

®

IBM Software Group

© 2009 IBM Corporation

Updated May 29, 2009

WebSphere ® Enterprise Service Bus V6.2
WebSphere Process Server V6.2
WebSphere Integration Developer V6.2

Set message type mediation primitive

This presentation provides a detailed look at the set message type mediation primitive.

WBPMv62_SetMessageTypePrimitive.ppt Page 1 of 15

IBM Software Group

2

Set message type mediation primitive © 2009 IBM Corporation

Goals

�Understand the set message type primitive

�Overview of function

�Use of terminals

�Definition of properties

�Behavior of augmented message types

�Error handling

�Example usage

Set message type

The goal of this presentation is to provide you with a full understanding of the set message
type mediation primitive.

The presentation assumes that you are already familiar with the material presented in the
presentations that cover common elements of all mediation primitives, such as properties,
terminals, wiring and the use of promoted properties. The general knowledge of mediation
primitives they provide is needed to understand the set message type primitive specific
material in this presentation.

An overview of the set message type primitive is provided followed by a description of its
terminals and properties. The set message type primitive augments a message type with
additional type information. The resulting behavior of the augmented message type is
slightly different from the general behavior attributed to message types, and these
differences are explained. The presentation then provides some error handling information
and concludes with an example, showing a possible use of this primitive.

WBPMv62_SetMessageTypePrimitive.ppt Page 2 of 15

IBM Software Group

3

Set message type mediation primitive © 2009 IBM Corporation

Overview of function

�Background
�Business object attributes can be:

� Strongly typed – type and structure is known

� Weakly typed – more than one type of data allowed for the attribute

�Mediation flow editor uses type information
� Contents of SMO understood through type information

– SMO message type defines the contents of the body

– SMO message type plays a key role in the wiring together of a mediation flow

– Transient, correlation and shared contexts are defined through configuration of
business objects

� Type information critical for tools, such as:
– XPath expression builder

– Business object and XSL transformation mapping editors

Before explaining the function of the set message type primitive, it is useful to highlight
some background information that provides a basis for understanding the function it
provides.

The first key point to understand relates to the definition of attributes in business objects.
Some attributes are strongly typed, so that the exact type and structure of data contained
in the attribute is well known. However, some attributes are weakly typed, allowing
different types and structures of data to exist for that attribute.

The next major point is that the mediation flow editor makes extensive use of type
information. At any point in a mediation flow, the service message object (SMO) has an
explicit message type which defines the contents of the message body. This message
type defines the operation the message represents, including its parameters, which can be
simple types or complex types defined by business objects. Message types are critical in
the role that they play when constructing a mediation, particularly when it comes to wiring
together the primitives in the flow. Additionally, the transient, correlation and shared
contexts are all defined by business objects. Therefore, the SMO body and contexts can
potentially have elements that are defined by weakly typed business object attributes. This
affects tools, such as the XPath expression builder, the business object map editor and
the XSL transformation map editor, as they are highly dependent upon type information for
the SMO context, headers and body.

WBPMv62_SetMessageTypePrimitive.ppt Page 3 of 15

IBM Software Group

4

Set message type mediation primitive © 2009 IBM Corporation

Overview of function

� Set message type primitive
�Allows weakly typed fields in the SMO to be treated as strongly typed

�Enables editors to show and manipulate the strong rather than weak
type

�Eliminates the need for custom Java™ code and hand written XSL
style sheets

� Weakly typed fields can be:
�xsd:any

�xsd:anyType

�xsd:anySimpleType

�Concrete types from which other types are derived
� For example, type Student from which UndergraduateStudent and

GraduateStudent are both derived

With the information provided on the previous slide as background, the purpose of the set
message type primitive can now be described. The set message type primitive provides a
mechanism that allows weakly typed fields in the SMO to be treated as if they were
strongly typed. If you are familiar with programming languages such as Java or C++, the
use of a cast operation in these languages is a good analogy for what this primitive
provides within a mediation flow. It declares a weakly typed field to be of a stronger type,
therefore enabling the editors and other tools to show and manipulate the strong rather
than the weak type. If you wanted to map elements within a weak type, you need to write
custom Java code for business object maps or hand written XSL style sheets for XSL
transformations. By using the strong type instead, you can create the maps directly in the
editor without custom coding.

