
XD6_BusinessGrid_Programmingmodel.ppt Page 1 of 15

®

IBM Software Group

© 2005 IBM Corporation

Updated August 1, 2005

IBM® WebSphere® Extended Deployment V6

Business Grid – Programming Models

This presentation will provide an explanation of the programming models that should be
used with the Business Grid component offered in WebSphere Extended Deployment V6.

XD6_BusinessGrid_Programmingmodel.ppt Page 2 of 15

IBM Software Group

2

Business Grid - Programming Models © 2005 IBM Corporation

Agenda

�Business Grid Programming Model

�Compute-Intensive

�Batch

This presentation will explain both the computationally intensive and batch process
programming model that are supported by the Business Grid.

XD6_BusinessGrid_Programmingmodel.ppt Page 3 of 15

IBM Software Group

3

Business Grid - Programming Models © 2005 IBM Corporation

ComputeCompute--IntensiveIntensive
Programming ModelProgramming Model

Section

This section will explain the computationally intensive programming model.

XD6_BusinessGrid_Programmingmodel.ppt Page 4 of 15

IBM Software Group

4

Business Grid - Programming Models © 2005 IBM Corporation

Compute-Intensive Work

� Compute-intensive work is simply work that requires
significant amounts of processing to complete

� An XML based Job Control Language (xJCL) is used to
describe the behavior of a long-running program
�Business Grid Scheduler clients pass an xJCL document as a job

submission request

� The Long-Running Scheduler uses the information in the
xJCL to match job submission requests to applications
available on execution environments
�Possibly starting new execution environments for jobs

A computationally intensive application is simply an application that requires large
amounts of processing to finish. For the business grid, the behavior of a long-running
application must be defined within an XML based Job Control Language or xJCL. The

scheduler component passes an xJCL document as part of a job submission request. The
scheduler uses the information in the xJCL to match the job to available nodes within the
environment.

XD6_BusinessGrid_Programmingmodel.ppt Page 5 of 15

IBM Software Group

5

Business Grid - Programming Models © 2005 IBM Corporation

Compute-intensive programming model

� Each job step specifies the

name of a class that implements

the com.ibm.websphere.

ci.CIWork interface

� A sub-interface of

commonj.work.Work

� Additional constraints on

classes that implement CIWork:

� Work.isDaemon() must return

true

� Must have no-argument

constructor

� Strongly encouraged to provide

robust implementation of

Work.release()

com.ibm.websphere.ci.CIWork

void setProperties(Map props)

Map getProperties()

commonj.work.Work

boolean isDaemon()

void release()

java.lang.Runnable

run()

A special interface is used to define the steps of a computationally intensive application.
Each step is represented by a class that implements the CIWork interface which is a part
of the WebSphere asynchronous bean programming model. Each step’s class must have

a no-argument constructor, and the Boolean isDaemon() method must return true.
Developers are also encouraged to provide an implementation for the release() method,
which will be used to remove this step from the long-running environment if a job is

cancelled.

XD6_BusinessGrid_Programmingmodel.ppt Page 6 of 15

IBM Software Group

6

Business Grid - Programming Models © 2005 IBM Corporation

Stateless session bean facade

� Since asynchronous bean functions can only be accessed
programmatically, compute-intensive jobs are also required
to define a stateless session bean

� Interface and implementation classes are provided by
WebSphere

�Only the bean definition needs to be included in the
application

�Note that default class-name based JNDI names for
stateless session bean will not work, as the same bean
will be included in multiple applications
� Suggested best practice is to append application name as a suffix,

“ejb/com/ibm/ws/longrun/LongRunningController-myCIApp”

� This JNDI name is specified in the xJCL

Each step of a computationally intensive program is written as an asynchronous bean.
Since asynchronous bean functions can only be accessed programmatically, the
applications must also define a controller bean, which is a stateless session bean defined

in the compute-intensive application's deployment descriptor and allows the execution
environment to control jobs for the application. The implementation of this stateless
session bean is provided by WebSphere. The application's only responsibility is to include

the stateless session bean in the deployment descriptor of one of its enterprise bean
modules. Exactly one controller bean must be defined for each compute-intensive
application. Since the implementation of the controller bean is provided in the WebSphere
runtime, application deployers should not request deployment of enterprise beans during

deployment of compute-intensive applications.

XD6_BusinessGrid_Programmingmodel.ppt Page 7 of 15

IBM Software Group

7

Business Grid - Programming Models © 2005 IBM Corporation

Compute-intensive execution environment

� For a job step, represented as a
Stateless Session Bean, the

following steps occur

�The Long-Running controller

instantiates a CIWork asynchronous

bean

� Calling the no-argument constructor

�Sets the properties based on

parameters in the xJCL

� Calling setProperties(Map)

�Arranges for CIWork to be run by the

WorkManager

� Calling Run() to begin processing

� Call Release() to cancel the job

Long-Running

Controller

CIWork

Work Manager

A compute-intensive application is started by the application server in exactly the same way as other Java™

2 Enterprise Edition (J2EE) applications. If the application defines any startup beans, they will be

executed when the application server starts. When a job arrives for the application, the compute-

intensive execution environment invokes the CIControllerBean stateless session bean defined in the

application's EJB module deployment descriptor. The JNDI name of this stateless session bean is

specified in the xJCL for the job. For each job step, the CIControllerBean:

• Instantiates the application's CIWork object specified by the class-name element in the xJCL for the job

step using the CIWork class's no-argument constructor.

