
P06_IBM_WBI_Adapter_for_mySAPcom.ppt

This presentation gives an introduction to the IBM WebSphere® Business Integration

Adapter for mySAP.com. After the presentation you will have some familiarity with the

environments that the adapter is supported in, the adapter components and their features,

and the development tools used with the adapter. The presentation will also list some

issues that might be important when using or considering the adapter.

Page 1 of 35

P06_IBM_WBI_Adapter_for_mySAPcom.ppt

The agenda for this presentation begins with the adapter overview, then an overview of the

event detection. Next is an overview of the individual modules: the ABAP extension, BAPI,

hierarchical dynamic retrieve, RFC Server and the ALE modules. Then, after an overview

of the object discovery agent, this presentation will conclude with a summary of the

questions, concerns and decisions that accompany the use of this adapter.

Page 2 of 35

P06_IBM_WBI_Adapter_for_mySAPcom.ppt

The mySAP.com adapter includes a connector, message files, configuration tools, and an

object discovery agent, or ODA. The connector allows the WebSphere integration broker

to exchange business objects with SAP applications.

The adapter supports SAP R/3 versions 3.0 through 4.7, and Web Application Server

versions up to 7.

It is written in Java and supports Windows, UNIX, and Linux platforms as listed here.

There are multiple Connector modules which offer various ways to integrate with R/3.

These are the ABAP Extension Module, ALE Module, BAPI Module, Hierarchical Dynamic

Retrieve Module, and RFC Server Module.

Hierarchical Dynamic Retrieve Module – WebSphere Business Integration delivers a

wizard which can be used to generate business objects which run with the Hierarchical

Dynamic Retrieve Module. To use this wizard, it needs to be loaded into an SAP system,

making it invasive solution. The runtime environment of the Hierarchical Dynamic Retrieve

Module, however, is completely noninvasive.

The only difference between the version 3 and version 4 adapters is that the version 4

adapters offer wizards that are not offered with the version 3 adapter. SAP offers more

flexibility in version 4 that enable WebSphere Business Integration to deliver more robust

tools.

Page 3 of 35

P06_IBM_WBI_Adapter_for_mySAPcom.ppt

The adapter uses SAP’s Java API. SAP’s Java connector (also called JCO) is written in C

with a Java wrapper

While the connector is written in Java, some modules have components written in ABAP

that run in the SAP environment. In other words, there are invasive and non-invasive

solutions.

The invasive solution uses the /CWLD/ namespace in SAP based on the acquired

company CrossWorlds.

Event notification, provided through polling, is included with the ABAP Extension module.

The newer versions of the adapter (version 4.4 and later) are multi-threaded. They feature

multiple concurrent interactions from a single adapter JVM. This feature is supported by

the Vision framework, which can create separate threads for processing an application

event or for concurrent business object requests. That means improved performance. It

can be also advantageous to run multiple adapters to use event distribution for data

coming out of an SAP application and it is necessary if you want to deliver data to various

Interchange Servers. Multi-threading works best for moving data into an SAP application.

Page 4 of 35

P06_IBM_WBI_Adapter_for_mySAPcom.ppt

This graphic shows diagram of the adapter modules, and how they interact with SAP.

ALE stands for “application link enabling.” The ALE module part of this diagram depicts

request processing. IDOC data is sent to SAP and success message is returned to the

integration broker. The IDOC is processed asynchronously in the SAP

The ABAP Extension Module part of the diagram shows the business object handler

request-response sequence and represents the advanced event notification, which is

accomplished by polling.

The BAPI module and the Hierarchical Dynamic Retrieve module parts of the diagram

show the synchronous request / response sequence from the adapter to SAP

RFC server module shows the synchronous request and response from SAP to the

adapter.

Page 5 of 35

P06_IBM_WBI_Adapter_for_mySAPcom.ppt

This part of the presentation provides an overview of event detection mechanisms.

Page 6 of 35

P06_IBM_WBI_Adapter_for_mySAPcom.ppt

Typically most adapters use database triggers; however, SAP allows limited access to the

underlying database, so event detection mechanisms are implemented in the application

transaction layer above the database. WebSphere Business Integration uses four

mechanisms. All of them have their advantages and disadvantages.

