

®

IBM Software Group

© 2009 IBM Corporation

Updated June 1, 2009

WebSphere Enterprise Service Bus V6.2
WebSphere Process Server V6.2
WebSphere Integration Developer V6.2

XSL transformation mediation primitive

This presentation provides a detailed look at the XSL transformation primitive, also called
the XSLT primitive. The acronym XSLT stands for extensible style sheet language
transformations, which is defined in a specification from the World Wide Web Consortium
(W3C). The XSL transformations specification defines the syntax and semantics of a
language for transforming XML documents into other XML documents.

WBPMv62_XSLTransformationPrimitive.ppt Page 1 of 25

IBM Software Group

2

XSL transformation mediation primitive © 2009 IBM Corporation

�Understand the XSL transformation primitive

�Overview of function

�Use of terminals
�Definition of properties

�Maps – creating, editing, defining transforms and testing

�Migration from previous releases

�Error handling

�Example usage

Goals

XSL transformation

The goal of this presentation is to provide you with a full understanding of the XSL
transformation primitive.

The presentation assumes that you are already familiar with the material presented in the
presentations that cover common elements of all mediation primitives, such as properties,
terminals, wiring and the use of promoted properties. The general knowledge of mediation
primitives they provide is needed to understand the XSL transformation primitive specific
material in this presentation.

An overview of the XSL transformation primitive is presented along with information about
the primitive’s use of terminals and its properties. The primitive uses XML maps to define
the contents of the XSL style sheets. Therefore, the presentation looks at the XML maps
to see how they are created and edited, the defining of transformations within the maps
and how the maps are tested. The primitive has changed between versions 6.0.2 and 6.1,
so the migration capabilities are discussed. Finally, error handling characteristics are
presented followed by an example usage of an XSL transformation primitive.

WBPMv62_XSLTransformationPrimitive.ppt Page 2 of 25

IBM Software Group

3

XSL transformation mediation primitive © 2009 IBM Corporation

Overview of function

� Modifies the service message object (SMO)
�Uses extensible style sheet language (XSL) transformations (XSLT)

�Message type and message content can be changed

�Transformed message is validated

� XPath used to defined the root (starting point) of the
transformation

� Maps are used to define the transformations
�Created with the XML map editor

�XSL style sheets are generated from the XML maps

� XSL style sheets can be specified directly

The purpose of the XSL transformation primitive is to modify the service message object
(SMO). This is done using extensible style sheet language (XSL) transformations, also
called XSLT. The XSL transformation primitive is capable of modifying the content of the
SMO and of modifying the message type by restructuring the message body. The
transformed message is validated to ensure it conforms to the constraints specified for it.
This validation always occurs and is not optionally selected as it is for input messages on
this and some other primitives.

There is a root property, which uses an XPath expression to define the starting point within
the SMO for the transformation.

Transformations are defined by means of XML maps created using the XML map editor.
The XML maps are then used to generate XSL style sheets, which are used by the
runtime to perform the transformation.

If you have an existing XSL style sheet that meets the requirements of your
transformation, you can specify that XSL style sheet directly rather than defining the
transformation with an XML map.

WBPMv62_XSLTransformationPrimitive.ppt Page 3 of 25

IBM Software Group

4

XSL transformation mediation primitive © 2009 IBM Corporation

Terminals

� Terminals:
�Input terminal

�One output terminal

�Fail terminal

�Message type of input and output terminal
� Same type – for manipulation of values within a message

� Different type – for changing format of the message body

The XSL transformation primitive has one input terminal, one output terminal and a fail
terminal. The output terminal can be for the same message type as the input terminal or
for a different message type. When the message type is different, the transformation
modifies the structure of the body of the message. Shown here is an XSL transformation
primitive with its terminals, and the terminals as seen in the properties view.

WBPMv62_XSLTransformationPrimitive.ppt Page 4 of 25

IBM Software Group

5

XSL transformation mediation primitive © 2009 IBM Corporation

Properties

� Root
�XPath expression defining portion of service message object to transform
�One of: /, /body, /context, /headers
�Not editable on this panel

� Mapping file
�Identifies either an XML map or an XSL style sheet
�Browse… to select an existing XML map or XSL style sheet using the

mapping file selection dialog
�Edit… to edit the file specified using the XML map editor or XSL editor
�New… to create a new XML map using the new XML mapping dialog
�Not editable on this panel

� Validate input
�Validates if incoming message is of the expected type and meets specified

constraints

In the upper right is a screen capture of the Details panel from the Properties view for an
XSL transformation primitive.