• Invokes the CIWork object's setProperties() method to pass any properties defined in the xJCL for the

job step.

• Looks up the work manager defined by the enterprise bean module's deployment descriptor and uses it

to asynchronously call the CIWork object's run() method.

If the job is cancelled before the run() method returns, the CIControllerBean invokes the CIWork object's

release() method on a separate thread. It is up to the developer of the long-running application to

arrange for logic in the release() method to cause the run() method to return promptly. The job will

remain in a cancel pending state until the run() method returns.

If the job is not cancelled and the run() method returns without throwing an exception, the job is deemed to

have completed successfully. If the run() method throws an exception, the job will be marked as

execution failed. Once the run() method returns (either normally or by throwing an exception), no further

calls are made to the CIWork object and all references to it are dropped.

XD6_BusinessGrid_Programmingmodel.ppt Page 8 of 15

IBM Software Group

8

Business Grid - Programming Models © 2005 IBM Corporation

BatchBatch
Programming ModelProgramming Model

Section

This section will explain the batch process programming model.

XD6_BusinessGrid_Programmingmodel.ppt Page 9 of 15

IBM Software Group

9

Business Grid - Programming Models © 2005 IBM Corporation

Batch Processing in WebSphere

� Supports a J2EE-based batch processing programming

model

� Supports the re-use of existing J2EE services and artifacts
in “batch mode”

� Makes it possible to convert legacy batch processes, like
CICS® batch programs, to J2EE based programs that are

effectively managed by WebSphere

� xJCL is used to describe the behavior of a long-running
Batch program

�Similar to compute-intensive work

Batch applications are Enterprise JavaBeans (EJB) based J2EE applications. Batch
applications follow a few well-defined interfaces that allow the batch execution
environment to manage the batch jobs for the application. The business grid support for

batch application allows legacy batch applications to be appropriately converted to J2EE
applications that can be managed by WebSphere. Just like the computationally intensive
programming model, xJCL is used to describe the behavior of the job to the environment

and is submitted as part of the job.

XD6_BusinessGrid_Programmingmodel.ppt Page 10 of 15

IBM Software Group

10

Business Grid - Programming Models © 2005 IBM Corporation

Flow of a typical Batch Program

Input
Data

Output
Data

Batch
Logic

(Step 1)

Batch
Logic

(Step 2)

Input Stream

Input Stream

Read Next Record
(Batch Loop)

Read Next Record
(Batch Loop)

DB

DB

Commit Work
(Checkpoint)

Commit Work
(Checkpoint)

� Typical batch process

� Read data (1 or more records)

from an input stream

� Perform batch process logic

using data

� Write any output data if needed

� Commit work performed by

batch process to a database

(checkpoint)

� Loop to get next record

� Each batch job can be made up

of multiple batch steps

� The output from one batch step
can be an input to another batch

step

A batch job can be comprised of one or more batch steps. Dividing a batch application into
steps allows for separation of distinct tasks in a batch application. In a typical batch
process, the application reads data from an input stream, performs business logic on that

data, writes output data if needed, commits the work to a database, and then loops to the
next record to repeat the process. The output from one batch step can be the input into
another batch step in the process. Each batch job can be made up of any number of

individual batch steps.

XD6_BusinessGrid_Programmingmodel.ppt Page 11 of 15

IBM Software Group

11

Business Grid - Programming Models © 2005 IBM Corporation

J2EE Batch Programming Model

Batch
Data

Stream

Batch
Data

Stream

Batch
Logic

(Step 1)

Batch
Logic

(Step 2)

Input Stream

Input Stream

Read Next Record
(Batch Loop)

Read Next Record
(Batch Loop)

� Input and output streams
needed by a batch job

step are wrapped within a
Batch Data Stream object

� The business logic for a
batch step is provided by a

CMP Entity EJB which
implements a Batch Step

Interface

BatchJob.EAR

Entity EJB

Entity EJB

A batch step is implemented as a local container-managed persistence entity bean that
uses the WebSphere provided home, business and key interfaces. The business interface,
com.ibm.websphere.batch.BatchJobStepLocalInterface, of a batch step EJB provides

methods that the batch execution environment invokes to control a batch application. A
batch step can have zero or more batch data streams associated with it. A batch data
stream (BDS) is a java class that implements the

com.ibm.websphere.batch.BatchDataStream interface. A BDS is a Java object that reads
the input stream that contains the data to be processed by a batch step. A BDS can also

be an output stream that writes data instead of reading it.

