather than the message body. It is located in the SMO at 
context/primitiveContext/FanOutContext and contains two fields. The first field is called 
iteration and is an integer value defining the current iteration. The value in this field is zero 
based, so it has a value of zero for the first iteration, a value of one for the second 
iteration, and so on. The next field is called occurrence and contains a copy of the element 
at that index. The occurrence field is strongly typed to match the type of the array 
elements being iterated over. This allows you to make use of the strong typing information 
when defining your flow between the fan out and fan in. 

WBPMv62_FanOutPrimitive.ppt Page 5 of 20 



  

  

     

 

     

               
        

            

    
           

   
            

          

               
 

             
     

            
                      

               
                 

                
                 

                 
            

                 
                

      

              
               

            
                  

               
                 

      

IBM Software Group 

6 

Fan out mediation primitive © 2009 IBM Corporation 

Shared context 

� Aggregation scenarios and the shared context 
�Problem 

� Each time the fan out output terminal is fired a new SMO instance is created 
� Each new SMO instance is a deep copy 
� How are results from each iteration/flow between the fan out and fan in aggregated? 

�Solution 
� Shared context in the SMO 
� Single memory area that is not deep copied with each SMO instance 

�Shared context usage 
� It is defined by a business object (similar to transient and correlation contexts) 

– In iterative aggregations, the business object typically contains an array 

� Flows between fan out and fan in set values to be aggregated into the shared 
context 

� After the fan in completes, subsequent primitives use the contents of the shared 
context to build the aggregated message 

This slide examines the shared context used during aggregation scenarios, examining why 
it is needed, what it provides and how it is used. The first thing to look at is how the fan out 
handles the SMO when firing its output terminal. The original message arriving at the fan 
out is saved by the primitive, and a new deep copy is created and passed through the 
output terminal to the flow. Whatever changes are made to the SMO during the flow are 
not seen by the other iterations or flow paths. Each receives a new copy of the message 
as it arrived at the fan out. This poses a problem in an aggregation scenario where the 
results of processing each iteration or flow are to be aggregated together. 

The solution to this is the shared context which is kept in a shared memory area. Each 
time the SMO is deep copied, rather than copying the shared context the SMO contains a 
reference to the shared memory area. 

When building your aggregation flow, you define what the shared context will contain using 
a business object, similar to how you define the transient or correlation contexts. For an 
iterative aggregation, the business object typically contains an array. Each iteration or flow 
between the fan out and fan in needs to update the shared context with the data it is 
contributing to the aggregated result. Once the fan in completion criteria is met, the flow 
following the fan in can take the contents of the shared context and use it to build the 
aggregated message in the SMO body. 

WBPMv62_FanOutPrimitive.ppt Page 6 of 20 



  

  

     

 

 
  
 

  

       
         

         
       

        
     

      
              

                
              

              
               

                
                 

            
          

            
                

              

                
              

                 
     

IBM Software Group 

7 

Fan out mediation primitive © 2009 IBM Corporation 

Terminals 

� Terminals: 
�Input terminal 
�Two output terminals 
�Fail terminal 

� Output terminals 
�out 

� Iterate mode – fired once for each repeating element 
� Once mode – fired once for each path wired to terminal 

�noOccurrences 
� Iterate mode – there are no instances of the repeating element 
� Once mode – exists but will never be fired 

� All terminals must be for the same message type 
�Out terminal in iterate mode 

� The terminal message type is implicitly augmented 
� The weakly typed fan out context is cast to the correct type for the iterative element 

The fan out primitive has one input terminal, two output terminals and a fail terminal. The 
first output terminal, named out, is where the message received by the primitive is 
propagated down the flow. When using iterate mode, this terminal is fired once for each 
repeating element in the array being iterated over. When using once mode, this terminal is 
fired once. However, in this case, it is normal to have multiple flow paths wired from this 
terminal, and therefore the flow for each flow path is taken once. The order in which the 
flow paths are initiated is indeterminate, and therefore you cannot have dependencies 
between the flow paths based on the order of processing. 