The Root property contains an XPath expression defining the major portion of the SMO on
which the transformation is performed. Valid values for this property are / (forward slash)
meaning the entire SMO, or /body, /context or /header, referring to the corresponding
section of the SMO. This property is not editable on this panel. Its value is set by one of
the dialogs that is used to define the mapping file.

The Mapping file property contains either the file name of an XML map that is used to
generate an XSL style sheet or the name of an XSL style sheet. This field displays the file
name and is not directly editable. It is set through use of the dialogs accessible using the
buttons to the right of the field. The Browse… button opens the mapping file selection
dialog that allows you to navigate and select an existing XML map or an existing XSL style
sheet. Only style sheets that are not associated with an XML map are displayed and
selectable. The Edit… button opens the appropriate editor for the configured mapping file,
either the XML map editor or the XSL editor. The New… button opens the new XML
mapping dialog, which enables you to define the characteristics of the map, and then
places you into the XML map editor to define the transformations. Only XML maps can be
newly created directly from the primitive, whereas an XSL style sheet must already exist to
be configured with the primitive.

The Validate input property is a check box used to indicate if incoming messages to the
XSL transformation primitive are to be validated before processing. This ensures that the
incoming message is of the expected type and that any constraints defined are not
violated.

WBPMv62_XSLTransformationPrimitive.ppt Page 5 of 25

IBM Software Group

6

XSL transformation mediation primitive © 2009 IBM Corporation

Promotable properties

� Promotable
�Root

�Mapping file

�Validate input

This slide shows the Promotable Properties panel and lists those properties that are
promotable and those that are not. As you can see, all three of the XSL transformation
primitive’s properties are promotable.

The Root property is promotable, however changing its value at runtime can be
problematic. The value of the root property is directly associated with the XSL style sheet,
so unless you also change the XSL style sheet so that it is compatible with the new root
specification, runtime errors will occur.

The mapping file property is promotable. The alias value for this property is an XSL style
sheet, even though the value for the property is an XML map. The reason is that the XSL
style sheet generated from the XML map is what is processed at runtime, and promoted
properties are used to affect the runtime behavior. If the alias value is promoted at runtime
to an XSL style sheet based on a different root value, the value for the root property
should also be promoted to the compatible value.

Promoting the Validate input property allows an administrator to turn validation of the SMO
off and on. This allows the performance advantage of not doing validation of the input
SMO. However, if the need arises to debug a problem, the administrator can turn on
validation while the problem is being investigated.

WBPMv62_XSLTransformationPrimitive.ppt Page 6 of 25

7

IBM Software Group

XSL transformation mediation primitive © 2009 IBM Corporation

Creating a new XML map

� New XML mapping dialog
�Create a new XML map

� Namespace

� Folder

� Name

� Create sample XML for testing

�Select message types
� Message root

� Input and output message body

�Currently configured contexts
� Context change requires new map

To create a new XML map, the New… button is used to access the new XML mapping
dialog, which is shown in the screen captures on this slide. The first panel, seen in the
upper right, allows you to specify the namespace, folder and map name, which are all pre-
filled with default values. You can change any of these if required to satisfy your naming
conventions. There is also a check box that indicates that you want an XML file created to
use as input for testing this XML map. The test file created is based on the SMO schema
for the portion of the SMO that is input to the transform. More details on using this XML file
for testing are provided later in the presentation.

The second panel of the dialog, seen in the lower screen capture, allows you to specify the
message root, indicating if the whole SMO, or just the context, headers or body is being
transformed. You also specify on this panel the message type of both input and output
messages. If the primitive’s terminal already has a message type defined, it is pre-filled in
the dialog, otherwise the field is left blank. The Browse… button is used to access the
change message type dialog, which enables you to define the message type or change an
existing message type. Whatever you define here is propagated to the message type
definition for the terminal, ensuring that they remain synchronized.