Business Workflow is easy to implement and provides real-time integration. Disadvantage

is limited availability if this mechanism – business object does not always exist for each

business process.

User Exit is a design feature provided by SAP that can be used for real-time integration

and is moderately difficult to implement. Availability is limited in a sense that SAP provided

“safe” locations to insert event detection code.

Code Modification has extensive availability. Code can be inserted precisely at the

appropriate location in the existing code and provides real-time integration. It can be

difficult to implement and can be difficult to migrate when upgrading R/3 versions.

Batch programs are good for processing a large number of events, have extensive

availability in the sense that they can be implemented for most processes. They are

moderately difficult to implement and can not be used for real-time integration.

There are more mechanisms in the SAP that could be used or exploited for event

detection but these are the four primarily used with WebSphere Business Integration.

Page 7 of 35

P06_IBM_WBI_Adapter_for_mySAPcom.ppt

This part of the presentation provides an overview of the ABAP extension module.

Page 8 of 35

P06_IBM_WBI_Adapter_for_mySAPcom.ppt

The ABAP extension module consists of components written in Java and their

counterparts, written in ABAP, which run on the SAP system.

It is the only module with polling capability. This feature can be combined with other

modules, for instance: use the ABAP extension module for polling and any other modules

for subsequent retrieval.

SAP granted WebSphere Business Integration a development license and namespace

(/CWLD/). WebSphere Business Integration provides a namespace key through Technical

Support if it is necessary to modify existing components or develop new components in

the WebSphere Business Integration namespace. This may happen only in rare cases.

It is an invasive solution because SAP runtime components must be installed for this

module to function. However, it enables WebSphere Business Integration to deliver robust

functionality such as Business object development, Logging, Reprocessing, Event

notification using polling, and Event handling.

The module is delivered with tools running on SAP. These tools are grouped as

WebSphere Business Integration station, and can be invoked from the transaction

/CWLD/HOME

Page 9 of 35

P06_IBM_WBI_Adapter_for_mySAPcom.ppt

The connector for SAP is written in Java and consists of two parts: the vision connector
framework and connector modules. The vision connector framework calls any
implementation of the init(), pollForEvents(), and terminate() methods. It routes business
objects to specific business object handlers based on the verb using the doVerbFor()
method.

The connector's ABAP function module /CWLD/RFC_DO_VERB_NEXTGEN and an
ABAP handler in the ABAP component of the connector module handle the requests for
business object processing. The supplied ABAP handlers are
/CWLD/DYNAMIC_RETRIEVE, /CWLD/DYNAMIC_TRANSACTION, and
CWLD/IDOC_HANDLER. Additional business-object-specific handlers may need to be
developed.

Event notification for the connector consist of two functions. Event polling and event
triggering.

Event polling consists of three functions that are carried out by the pollForEvents()
method: Event request, event processing, and event return. Event request Java
component has a counterpart function module in the SAP application -
/CWLD/RFC_EVENT_REQUEST which selects the events to return from the event table.
The result is passed to the event processing function, which handles them one at a time.
After each event is processed, it is returned to the SAP application using function module
/CWLD/RFC_EVENT_RETURN. This module adds a copy of the processed event to the
event archive table (/CWLD/EVT_ARC), and deletes the original entry from the event
table.

After the event is detected in the SAP system, it is triggered using one of the adapter-
delivered event triggers. Function module /CWLD/ADD_TO_QUEUE adds event to the
current event table for immediate processing. The event detection was discussed in the

Page 10 of 35

earlier section of this presentation.

P06_IBM_WBI_Adapter_for_mySAPcom.ppt Page 10 of 35

P06_IBM_WBI_Adapter_for_mySAPcom.ppt

The ABAP extension module is delivered with a tool – IBM WebSphere Business

Integration station. It runs on SAP, and is invoked by transaction /CWLD/HOME. The

functionality is grouped in several tabs – development, tools, management, configuration

and troubleshooting. The slide shows the management tab which is useful for examination

and maintenance of activity, logs, event queues, and archives.