The second output terminal is named noOccurrences. When operating with iterate mode, 
this terminal is fired rather than the out terminal if there are no repeating elements in the 
incoming SMO. When using once mode, this terminal is present but will never be fired. 

All the terminals are for the same message type because the fan out primitive does not 
change the message body. However, when in iterate mode, the out terminal is augmented 
so that the weakly typed fan out context is cast to the specific type of the array element 
that is placed in it. 

WBPMv62_FanOutPrimitive.ppt Page 7 of 20 



  

  

     

 

    
      

            

                
                

                
                 

                
                 

                
 

IBM Software Group 

8 

Fan out mediation primitive © 2009 IBM Corporation 

Properties 

� Introduction to Details panel 
�Contains the properties for the fan out 

�Contains a read only view of the properties for the associated fan in 

This slide introduces the Details panel of the Properties view of a fan out primitive. Notice 
that the panel contains properties for the fan out and in addition contains properties for an 
associated fan in. When being used for an aggregation scenario, the fan out will have an 
associated fan in primitive. It is important that the property settings of the fan out and fan 
in complement each other. Therefore, the properties for the fan in are shown on the fan 
out properties panel. The fan in properties are read only on this panel, but enable you to 
compare the configurations of the fan out and associated fan in to ensure that they are 
compatible. 

WBPMv62_FanOutPrimitive.ppt Page 8 of 20 



  

  

     

 

       

        
         
        

 
     

         
          

        

               
               

        

               
               

              
               

              
  

               
               
                

            
           

             
             

              
               

 

IBM Software Group 

9 

Fan out mediation primitive © 2009 IBM Corporation 

Properties 

� Mode (Fire output terminal with original input message) 
�once 

�for each element in XPath expression (iterate mode) 
� XPath expression used to identify the element to iterate on 
� XPath expression builder dialog enabled to help construct the expression 

� Batch count 
�Indented selection list below iterate mode 

�Controls level of parallel processing allowed in the iterative flow 
� Check for asynchronous responses after all messages have been fired (n=0) 

� Check for asynchronous responses after {n} messages have been fired 

There are two properties for the fan out primitive, the mode and the batch count. These 
exact words are not used to represent these properties on the panel, rather there are 
selection lists that provide the settings for them. 

The mode property is represented on the panel by the phrase “Fire output terminal with 
original input message”. The first choice is called “once” which results in the fan out being 
configured in once mode. The second choice is worded “for each element in XPath 
expression” which results in the fan out being configured in iterate mode. When this is the 
case, you specify an XPath expression that identifies the location of the repeating element 
in the SMO. 

The next property is the batch count which only applies when the primitive is configured in 
iterate mode. On the interface, this is represented as a selection list indented below the 
iterate mode selection. This count is used to control the level of parallel processing that is 
permitted to occur during the aggregation when the flow contains service invoke primitives 
configured for asynchronous processing. The first selection is worded “Check for 
asynchronous responses after all messages have been fired” and results in a batch count 
of zero. The other selection is worded “Check for asynchronous responses after n 
messages have been fired”, where n is a value you configure representing the batch 
count. The specific behavior resulting from the batch count setting is described later in this 
presentation. 

WBPMv62_FanOutPrimitive.ppt Page 9 of 20 



  

  

     

 

 

 

             
           
             
              

  

IBM Software Group 

10 

Fan out mediation primitive © 2009 IBM Corporation 

Promotable properties 

� Promotable 
�Batch count 

� Not promotable 
�Mode 

This slide shows the Promotable Properties panel for the fan out primitive. The batch 
count is promotable, allowing administrative control over the parallel processing. This 
might be useful in making runtime adjustments for performance and resource usage. The 
mode property is not promotable because the mode setting affects the very nature of the 
flow logic. 