Clicking the Finish button creates an XML map corresponding to the root and message
type definitions provided in this dialog. You are placed into the XML map editor so that you
can begin to define the transformations between the input and output messages.

The business objects that are configured for the correlation, transient and shared contexts
are shown on this panel. It is important to know this if the map is for the entire SMO or for
the contexts, as these contribute to the schema use for the map’s input and output. After
creating the map, changes to the contexts are not refractored into the map. Therefore, you
will need to re-create the map if you make changes to the configuration of contexts for the
flow.

WBPMv62_XSLTransformationPrimitive.ppt Page 7 of 25

IBM Software Group

8

XSL transformation mediation primitive © 2009 IBM Corporation

Using an existing mapping file

� Mapping file selection dialog
�Lists available files

� XML maps

� XSL style sheets not associated with
an XML map

�Filter to subset list

�Fully qualified name and
namespace of selected file

�Must specify root for XSL style
sheets

This slide looks at selecting an existing mapping file, which can be either an XML map or
an XSL style sheet. This is done using the mapping file selection dialog that is accessed
using the Browse… button. The dialog lists all the maps available in the project and in the
libraries used by the project. It also lists the XSL style sheets that are not associated with
a map. As with many of the dialogs, a filter string can be used to filter the list, making it
easier to find the file you need. When a file is selected in the list, the fully qualified name is
shown in the Qualifier field. This can help when there are multiple files within scope that
have the same name. When a mapping file is selected, the value for the root property is
determined from the map. However, you must specify the root property value when
selecting an XSL style sheet, which is done in the dialog using the field labeled Select XSL
mapping root. The slide shows the selection of an XSL style sheet in the upper screen
capture and the selection of a map in the lower one.

WBPMv62_XSLTransformationPrimitive.ppt Page 8 of 25

IBM Software Group

9

XSL transformation mediation primitive © 2009 IBM Corporation

XML map editor

The layout of the XML map editor is shown here. It is very similar to the business object
mapping editor, with the source shown on the left and the target on the right. Transforms
are created by dragging from a source to a target field and then defining the specifics of
the transform in the properties view. There is a toolbar that provides quick access to
several functions, such as adding, deleting and sorting transforms, associating XML files
for testing and mapping like fields between source and target. There is no capability
provided to define the order in which the transforms are performed.

WBPMv62_XSLTransformationPrimitive.ppt Page 9 of 25

IBM Software Group

10

XSL transformation mediation primitive © 2009 IBM Corporation

XML map transforms

Local map between a source array and target array for each

Local map with multiple source types merge

Assign a value to a target assign

Using a delimiter and index, selects a substring from source and assigns to target Substring

Normalizes source string and assigns to target string Normalize

Concatenates multiple source stings and assigns to target string Concat

Applies custom coded XPath or XSLT between source and target
Source and target can be either simple or complex types
Useable with xsd:anyType

Custom

Nested map defines transforms between complex types or simple and complex type
Reusable from other maps
Usable with xsd:anyType (submap defined for actual type expected at runtime)

submap

Nested map defines transforms between complex types or simple and complex type
Not reusable from other maps local map

Copies value between simple types with conversion
Copies value between complex elements of the same type move

Function Transform

These are the transforms that can be used in an XML map.

The move transform is used to copy a value from source to target. When the fields are simple types,
conversions are automatically done if required, such as converting an integer source value to a string target.
When fields are complex types, they must be of the same type.

The local map transform is a nested map used to map between complex types or between a simple and
complex type. The local map is embedded in the map containing the local map transform and is therefore not
reusable.

The merge transform is the same as a local map transform, except that it has more than one source type.

The for each transform is also the same as a local map transform, but is used to map from a source array to
a target array.

The submap transform is also a nested map used to map between complex types or between a simple and a
complex type. The difference is that the submap is in its own file and is reusable from other maps. Also, the
submap can be used to map to or from a field that is defined as an xsd:anyType. The definition of the map
must match the actual type contained within the xsd:anyType at runtime.

The custom transform allows you to code XPath or XSLT between the source and target, which can be either
simple or complex types. Similar to submap, custom can also be used with xsd:anyType fields.