Page 11 of 35

P06_IBM_WBI_Adapter_for_mySAPcom.ppt

This part of the presentation provides an overview of the BAPI module.

Page 12 of 35

P06_IBM_WBI_Adapter_for_mySAPcom.ppt

The BAPI Module is a connector module, written in Java, that supports native BAPI calls

directly to an SAP application. It uses the SAP RFC libraries written in Java and C, which

enable external programs to communicate with an SAP application.

It is a non-invasive solution that supports any RFC-enabled function module.

SAP ODA is used to generate business object definitions for each RFC-enabled function.

It uses SAP’s standard APIs to generate a business object representation of a BAPI. Also

creates a BAPI-specific business object handler in Java to support the generated business

object and BAPI.

Page 13 of 35

P06_IBM_WBI_Adapter_for_mySAPcom.ppt

The BAPI Module implements the init(), terminate(), pollForEvents(), and doVerbFor()

methods. However, the pollForEvents() method is not used because the BAPI Module

supports request operations only. The init() method opens an RFC connection with the

SAP application through the SAP Gateway. If the connector fails to initialize, it terminates

using the terminate().

A single implementation of the doVerbFor() method in the vision connector framework's

business object handler initiates all business object requests. The vision business object

handler processes all of the business objects passed between the BAPI Module and the

integration broker. In the BAPI Module, a single BAPI business object handler supports all

BAPI calls.

Page 14 of 35

P06_IBM_WBI_Adapter_for_mySAPcom.ppt

This part of the presentation provides an overview of the hierarchical dynamic retrieve

module.

Page 15 of 35

P06_IBM_WBI_Adapter_for_mySAPcom.ppt

The hierarchical dynamic retrieve module is a connector written in Java that processes

hierarchical business objects recursively. It performs the same steps for each child

business object until it has processed all individual business objects in the hierarchy.

The runtime is completely non-invasive.

There is an Advanced Outbound Wizard deployable in R/3 which generates business

object definitions, but it only needs to be installed on the development system and not on

the client’s production system.

On WebSphere development side, ODA can be used to develop objects for individual

tables. Business object designer can also be used to link them into hierarchies.

The hierarchical dynamic retrieve module is especially suited to retrieving data from

custom tables.

Page 16 of 35

P06_IBM_WBI_Adapter_for_mySAPcom.ppt

The hierarchical dynamic retrieve module extends the vision connector framework. The

module does not have its own application-specific component, it uses the application-

specific component for BAPI. Therefore, the module consists of the connector framework,

the application-specific component for BAPI, the Dynamic Retrieve business object

handler, and the SAP RFC libraries.

Page 17 of 35

P06_IBM_WBI_Adapter_for_mySAPcom.ppt

This slide shows how the business object designer can be used to link the O.D.A.

developed objects for individual tables into hierarchies.

The meaning of the information in the application specific information column is listed in

the notes for this slide.

Note that the period (.) in the application specific information column points to the parent

business object as seen in the example at line 5.1. (FK=..ForeignKeyAttributeOfParent).

TN=TABLE:

CN=FIELD:

FK=ForeignKeyAttribute

FK=..ForeignKeyAttributeOfParent

OP=Operand (EQ,LE,GE,LT,GT,LIKE, Default EQ)

Page 18 of 35

P06_IBM_WBI_Adapter_for_mySAPcom.ppt

This part of the presentation provides an overview of the RFC server module.

Page 19 of 35

P06_IBM_WBI_Adapter_for_mySAPcom.ppt

The RFC server module is a connector module written in Java that supports RFC calls

directly from an SAP application.

It is a non-invasive solution – the connector has no components that need to run on the

R/3 system. It acts as a server to an SAP application and SAP becomes the client, and

supports all RFC-enabled functions.

The RFC server module uses multiple listener threads to pick up events from the SAP

Gateway.

The SAP object discovery agent generates WebSphere Business Integration business

object definition files and handlers.