WBPMv62_FanOutPrimitive.ppt Page 10 of 20 



  

  

     

    

         
 

         

          
  

        

   
           

        

          
 

         

             
            
             

             
             

                
         

              
  

                
              

                    
             

IBM Software Group 

11 

Fan out mediation primitive © 2009 IBM Corporation 

Parallel processing of service calls 

� Parallel processing of service calls is possible during an 
aggregation flow 
�Service invoke primitives configured with an interaction style of async 

�Calls to the external services are done using asynchronous with 
deferred response 

�All mediation flow processing done on a single thread 

� Aggregation in once mode 
�Flow path runs up to the service invoke which makes the call 

�Each flow path runs sequentially on the mediation thread 

�When service invoke on every path called, mediation thread waits for 
the responses 

�When response received, flow path continues to fan in 

The next couple of slides considers aggregation flows with parallel processing of service 
calls. To get parallel processing, the service invoke primitives within the aggregation flow 
must be configured with the invocation style property set to async, indicating processing 
should be asynchronous. When in an aggregation, the runtime engine makes these calls 
using the asynchronous with deferred response API and does not use the asynchronous 
with callback API. The calls to the services are made on separate threads, but all the 
mediation flow processing is done on a single thread. 

There are two cases to consider, an aggregation in once mode and an aggregation in 
iterate mode. 

When the aggregation is in once mode, each flow path runs in sequence up to the 
invocation of the service invoke primitives. The mediation flow then waits for the service 
calls to respond. As they respond, the flow paths are run up to the fan in. Once all the flow 
paths have reached the fan in, the flow continues following the fan in. 

WBPMv62_FanOutPrimitive.ppt Page 11 of 20 



  

  

     

    

   
       

     

      

           

        

          

         

        

           
      

               
                  
                

               
              

                 
               

                   
                

    

                
                
               

               
                   

     

IBM Software Group 

12 

Fan out mediation primitive © 2009 IBM Corporation 

Parallel processing of service calls 

�Aggregation in iterate mode 
�Batch count controls the number of parallel calls 

� Count=0 - process all elements in parallel 

� Count=1 - process each element individually (no parallelism) 

� Count=n (>1) – process n elements and wait for all calls to complete 

� Is truly a batch count, not a pool size 

�Flow path runs to the service invoke which makes the call 

�When count has been reached, wait for calls to complete 

�When response received, flow path continues to fan in 

�When all elements complete flow to fan in, return to fan 
out to process next batch of elements 

When processing an aggregation in iterate mode, the number of calls made in parallel is 
controlled by the batch count property of the fan out. When the batch count is zero, all the 
elements in the message are processed in parallel. When the batch count is one, there is 
no parallel processing and the elements are processed one at a time. When the batch 
count is greater than one, the count specifies how many elements can be processed in 
parallel. This is truly a batch count and not a pool size. The runtime will not start 
processing a new element as soon as a previous element completes. For example, if the 
batch count is five, it will start five elements but will not start the sixth element as soon as 
one of the five completes. It starts five and then waits for all five to complete before 
starting the next five. 

When processing, the flow path runs from the fan out to the service invoke, which makes 
the call, and then continues with the same flow path for the next element. This continues 
until batch count has been reached. The flow then waits for the responses from the 
service calls. When responses are received, the flow continues to the fan in. When all 
elements in the batch have completed and run to the fan in, the flow returns to the fan out 
to start the next batch. 

WBPMv62_FanOutPrimitive.ppt Page 12 of 20 



  

  

     

 

    
        

     
      

   
          

             

      
   

    

              

           
                  

                
               
            

                 
                  

              
       

            
                  

            

IBM Software Group 

13 

Fan out mediation primitive © 2009 IBM Corporation 

Error processing 

�MediationBusinessException (fail terminal flow) 
�Element for iterate XPath expression not found in SMO 

�Processing when array has no elements 
�noOccurrences terminal wired – that flow is taken 

�noOccurrence terminal not wired 
� With associated fan in – flow continues following the fan in 

� Without associated fan in – flow stops (similar to wiring to a stop primitive) 

� Iterate XPath expression identifies a non-array 
�Not considered an error 

�Flow will perform one iteration 

Some of the possible error conditions you might encounter are described on this slide. 

A MediationBusinessException is raised if the element identified by the iterate XPath 
expression is not found in the SMO. If the fail terminal is wired, the fail flow is taken. 