Methods on the BatchDataStream interface allow the batch execution environment to

manage the data stream being used by a batch step. For example, one of the methods

retrieves current cursor information from the stream to keep track of how much data has
been processed by the batch step.

XD6_BusinessGrid_Programmingmodel.ppt Page 12 of 15

IBM Software Group

12

Business Grid - Programming Models © 2005 IBM Corporation

Batch Job Execution Environment

Batch
Data

Stream

Batch
Data

Stream

Batch
Logic

(Step 1)

Batch
Logic

(Step 2)

Input Stream

Input Stream

Batch Loop

Batch Loop

� The Long-Running

Execution Environment

(LREE) initializes the

Batch Data Stream

(BDS) and invokes a

callback method on the

Batch Job Step Entity

EJB in a batch loop

� The LREE ensures a

global transaction exists

while invoking the

callback method on the

Batch Job Step Entity

EJB

BatchJob.EAR

Entity EJB

Entity EJB

Long-Running
Execution

Environment

Checkpoint
Algorithms

Batch
Execution

Engine

Database

Initialize

Initialize

The long-running execution environment uses checkpoint algorithms to decide how often
to commit global transactions under which batch steps are invoked. The xJCL definition of
a batch job defines the checkpoint algorithms to be used. In its deployment descriptor, a

batch application is required to declare a special stateless session bean. This bean acts
as a batch job controller and must contain enterprise beans-references to all the batch
step enterprise beans being used in the batch application. The implementation of this bean

is provided by WebSphere, not by the batch application, and it only needs to be declared
in the batch application's deployment descriptor. Only one controller bean can be defined
per batch application.

XD6_BusinessGrid_Programmingmodel.ppt Page 13 of 15

IBM Software Group

13

Business Grid - Programming Models © 2005 IBM Corporation

Checkpoint Algorithms

� Checkpoint algorithms control the lifecycle of the global transactions

started by the LREE

�Upon committing the global transaction the LREE retrieves cursor

information from the BDS and stores it to the Batch Database

� Checkpoint policies are applied to a batch job when it is submitted

�These policies determine which checkpoint algorithm to use for a

particular batch job

� WebSphere XD V6.0 will contain 2 checkpoint algorithms

�Time Based

�Record Based

� A Checkpoint SPI is also provided which allows writing custom

Checkpoint algorithms and plug them into a LREE via xJCL

The long-running execution environment uses checkpoint algorithms to decide how often
to commit global transactions under which batch steps are invoked. These algorithms are
applied to a batch job through the xJCL definition. Properties specified for checkpoint

algorithms in xJCL allow for checkpoint behavior, such as transaction timeouts and
checkpoint intervals, to be customized for batch steps. WebSphere Extended Deployment
provides a time-based checkpoint algorithm and defines an SPI for building additional

custom checkpoint algorithms. On each batch step iteration of processJobStep method,
the LREE consults the checkpoint algorithm applied to that step to determine if it should
commit the global transaction or not. Callback methods on the checkpoint Algorithms allow
the LREE to inform the algorithm when a global transaction is committed or started. This

enables the algorithm to decide if the time has come to commit the global transaction.

XD6_BusinessGrid_Programmingmodel.ppt Page 14 of 15

IBM Software Group

14

Business Grid - Programming Models © 2005 IBM Corporation

Summary

�WebSphere XD provides an environment for
managing and executing batch-style and compute-
intensive applications
�Jobs are scheduled using the Long Running Scheduler

(LongRunningScheduler.ear)

�Jobs are executed in the Long Running Execution
Environment (LREE.ear)

�A WebSphere XD Business Grid can dynamically
balance the needs of long-running work against the
needs of transactional applications within a cell

In summary, this presentation explained the benefits of the business gird provided by
WebSphere Extended Deployment V6. It discussed the differences between
computationally intensive and batch programs and how to create them using the different

programming models.

XD6_BusinessGrid_Programmingmodel.ppt Page 15 of 15

15

IBM Software Group

Business Grid - Programming Models © 2005 IBM Corporation

Trademarks, Copyrights, and Disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM CICS IMS MQSeries Tivoli
IBM(logo) Cloudscape Informix OS/390 WebSphere
e(logo)business DB2 iSeries OS/400 xSeries
AIX DB2 Universal Database Lotus pSeries zSeries

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product and service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements and/or changes in the product(s) and/or program(s) described herein at any time without notice. Any statements regarding IBM's
future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or
services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program
Product in this document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual
property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER
EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall
have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and conditions of the agreements (e.g., IBM Customer Agreement,
Statement of Limited Warranty, International Program License Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. IBM makes no representations or warranties, express or implied, regarding non-IBM products and
services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2004, 2005. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

Template Revision: 11/02/2004 5:50 PM