Page 20 of 35

P06_IBM_WBI_Adapter_for_mySAPcom.ppt

The connector extends the vision connector framework by implementing the

VisionConnectorAgent class. It spawns listener threads that open handles to the SAP

application using the SAP RFC library and the SAP Gateway. Each listener thread opens a

single handle to the SAP application.

Then the connector processes requests from RFC-enabled functions in the SAP

application and finally terminates connections to the SAP application.

The RFC Server-specific business object handler retrieves the RFC event data and

populates the associated WebSphere business object for SAP. Then it passes the

business object to the integration broker and receives a business object in return.

Page 21 of 35

P06_IBM_WBI_Adapter_for_mySAPcom.ppt

This section of the presentation provides an overview of the ALE module.

Page 22 of 35

P06_IBM_WBI_Adapter_for_mySAPcom.ppt

The ALE module, written in Java, is a non-invasive solution.

ALE module uses asynchronous communication.

It is based on SAP’s application link enabling, or ALE, technology.

It supports IDocs and SAP’s tRFC protocol

SAP ODA tool generates WebSphere Business Integration business object definitions

based on IDocs.

It is an ideal way to leverage existing ALE interfaces.

Page 23 of 35

P06_IBM_WBI_Adapter_for_mySAPcom.ppt

The ALE module extends the vision connector framework. The module components
include the RFC server adapter agent, which is used for event processing only. The ALE
module uses the RFC server connector component because the similarities for event
processing both support RFC calls directly from the SAP application.

Listener Threads are spawned by the RFC Server adapter agent. They register on the
SAP Gateway and process events sent from the SAP Gateway.

The ALE event-processing business object handler is used during event processing; it
retrieves RFC event data from R/3, passes it to the integration broker, and then returns a
response to the ALE-specific function through the SAP Gateway.

The ALE adapter agent is used during request processing; it opens an RFC connection
with an R/3 application.

Finally, the ALE request-processing business object handler is used during request

processing; it converts WebSphere Business Integration business object data to and from

an IDoc data format.

Page 24 of 35

P06_IBM_WBI_Adapter_for_mySAPcom.ppt

There are two kinds of business object processing; event processing and request
processing.

In event processing, the RFC Server connector component is started and spawns listener
threads. Each listener thread registers a single handle to the SAP application and
starts process sing events from the SAP application.

All event processing in the ALE module is initiated from the SAP application by two RFC-
enabled functions: IDOC_INBOUND_ASYNCHRONOUS and
INBOUND_IDOC_PROCESS.

Each event from SAP is considered a transaction. The connector uses a two-step process
with a transaction ID - also called TID - to handle each event, guaranteeing once-only
delivery of data from SAP to the connector. MQ Series queues persistently store a
JMS-MQ message for each event. Each JMS-MQ message stores the TID identifying
the event, the status of the TID, the IDoc data associated with the event, and the
processing status of the IDoc.

The ALE data handler creates WebSphere business objects from the stored event
message, and sends the business objects to the integration broker.

For request processing, the ALE module opens an RFC connection to the SAP R/3
application. Then The ALE request-processing business object handler processes
requests from the integration broker, converting them from business object format to
IDoc data based on the SAP IDoc format.

For every request sent to the application, the ALE module persistently stores Transaction
IDs in a TID queue as a JMS-MQ message. The TID guarantees that the request is
delivered once and only once. However, if the integration broker sends an object that
has the same value in the transaction ID attribute, this object will be processed again.
Once an object has been successfully sent ,the expectation is that the integration
broker will not send the object again.

Finally, the ALE module releases the connection to the SAP R/3 application.

Page 25 of 35

P06_IBM_WBI_Adapter_for_mySAPcom.ppt

This section of the presentation provides an overview of the tools.

Page 26 of 35

P06_IBM_WBI_Adapter_for_mySAPcom.ppt

SAP ODA - object discovery agent - generates business object definitions for the

WebSphere Business Integration adapter for mySAP.com. The connector works with

objects that are based on IDoc types, BAPIs, RFC-enabled function modules defined in an

SAP system, and SAP tables representing a business process. Because of this, SAP ODA

uses these objects to discover business object requirements specific to its SAP data

source.