Another condition that can occur is the array exists in the SMO but has no elements. 
When this occurs, if the noOccurrences terminal is wired, the flow from that terminal is 
taken. If the noOccurrences terminal is not wired, the resulting behavior depends upon 
whether there is an associated fan in. When there is a fan in, the flow will continue 
following the fan in, skipping over any flow between the fan out and fan in. If there is no 
associated fan in, the flow stops, similar to the behavior seen if the noOccurrences 
terminal was wired to a stop primitive. 

It is possible in WebSphere® Integration Developer to specify an iterate XPath expression 
that identifies an element that is not an array. This is not considered an error, and the flow 
will proceed as if it had been an array with one element. 

WBPMv62_FanOutPrimitive.ppt Page 13 of 20 



  

  

     

   

       
      

         
          

       
        

          

         
     
  

  

  

  

  

 
 

 
 

                   
       

                  
                  
                  

                  
       

                 
                 

             
           

                  
               
              

            
                

                
             

             
         

                
                

           
               

         

IBM Software Group 

14 

Fan out mediation primitive © 2009 IBM Corporation 

Aggregation with iterate mode 

� Determine status of inventory for list of items 
�Request contains array of item IDs 
�Response contains array of item IDs and quantity in stock 
�Flow iterates for each item between fan out and fan in 
�Inventory service called for each individual item 
�Shared context used to save individual results during iteration 
�Contents of shared context use to build the final response message 

� If batch count = 3 and service call is asynchronous 
�Process item001, item002, item003 in parallel 
�Process item004 afterwards 

item004 

item003 

item002 

item001 

item004 03 

item003 63 

item002 50 

item001 10 

item004 03 

Inventory 
Service 

item003 
item002 

item001 

63 
50 

10 

The next four slides look at the four basic scenarios for using a fan out. On this slide, the 
aggregation scenario with iterate mode is examined. 

In this scenario, a request is made to find the inventory status of a list of items. The input 
contains a list of item IDs and the response is the list of item IDs along with the current 
quantity of each item that is in stock. There is an inventory service which can be queried to 
determine the in stock quantity, but this service can only be called for a single item at a 
time, not for a list of items. 

To implement this scenario, there is a fan out and an associated fan in. Looking at the flow 
above, starting on the left, you can see a list of item IDs being passed into the 
StartIteration fan out primitive. It iterates through the array, passing the SMO with each 
element to the XForm2Inventory XSL transformation primitive. This primitive does two 
things. It sets up the message body so that the call to the inventory service can be made, 
and it saves the item ID in the shared context. The QueryInventory service invoke primitive 
calls the inventory service, obtaining the in stock quantity for that one item. The next 
primitive is the SaveItemQuantity message element setter which takes the item quantity 
returned and saves it in the shared context. The EndIteration fan in primitive is next, which 
causes the flow to return to the StartIteration fan out unless all items have already been 
processed. When this is the case, the flow continues to the XForm2Response XSL 
transformation which takes the values from the shared context and builds the response 
message with the list of item IDs and quantities. 

This flow can have the service calls run in parallel. Consider the example if the batch 
count of the StartIteration fan out is set to three and the QueryInventory service invoke is 
configured for asynchronous processing. Each of the elements item001, item002 and 
item003 are processed in parallel, but item004 is not started until the first three have 
completed processing up to the EndIteration fan in primitive. 

WBPMv62_FanOutPrimitive.ppt Page 14 of 20 



  

  

     

   

        
    

        
            

          
          

        

     

       

 

 

 

 

        

                   
             

         

                
                 

             
               

             
            

               
               
           
              
             

             
                

         
             

        

           
             

             
           

                    
    

IBM Software Group 

15 

Fan out mediation primitive © 2009 IBM Corporation 

Aggregation with once mode 

� Determine description and quantity in stock for an item 
�Request contains single item ID 
�Response contains single item ID with quantity and description 
�Two flow paths between fan out and fan in, each calling a service 
�Shared context used to save individual results of each flow path 
�Contents of shared context use to build the final response message 

� With asynchronous service calls, this flow runs in parallel 

� Without asynchronous calls, consider chained aggregation 

item002 item002 27 widget 

item002 widget 

Catalog Service 

Inventory Service 

item002 27 

This scenario is for aggregation with once mode. 