Being more specific about what is meant by a weakly typed field, the types xsd:any,
xsd:anyType and xsd:anySimpleType are all used to define weakly typed fields. However,
concrete types can also be considered weakly typed if they are inherited by other types,
referred to as derived types. As an example of this, suppose there is a business object
Student containing fields common to all students. From this, two other business objects
are derived, UndergraduateStudent and GraduateStudent, each containing the appropriate
additional fields for that type of student. An operation that defined a parameter of Student
results in a weakly typed field in the SMO body.

WBPMv62_SetMessageTypePrimitive.ppt Page 4 of 15

IBM Software Group

5

Set message type mediation primitive © 2009 IBM Corporation

Overview of function

� Set message type primarily affects development tools
�Enables editors to work with the more specific strong types

�Simplifies the tasks required of the integration developer

� At runtime:
�Has no effect on SMO structure or content

�Optional validation enables checking content to ensure it is of
asserted type

� Effect of set message type on terminal message type
�Does not change the message type

�The message type is augmented with additional type information

�Wiring rules are adjusted for handling augmented message types

The set message type is different from all the other mediation primitives because it
essentially provides only development time function. Use of this primitive enables editors
to work with more specific types, thus making your tasks as an integration developer much
easier. At runtime, this mediation primitive has no effect on the SMO in either structure or
content. The only runtime functionality it provides is optional, allowing you to choose to
have the set message type validate the SMO at runtime to ensure it contains the stronger
type asserted by the primitive.

One last point about the function of this primitive is that it does not actually change the
message type of the SMO that gets associated with a terminal. Rather, it augments the
message type with additional type information. This results in some differences in the
wiring rules for terminals and the affect that message type has on defining a flow. This is
described in more detail later in the presentation.

WBPMv62_SetMessageTypePrimitive.ppt Page 5 of 15

IBM Software Group

6

Set message type mediation primitive © 2009 IBM Corporation

� Terminals:
�Input terminal

�One output terminal
�Fail terminal

� Message type of out terminal
�Message type the same as in terminal plus augmentation
�Augmentation defines the more specific types

� Representation of augmented message type
�Shows message type: handleRequestMsg
�Shows augmentation: /body/handle/request/requestDetail=UpdateOrder

Terminals

The set message type primitive has an input terminal, one output terminal and a fail
terminal. This can be seen at the top of the slide in the screen capture of a set message
type primitive and the terminals panel from the properties view. The message type of the
out terminal is the same as the message type of the in terminal, with additional type
augmentation resulting from the declaration of the more specific types. At the bottom of
the slide you can see a screen capture that shows a set message type primitive along with
the message type of its in terminal and the augmented message type of the out terminal.
You can see that the message type, handleRequestMsg has not changed, but that the
field at /body/handle/request/requestDetail has been declared to be of type UpdateOrder.

WBPMv62_SetMessageTypePrimitive.ppt Page 6 of 15

IBM Software Group

7

Set message type mediation primitive © 2009 IBM Corporation

Properties

� Message field refinements
�Table used to provide more specific types to weakly typed fields
�Weakly typed field – XPath expression defining the field
�Actual field type – simple type or business object type to be used to augment the field
�Add… and Edit… - display the Add/Edit Properties dialog
�Remove – deletes the selected row from the table

� Reset message type
�All previous type augmentations still in effect are deleted
�Can be used along with setting new augmentations in message field refinements table

� Validate
�Perform runtime validation to ensure actual SMO contains specified type

In the upper right corner of the slide is a screen capture showing the Details panel of the
Properties view for a set message type primitive, showing the primitive’s three properties.

The Message field refinements property is a table allowing you to declare more specific
types for weakly typed fields. Because it is a table, you are able to declare stronger types
for multiple fields in the SMO. The table has two columns, the Weakly typed field column
contains an XPath expression identifying the weakly typed field in the SMO. The Actual
field type column is used to declare the more specific type to be associated with the field.
It can be either a simple type or a complex type defined by a business object. The Add…
and Edit… buttons are used to open the add and edit properties dialog. This dialog
enables you to use the XPath expression builder to construct the XPath for the weakly
typed field and the data type selection dialog for selecting the actual field type. The
Remove button can be used to remove the selected row from the table.

The Reset message type property is used to remove all previous augmentations that are
still in effect. When this is not checked, the resulting message type includes the existing
augmentations plus the refinements added by this primitive. When this is checked, the
resulting message type only includes the refinements you defined in this primitive.