The concat transform concatenates multiple source strings and assigns them to a target string.

The normalize transform does a normalization of the source string and assigns it to the target string.

The substring transform uses a delimiter and an index to select a portion of the source string and assign it to
the target.

Finally, the assign transform allows you to configure a constant value that is assigned to a target field.

WBPMv62_XSLTransformationPrimitive.ppt Page 10 of 25

IBM Software Group

11

XSL transformation mediation primitive © 2009 IBM Corporation

Arrays

� Move – can be used between arrays of like type

� For each or submap – used between arrays of like or unlike
type

� Specific array elements can be indexed using the cardinality
property panel

This slide looks at the considerations for arrays that are contained in the source or the
target. When source and target arrays are of like type, a move transform can be used to
copy the source array to the target. However, if the arrays are of unlike type, a for each or
a submap needs to be used to define the transformation between them. If you want to
address a specific element of an array, this is done by specifying a specific index in the
cardinality panel of the properties view. The screen capture shows all three of these
possibilities. The source contains an array of type Address, which is the source for all
three of the transforms. A move transform is used to copy the array to a target array that is
also of type Address. Then a for each is used to transform the source array into a target
array of type Addr. Finally, a move transform selects a specific element from the source
array and copies it to a target field of type Address. The properties view in the screen
capture is for this transform, showing the specification of the cardinality for the source
array.

WBPMv62_XSLTransformationPrimitive.ppt Page 11 of 25

IBM Software Group

12

XSL transformation mediation primitive © 2009 IBM Corporation

Mapping considerations for context or headers

�Context and headers must be explicitly mapped
�For maps with root = “/”, “/context” or “/headers”

�Runtime errors might occur if not mapped

�Approach
�Use match mapping icon to create the transforms

When a map is run, it is only those elements that are explicitly mapped that are created in
the target XML file. This must be considered for all maps, but is especially important when
defining a map that contains the context or headers sections of the SMO. If these are not
mapped, it might result in runtime errors downstream in the flow. So that you do not have
to explicitly define the transforms for every field in the context and headers, a function that
creates transforms between fields of like name and type is provided. You can see the icon
for this in the toolbar of the screen capture.

The correct approach to using this tool is to first start your map by using it. The result of
this is shown in the screen capture. For both the context and headers, it creates a local
map. Inside the local maps it creates nested local maps for complex types and moves for
simple types. This nesting recursively occurs until all the contained complex types have
been expanded to their simple types and have been mapped. When arrays needs to be
mapped, a for each transform is created, as can be seen for attachments in the screen
capture. The for each is actually a local map that is applied to each element of the array.

If all you want to do is map some source body elements to the target body, and have the
context and headers unchanged, this approach creates what you need for the context and
headers. In fact, in this case you can actually use moves rather than local maps for the
context and headers. However, the best approach is for you to create a map with a root of
/body and then you do not need to consider the context and headers. Considering this, it is
likely that when you have a root of slash (“/”), you want to explicitly map something to one
or more fields in the context or headers. The next few slides examine the correct approach
to developing a map for this case.

WBPMv62_XSLTransformationPrimitive.ppt Page 12 of 25

IBM Software Group

13

XSL transformation mediation primitive © 2009 IBM Corporation

Creating a map that modifies the context

�Example that updates one field in target transient
context from customerID field in source body
�Map with root of “/”

�Do match mapping (result is map on previous slide)

�Connect customerID element from source body to local
map transform for context (result is a merge transform)

In these slides there is an example of how to create a map that copies all like fields for the
context and headers, except for one field in the transient context. The field is named
customer, and rather than setting it from the target transient context, it is to be set from the
customerID field in the body of the message. To do this, start by creating a new map with
a root of slash (“/”). Next use the match mapping tool to create a map with like fields
mapped to each other. The result of doing that is the map shown on the previous slide.
Since it is the customerID field from the body that needs to be set in the transient context,
add a connection from customerID to the local map transform for context. When you do
this, the local map transform is changed to a merge transform. The result of this is shown
in the screen capture on this slide.