In this flow, a single item ID is received and the response contains the item ID, an in stock 
quantity and item description. The in stock quantity is obtained from the inventory service 
and the description is obtained from a catalog service. 

Looking at the flow, you can see the item ID entering the StartSplitFlow fan out primitive, 
which is configured in once mode. When the out terminal is fired, the flow passes to the 
XForm2Catalog XSL transformation which saves the item ID in the shared context and 
sets up the message body for the call to the catalog service. The QueryCatalog service 
invoke primitive makes the call and receives the item description in response. The 
SaveDescription message element setter saves the description in the shared context. The 
flow continues to the EndSplitFlow fan in, which is configured to complete after it receives 
two messages. Since this is the first message, the flow returns to the StartSplitFlow fan 
out primitive, and continues to the XForm2Inventory XSL transformation. This primitive 
sets up the body to call the inventory service. The QueryInventory service invoke primitive 
calls the inventory service and receives the in stock quantity in response. The 
SaveQuantity message element setter saves the quantity in the shared context and the 
flow proceeds again to the EndSplitFlow fan in, which is now complete because this is the 
second message received. The flow proceeds to the XForm2Response XSL 
transformation, which builds the response message body from the item ID, quantity and 
description that is saved in the shared context. 

When the service invoke primitives QueryCatalog and QueryInventory are configured for 
asynchronous processing, the service calls are done in parallel. In this case, this flow 
using aggregation in once mode is the best approach. However, if the service invoke 
primitives are configured for synchronous processing, a chained aggregation flow, without 
using a fan out and fan in, might be a more practical. The flow at the bottom of the slide 
illustrates this alternate approach. 

WBPMv62_FanOutPrimitive.ppt Page 15 of 20 



  

  

     

   

       
      

     

        

              
                

                    
               

             
              

                  
                

                
        

IBM Software Group 

16 

Fan out mediation primitive © 2009 IBM Corporation 

Broadcast with iterate mode 

�Send tickets to warehouse to pull individual items 
�Request contains array of item IDs 

�Flow iterates for each item 

�One way message sent to warehouse system for each 

item004 

item003 

item002 

item001 

item004 
item003 

item002 
item001 

Warehouse 
System 

This scenario looks at broadcast with iterate mode. The incoming request contains a list of 
items that need to be pulled from the warehouse and the output consists of messages to 
the warehouse, one for each item that is to be pulled. You can see the list of items on the 
left as they enter the StartIteration fan out primitive, which is configured in iterate mode. 
From the fan out the flow proceeds to the XForm2Warehouse XSL transformation which 
sets up the call to the warehouse system. The Warehouse service invoke primitive makes 
a one way call to the warehouse system, containing the item ID for a single item. There is 
nothing wired to the Warehouse service invoke so the flow for that item completes at this 
point, and the flow returns to the StartIteration fan out. This continues until all items have 
been processed, at which point the flow completes. 

WBPMv62_FanOutPrimitive.ppt Page 16 of 20 



  

  

     

   

      
       

     

        

       
           

   

       

   

                
             

                
                  

              
            

           
                

              
               

                
  

                 
                   

               
       

IBM Software Group 

17 

Fan out mediation primitive © 2009 IBM Corporation 

Broadcast with once mode 

� Send order information to shipping and billing 
�Request contains order with shipping and billing information 