Finally, the Validate property is used to request runtime validation. It is only when this
property is selected that this primitive has any effect on the runtime behavior. It requests
that the SMO be checked to ensure that the weakly typed field in the SMO does indeed
contain the declared stronger type. If it does not, a MediationBusinessException occurs.

WBPMv62_SetMessageTypePrimitive.ppt Page 7 of 15

IBM Software Group

8

Set message type mediation primitive © 2009 IBM Corporation

Promotable properties

� Promotable
�Validate*

� Not promotable
�Message field refinements

�Reset message type

*Validate is the only property applicable to runtime

This slide shows the Promotable Properties panel for the set message type primitive.
Since the validate property is the only property that affects the runtime environment, it is
the only property that is promotable. Therefore, the message field refinements table and
reset message type properties are not promotable.

WBPMv62_SetMessageTypePrimitive.ppt Page 8 of 15

IBM Software Group

9

Set message type mediation primitive © 2009 IBM Corporation

Augmented message type and wiring behavior

� Wiring behavior for propagation of type
�Augmented message type propagated to other terminals

� Same behavior as message types which are not augmented

�Rules are the same:
� Propagated on wire between source and target terminals

� Propagated within a primitive for the terminals which must have same type

� Not propagated within primitives if primitive can change message type of terminals

� Wiring behavior for compatibility of message types
�Wired terminals must be of same message type when not augmented

�Wired terminals for augmented messages
� Must be of same message type except for the augmentation

� Wiring allowed when target terminal is less specific type than source

� Wiring not allowed when target terminal is more specific augmented type than source

When considering the wiring of mediation primitives to construct a flow, there are two
aspects that must be considered. This slide addresses these relative to the handling of
augmented message types.

The first of these is the propagation of message type to other terminals as part of the
wiring process. The propagation behavior associated with a type augmentation is the
same as the behavior for the message type. Basically, the rules are that propagation
occurs on a wire between source and target terminals, in either direction. Within a
primitive, propagation occurs between terminals which must have the same message type.
Finally, no propagation occurs within a primitive’s terminals when they can have different
message types.

The second aspect to consider is the rules for compatibility between message types of
terminals that are wired together. For message types that are not augmented, they must
always be of the same message type to be wired together. For augmented message
types, there is a variation to how this works. Other than the augmentation, the message
types of the two terminals must be the same. However, when there is an augmentation, if
the augmentation is not the same, the wiring is still allowed if the target terminal of the wire
is of a less specific type than the source.

WBPMv62_SetMessageTypePrimitive.ppt Page 9 of 15

IBM Software Group

10

Set message type mediation primitive © 2009 IBM Corporation

Specification of message type
� Augmentation can only be specified when:

�Using set message type primitive
�Using fan out primitive configured for iteration

(augmentation is implicit)
�Using type filter primitive (augmentation is implicit)

� Augmentation cannot be specified:
�Using the message selection dialog

� Augmentation is not shown:
�In terminals panel of properties view

The augmentation of message types does not completely follow the model for message
types and how they are specified. There are only two ways that an augmentation can be
added to a message type. The first is the use of the set message type primitive which is
discussed in this presentation. The second happens implicitly through use of other
primitives that effectively downcast a weakly typed field. One case of this is when a fan out
primitive is configured in iterate mode, the fan out context is augmented to the type of the
array element being iterated. Another case of this occurs when using a type filter primitive.
It does routing based on the actual type of a weakly typed field, and augments the
associated out terminal with the more specific type.

Other mechanisms for setting and displaying message type do not include message type
augmentation information. Specifically, the message selection dialog does not allow you to
include message type augmentation when setting the message type. Also, the properties
view for a primitive does not display the augmentation information for the terminal’s
message type in the terminals panel.

WBPMv62_SetMessageTypePrimitive.ppt Page 10 of 15

IBM Software Group

11

Set message type mediation primitive © 2009 IBM Corporation

Error handling

�MediationRuntimeException thrown for:
�Actual type field incompatible with weakly typed field

� In some cases might be caught at development time

�MediationBusinessException (fail terminal flow)
�Validate option set and validation fails

� SMO does not conform to the actual field type declared

�Debugging a failed validation
�Run the scenario with trace

� Set trace string to: com.ibm.ws.sibx.*=fine
� Examine SMO dumps in trace before set message type primitive

�Run the scenario in the visual debugger

This slide addresses some of the error situations you might encounter.