For IDocs it generates application-specific business object definitions from IDoc definition

files or by connecting to R/3.

For BAPIs and RFC it maps business object attributes to BAPI parameters, then

generates business object definition file. Then it generates BAPI/RFC-specific business

object handler .class and .java files. The generated .java file can be changed and

recompiled. The ODS allows for synchronous or asynchronous calls.

For hierarchical dynamic retrieve, the ODA generates business object definition files from

SAP table definitions.

Page 27 of 35

P06_IBM_WBI_Adapter_for_mySAPcom.ppt

SAP Object Discovery Agent is used in the business object designer to generate business
object definitions. The business object designer has a wizard that configures the SAP ODA
properties and launches the tool.

The business object designer displays a tree with five initial nodes: IDoc types, BOR,
RFC, DTR, and HDR.

Under IDoc types you can browse for extracted IDoc definition files and select IDocs in the
SAP system - both Basic IDoc Types and Extension Types) .

BOR is the Business object repository, where you can select objects that represent BAPIs
from the SAP application.

Under RFC you can select objects that represent RFC-enabled functions from the SAP
application.

DTR is Dynamic Transaction and Retrieve, where you can select the definitions that
represent objects from the dynamic transaction and dynamic retrieve metadata tables.

And finally, HDR or Hierarchical Dynamic Retrieve. Here you can select the tables
required to represent an entity for SAP transactions processed by the Hierarchical
Dynamic Retrieve module.

The nodes whose names are preceded by a plus sign (+) are expandable. Click on them
to display more nodes or leaves. SAP ODA generates business object definitions only
from leaves.

Page 28 of 35

P06_IBM_WBI_Adapter_for_mySAPcom.ppt

The WebSphere Business Integration Adapter for mySAP.com can be used with the

WebSphere Process Server and the WebSphere ESB brokers. The development tool in

these environments is the WebSphere Integration Developer.

Use the business object designer to configure ODA and create the business objects.

Use the WebSphere Integration Developer enterprise service discovery wizard to select

the WebSphere Business Integration adapter artifact importer. Then specify the connector

configuration file and business object schema directory. Discover and configure the

available enterprise services, and finally generate the artifacts.

At this point the exports are available in the assembly editor

Page 29 of 35

P06_IBM_WBI_Adapter_for_mySAPcom.ppt

This slide shows the assembly diagram for the module MyAEN after the artifacts were

generated.

Page 30 of 35

P06_IBM_WBI_Adapter_for_mySAPcom.ppt

This section of the presentation provides a summary.

Page 31 of 35

P06_IBM_WBI_Adapter_for_mySAPcom.ppt

This presentation has described the various modules of the adapter, each providing

different capability. In choosing the module, the good news is that all of them are present

in the adapter. However it is necessary to consider if there are components that need to

be deployed in SAP. So there are some key questions to ask listed here.

Some common concerns or requirements that need to be addressed include leveraging

existing interfaces, the lack of custom ABAP, and the lack of event triggering with RFC and

ALE.

Page 32 of 35

P06_IBM_WBI_Adapter_for_mySAPcom.ppt

The direction considered in this slide is from SAP. From the WebSphere side – reverse

inbound and outbound.

For outbound processing

If BAPI is available, use BAPI.

If custom logic is required on SAP side, then use ABAP code.

If ALE interfaces exist, use ALE.

If SAP initiated calls are required, you need the RFC server module.

If event processing is required, you need the ABAP extension module

For inbound processing

Use BAPI if it is available.

If you need simple retrieve from related tables, use HDR.

If you need flat objects, use ABAP dynamic transaction.

When custom logic is required, you need to write some ABAP code.

And if standard IDoc is available, use ALE.

Page 33 of 35

P06_IBM_WBI_Adapter_for_mySAPcom.ppt

For more information, see these references.

Page 34 of 35

P06_IBM_WBI_Adapter_for_mySAPcom.ppt Page 35 of 35