WBPMv62_XSLTransformationPrimitive.ppt Page 13 of 25

IBM Software Group

14

XSL transformation mediation primitive © 2009 IBM Corporation

Creating a map that modifies the context

�Example (continued)
�Open the merge transform (there is a local map from

source transient to target transient)

�Connect customerID from source body to local map
transform for transient (result is another merge transform)

Continuing with the example, the next thing to do is open the merge transform. It is a local
map with a source consisting of all of the context plus the customerID from the body and
all the context as the target. Each simple type in the context is mapped with a move
transform, such as is seen for correlation. Each complex type is mapped with a local map,
as is seen for several of the others, such as failInfo and shared. The next thing to do is to
connect the customerID to the local map transform for transient, which results in it
becoming a merge transform. The screen capture on this slide shows the map after these
steps have been taken.

WBPMv62_XSLTransformationPrimitive.ppt Page 14 of 25

IBM Software Group

15

XSL transformation mediation primitive © 2009 IBM Corporation

Creating a map that modifies the context

�Example (continued)
�Open the merge transform (there is a move from source

customer to target customer)

�Delete connection from source customer to move
transform and add connection from customerID

Finishing up the example, open the merge transform. Similar to the previous local map,
simple types are moved with a move and complex types are mapped with a local map.
The customer field from the source transient context is moved to the customer field in the
target transient context. This is shown in the upper screen capture. To complete this
example, the connection from the source customer to the move transform must be
deleted, and a connection from the customerID added. When this is done, there is now a
move transform setting the customer field in the target transient context from the
customerID field in the message body. The result is seen in the lower screen capture.

WBPMv62_XSLTransformationPrimitive.ppt Page 15 of 25

IBM Software Group

16

XSL transformation mediation primitive © 2009 IBM Corporation

Testing XML maps
� XML files can be associated to

maps for testing
�Testing of the map occurs when

the map is saved
�Multiple test files can be associated

with a map

� Two ways of associating the
input XML files
�Generated automatically at map

creation time (named
<mapname>.xml)

�Existing XML files associated with
existing maps

WebSphere® Integration Developer provides an automatic testing capability. It takes an
XML file associated with the map, uses it as input to the map whenever the map file is
saved, and creates the resulting output XML file. There can be multiple of these input XML
test files configured for a map. There are two ways to associate an input XML file with a
map. The first is to have it automatically generated when creating the map. This is done by
selecting a check box in the new XML map dialog as is shown in the screen capture. The
file will have the same name as the map, but with a .xml file extension rather than a .map
extension. The other approach is to associate an existing XML file with a map. There is an
associate XML files button in the toolbar for a map, which opens the file associations
dialog, as is shown in the bottom screen captures.

WBPMv62_XSLTransformationPrimitive.ppt Page 16 of 25

IBM Software Group

17

XSL transformation mediation primitive © 2009 IBM Corporation

Testing XML maps
� Output XML files
�<inputXMLname>-out.xml
�Stored in same directory as the map

� Example map and XML files

When a map file is saved, all of the associated XML files are used as input to the map,
producing the output files. The output files are named with the same name as the input
files, with dash out (-out) appended. Examples of these can be seen in the screen capture
in the upper right. The two input files, MyXSLT.xml and MyXSLT2.xml resulted in the two
output files MyXSLT-out.xml and MyXSLT2-out.xml. The screen capture in the middle of
the slide shows an XML map, with source1 moved to target1, and source2 moved to
target2a and target 2b. In the bottom screen captures you can see the input and output
XML files, reflecting the results of the test

WBPMv62_XSLTransformationPrimitive.ppt Page 17 of 25

IBM Software Group

18

XSL transformation mediation primitive © 2009 IBM Corporation

Migration – New map editor in V6.1

� A new XML map editor was introduced in V6.1
�Based on Rational® Application Developer V7 XML map editor

� Considerations for XSL transformation primitives from earlier releases:
�No change � XSL style sheets will run as is
�Changing � Old format .xmx maps cannot be edited, must be migrated