The first of these is when you declare a type in a set message type primitive which is not
compatible with the original weakly typed field, or possibly the original field isn’t even a
weak type. For example, suppose you use a set message type primitive to declare that a
field in the SMO that is a string is actually an Order object. This results in the throwing of a
MediationRuntimeException. This type of error, in some cases, might be flagged by the
development tools as not being a valid refinement. Unfortunately, some of these cases are
not caught until runtime.

The next error you might see is when you use the validate property and at runtime the
SMO does not actually contain the declared type. This results in a
MediationBusinessException. When you make use of the validate property, it is likely that
you will also include a flow from the fail terminal of the set message type primitive to
handle this condition.

When encountering a situation where the SMO does not contain the declared type, it might
be useful to use trace to debug the problem. This can be done by setting the trace string
to com.ibm.ws.sibx.*=fine, then running the failing scenario and examining the trace file.
There are dumps of the SMO before and after every primitive in the flow. These can help
you to understand what type the SMO contains that is causing the validation to fail, and
hopefully why the SMO contains the incorrect type.

Alternatively, you can run the scenario using the visual debugger and examine the
contents of the SMO as it progresses through the flow.

WBPMv62_SetMessageTypePrimitive.ppt Page 11 of 15

IBM Software Group

12

Set message type mediation primitive © 2009 IBM Corporation

Example usage

�Ordering system mediation
�Request can contain different types of actions

�Message filter controls flow based on type

�Set message type declares actual field type

�XSL transformation can map from actual type

This slide illustrates a possible use of the set message type primitive using an ordering
system mediation as an example. In this example, various types of requests can be sent
to the ordering mediation, where each request type has unique detailed data. The
mediation determines what type of request it is, transforms the request data, and passes it
on to the appropriate back end system.

The requests come into the mediation as a Request business object which you see in the
upper left of the screen captures. There is a requestType field that contains a string
identifying what type of request it is. There is also a requestDetail field, defined as an
xsd:anyType, which holds a business object of a type defined by the type field. For
simplicity of the example, the flow only handles two types of requests, cancel and update.

The first thing in the flow is a message filter primitive, labeled DetermineType, which
propagates the message through an output terminal based on the value of the
requestType field. The properties to do this are shown in the slide.

The next thing in the flow is two set message type primitives, one on each flow path. The
path for update is illustrated, with the message field refinements property for the
SetUpdate primitive showing. It takes the requestDetail field, and declares the actual field
type to be of type UpdateOrder.

The next primitive on the flow path for update is an XSL transformation, labeled
XForm2Update. The source SMO for this transformation is shown, and you can see that
the requestDetail field is an UpdateOrder rather than an xsd:anyType. This allows the map
to be created by expanding UpdateOrder and mapping from the fields it contains.

WBPMv62_SetMessageTypePrimitive.ppt Page 12 of 15

IBM Software Group

13

Set message type mediation primitive © 2009 IBM Corporation

Summary

�Examined the set message type primitive

�Overview of function

�Use of terminals

�Definition of properties

�Behavior of augmented message types

�Error handling

�Example usage

Set message type

In summary, this presentation provided details regarding the set message type primitive,
starting with an overview of the primitive followed by a description of its terminals and
properties. The behavior associated with augmented message types was explained and
contrasted with typical behavior associated with message types. The presentation also
provided some error handling information and concluded with an example, showing a
possible use of this primitive.

WBPMv62_SetMessageTypePrimitive.ppt Page 13 of 15

IBM Software Group

14

Set message type mediation primitive © 2009 IBM Corporation

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:
mailto:iea@us.ibm.com?subject=Feedback_about_WBPMv62_SetMessageTypePrimitive.ppt

This module is also available in PDF format at: ../WBPMv62_SetMessageTypePrimitive.pdf

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WBPMv62_SetMessageTypePrimitive.ppt Page 14 of 15

IBM Software Group

15

Set message type mediation primitive © 2009 IBM Corporation

Trademarks, copyrights, and disclaimers
IBM, the IBM logo, ibm.com, and the following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

WebSphere

If these and other IBM trademarked terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S. registered or common law
trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of other IBM
trademarks is available on the Web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Java, and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any statements regarding IBM's future direction
and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or services does not imply
that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program Product in this
document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be
used instead.

THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products
are warranted, if at all, according to the terms and conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License
Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other
publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other claims related
to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2009. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

WBPMv62_SetMessageTypePrimitive.ppt Page 15 of 15