�Flow split into two paths 

�One way messages sent to shipping and billing systems 

� Consider same flow without a fan out primitive 
�Fan out provides no additional function versus splitting flow from input 

node 

order01 shipToInfo 

order01 shipToInfo billToInfo 

Shipping 
Department 

order01 billToInfo 
Billing 

System 

This is the last scenario, performing a broadcast with once mode. In this scenario, there is 
an incoming order that has both billing information and shipping information. It needs to 
send a request to the shipping department to ship the order and another request to the 
billing system to bill the order. On the left you can see the order coming in to the 
StartSplitFlow fan out with the shipping and billing information. The flow proceeds to the 
XForm2Shipping XSL transformation which sets up the call to the shipping department. 
The Send2Shipping service invoke primitive passes the order number and shipping 
information using a one way operation, which is the end of this flow path. Control is 
returned to the StartSplitFlow fan out, which passes the SMO to the XForm2Billing XSL 
transformation which sets up the call to billing. The Send2Billing service invoke uses a one 
way call to send the order number and billing information to the billing system. The flow is 
then complete. 

Turning you attention to the bottom of the slide, there is another version of this flow which 
does not contain a fan out. The split flow is done directly off of the input node. For this 
scenario, the fan out provides no additional function over doing a split flow from the out 
terminal of any other primitive or node. 

WBPMv62_FanOutPrimitive.ppt Page 17 of 20 



  

  

     

 

     

  

  

  

   

 

    

 

            
              

           
           

                
     

IBM Software Group 

18 

Fan out mediation primitive © 2009 IBM Corporation 

Summary 

� Examined the fan out mediation primitive 

�Overview of function 

�Use of terminals 

�Definition of properties 

�Parallel processing of aggregations 

�Error handling 

�Details of usage scenarios 

Fan out 

In summary, this presentation provided details regarding the fan out mediation primitive. It 
presented an overview of fan out along with information about the primitive’s use of 
terminals and its properties. Capabilities for enabling parallel processing of service calls 
during an aggregation were discussed. Some error handling considerations were provided, 
followed by a series of usage scenarios showing the various ways in which a fan out can 
be used in a flow. 

WBPMv62_FanOutPrimitive.ppt Page 18 of 20 



  

  

     

   
             

     

     

          

     

    

         

             

IBM Software Group 

19 

Fan out mediation primitive © 2009 IBM Corporation 

Feedback 

Your feedback is valuable 
You can help improve the quality of IBM Education Assistant content to better 

meet your needs by providing feedback. 

� Did you find this module useful? 

� Did it help you solve a problem or answer a question? 

� Do you have suggestions for improvements? 

Click to send e-mail feedback: 

mailto:iea@us.ibm.com?subject=Feedback_about_WBPMv62_FanOutPrimitive.ppt 

This module is also available in PDF format at: ../WBPMv62_FanOutPrimitive.pdf 

You can help improve the quality of IBM Education Assistant content by providing 
feedback. 

WBPMv62_FanOutPrimitive.ppt Page 19 of 20
 



  

  

     

   

IBM Software Group 

20 

Fan out mediation primitive © 2009 IBM Corporation 

Trademarks, copyrights, and disclaimers 
IBM, the IBM logo, ibm.com, and the following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, 
other countries, or both: 

WebSphere 

If these and other IBM trademarked terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S. 
registered or common law trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in 
other countries. A current list of other IBM trademarks is available on the Web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml 

Other company, product, or service names may be trademarks or service marks of others. 

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include 
technical inaccuracies or typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any 
statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this 
document to IBM products, programs, or services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM 
operates or does business. Any reference to an IBM Program Product in this document is not intended to state or imply that only that program product may be used. 
Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be used instead. 

THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY 
DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to 
update this information. IBM products are warranted, if at all, according to the terms and conditions of the agreements (for example, IBM Customer Agreement, 
Statement of Limited Warranty, International Program License Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained 
from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products in connection with this 
publication and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. 

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services. 

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding 
patent or copyright licenses should be made, in writing, to: 

IBM Director of Licensing 
IBM Corporation 
North Castle Drive 
Armonk, NY 10504-1785 
U.S.A. 

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented 
as illustrations of how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will 
experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, 
and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements equivalent to the 
ratios stated here. 

© Copyright International Business Machines Corporation 2009. All rights reserved. 

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule 
Contract and IBM Corp. 

WBPMv62_FanOutPrimitive.ppt Page 20 of 20 