In version 6.1 a new XML map editor was introduced in WebSphere Integration Developer,
replacing the editor that was used in earlier versions. The editor is based on the Rational
Application Developer V7 XML map editor. If you have projects from before version 6.1
that contain XSL transformation primitives, you might need to migrate the maps. In the
case where you do not need to change the map, the XSL style sheet from the earlier
release will work as is. However, if you need to make changes to the map, it must be
migrated from the old format to the new. The old format maps can be recognized by the
.xmx file extension. Migrating an old format map is quite easy, with two different
approaches being provided. The first is shown in the upper screen capture, which shows
the properties view of an XSL transformation primitive in a project that was imported from
version 6.0.2. Notice that there is a warning that the mapping file is the old format and that
there is a Migrate button for the mapping file. Also, the Edit… button opens a migration
panel rather than an editor. Click the Migrate button to convert the .xmx map to a version
6.1 .map file. The warning and Migrate button are removed and the Edit… button becomes
operational. The screen capture at the bottom of the slide is of the Problems view,
showing a warning message about the XSL transformation primitive being configured with
an old format map. Using the pop-up menu and selecting Quick Fix opens a series of
dialogs that allows you to migrate this .xmx map. You can also select others in the project
to migrate at the same time.

WBPMv62_XSLTransformationPrimitive.ppt Page 18 of 25

19

IBM Software Group

XSL transformation mediation primitive © 2009 IBM Corporation

Migration – New transform rules in V6.2

�Potentially conflicting transforms not allowed

This slide looks at new rules for the structure of an XML map that took effect starting in
version 6.2 and how to migrate your maps from earlier versions.

To illustrate this, the example shown on previous slides is revisited. It showed how to
create a map that updated a field embedded within the transient context. What that
example showed was the correct way to do it, by using merge transforms and drilling down
to the level where the field can be set.

What is shown here is an example of a legal XML map in version 6.1 that is no longer
allowed as of version 6.2. In the top screen capture is an XML map that uses a local map
to copy the source context to target context. It also contains a move of the customerID
field from the body to the customer field in the transient context. In the middle of the slide
is a screen capture of the local map for the transient context, and notice that there is no
transformation to set the customer field. In version 6.1 this was a legal XML map.
However, there are cases where a construct similar to this might not yield the expected
results. Therefore, in version 6.2 this is no longer a valid map. See the screen capture at
the bottom of the slide with the error stating: “customer is mapped by a local mapping on
parent element transient as well as a Move mapping directly on the element customer”.

It is possible you have version 6.1 projects that contain XML maps similar to this. In order
to aid migration, there is a Quick Fix option provided on the pop-up menu for the error
message. Selecting this should correct your map so that it uses the structure now
supported. Before using the quick fix, make sure you understand why your existing map is
being flagged and what the proper solution is. After the quick fix completes, ensure that
your map was updated as you expected.

WBPMv62_XSLTransformationPrimitive.ppt Page 19 of 25

IBM Software Group

20

XSL transformation mediation primitive © 2009 IBM Corporation

Error processing

�MediationRuntimeException thrown for:
�XSL style sheet not found or not specified

�MediationBusinessException (fail terminal flow)
�Validate input specified and input message fails

validation testing

�Output message fails validation testing
� The message resulting from the transformation is always validated

�XSLTMediationException (fail terminal flow)
�Errors during XSL style sheet processing

The error processing details and considerations are examined in this slide, describing
some of the error situations you might encounter.

A MediationRuntimeException is thrown for problems accessing the XSL style sheet, such
as when the style sheet cannot be found, has not been specified or for some other reason
cannot be loaded by the mediation runtime.

A MediationBusinessException occurs if validate input has been specified and the input
message fails the validation processing. Output messages are always validated and the
MediationBusinessException occurs when the output message fails validation testing. For
these and other MediationBusinessException cases, if the fail terminal is wired, the flow
from the fail terminal is followed rather than the exception being raised.

There is a new exception being used in version 6.1, the XSLTMediationException. It
occurs if there are errors encountered during the processing of the XSL style sheet, such
as a parsing error processing the input XML. Similar to the MediationBusinessException,
this exception results in the fail terminal flow if the fail terminal is wired.

WBPMv62_XSLTransformationPrimitive.ppt Page 20 of 25

IBM Software Group

21

XSL transformation mediation primitive © 2009 IBM Corporation

Example usage

� Example – Setup call for target service
�Mediation flow input operation contains only customer number

�Operation on target service callout requires customer name and number

� Mediation logic:
�Database lookup

� Primitive uses customer account number to look up customer name from database

� Customer name placed into the transient context

� Failure if no record found for customer

�XSL transformation
� Maps source message format to target message format

� Copies the account number from source message body to target message body

� Copies the name from the source transient context to the target message body

The next couple of slides provide an example usage of the XSL transformation primitive. In
this scenario, a call to a service provider requires more information than the call coming in
from the service requestor. Specifically, the request contains only a customer number, and
the service provider has an interface requiring both a customer name and customer
number. This is done using an XSL transformation primitive in conjunction with a database
lookup primitive. The mediation flow logic starts with the database lookup, which uses the
customer number to look up a customer name from a database. The customer name is
placed into the transient context of the SMO by the database lookup. Since the service
provider always needs both the customer name and number it is considered an error
condition if the lookup does not find the customer record. Following the database lookup,
the XSL transformation primitive maps the source message to the target message,
changing the message type to match the operation being called on the service provider.
The account number is moved from the source SMO body to the target SMO body and the
name is moved from the source SMO transient context to the body of the target SMO.

WBPMv62_XSLTransformationPrimitive.ppt Page 21 of 25

IBM Software Group

22

XSL transformation mediation primitive © 2009 IBM Corporation

Example usage (continued)

Lookup customer name in database
and place in transient context

Transform format of message body and
initialize with customer number and name

Fail – customer record not in database

The top portion of this slide shows the mediation flow logic for the example scenario. The
input node is wired to a database lookup, which looks up the customer name using the
customer number as the key. The keyNotFound terminal is wired to a fail primitive, which
raises an exception. If the lookup is successful, the flow goes to an XSL transformation
primitive, which modifies the SMO to the format required by the service provider. The
bottom portion of the slide shows the XML mapping editor. You can see the move
transform for the customerID in the source body to the clientID in the target body. The
other move transform shown here is for the name field in the source transient context to
the clientName in the target body. Finally, there are transforms that move the entire
context and the entire header. On the screen capture, which was taken using version 6.1,
the transforms are labeled inline map, but starting in version 6.2 these are now called local
maps.

WBPMv62_XSLTransformationPrimitive.ppt Page 22 of 25

IBM Software Group

23

XSL transformation mediation primitive © 2009 IBM Corporation

Summary

�Examined the XSL transformation primitive

�Overview of function

�Use of terminals
�Definition of properties

�Maps – creating, editing, defining transforms and testing

�Migration from previous releases

�Error handling
�Example usage

XSL transformation

In summary, this presentation provided an overview of the XSL transformation primitive
along with information about the primitive’s use of terminals and its properties. The
presentation looked at the XML maps to see how they are created and edited, the defining
of transformations within the maps and how the maps are tested. The migration
capabilities from version 6.0.2 to 6.1 were discussed. Finally, error handling characteristics
were presented followed by an example usage of an XSL transformation primitive.

WBPMv62_XSLTransformationPrimitive.ppt Page 23 of 25

IBM Software Group

24

XSL transformation mediation primitive © 2009 IBM Corporation

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:
mailto:iea@us.ibm.com?subject=Feedback_about_WBPMv62_XSLTransformationPrimitive.ppt

This module is also available in PDF format at: ../WBPMv62_XSLTransformationPrimitive.pdf

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WBPMv62_XSLTransformationPrimitive.ppt Page 24 of 25

IBM Software Group

25

XSL transformation mediation primitive © 2009 IBM Corporation

Trademarks, copyrights, and disclaimers
IBM, the IBM logo, ibm.com, and the following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

Rational WebSphere

If these and other IBM trademarked terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S. registered or common law
trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of other IBM
trademarks is available on the Web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Rational is a trademark of International Business Machines Corporation and Rational Software Corporation in the United States, Other Countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any statements regarding IBM's future direction
and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or services does not imply
that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program Product in this
document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be
used instead.

THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products
are warranted, if at all, according to the terms and conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License
Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other
publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other claims related
to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2009. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

WBPMv62_XSLTransformationPrimitive.ppt Page 25 of 25

