
XD6_Partition_Facility.ppt Page 1 of 24

This presentation will cover the partitioning facility in WebSphere® Extended Deployment 

V6.



XD6_Partition_Facility.ppt Page 2 of 24

This presentation will first introduce the partitioning facility through an example scenario 

that compares a classic Java™ 2 Enterprise Edition (J2EE) application to a partitioned 

application. It will then cover concepts associated with partitioning, to familiarize you with 

the partitioning facility. Database partitioning and HTTP partitioning will also be discussed. 

The presentation will end by summarizing the performance advantages of partitioning, and 

direct you to other resources for learning about the partitioning facility.



XD6_Partition_Facility.ppt Page 3 of 24

This section will introduce the partitioning facility.



XD6_Partition_Facility.ppt Page 4 of 24

The partitioning facility is a programming framework and runtime infrastructure that 

enables you to create J2EE applications that scale efficiently to support very high 

transaction volumes. This is accomplished by creating unique endpoints, or ‘partitions’, 

within a cluster to handle requests for particular data sets, which can also communicate 

with a partitioned database. Requests can then be consistently routed to the single known 

endpoint within the cluster that will handle the specific data set being accessed. The 

strategy effectively reduces contention for database resources, and also avoids some of 

the traditional challenges of large-scale clustering, for example large-scale replication of 

cache data. Applications that utilize the partitioning facility can achieve near-linear 

scalability on commodity hardware.



XD6_Partition_Facility.ppt Page 5 of 24

As an example, imagine a traditional environment that is hosting a very high volume 

application for which traffic is expected to increase over time. Requests are distributed 

equitably across all of the servers in the cluster. Each of these requests may require a 

database transaction, which is expensive, and any request that requires a database 

update will require a lock that prevents other servers from reading the affected data. In this 

scenario, the database is very likely going to be the performance bottleneck as volume 

increases. Also, if the servers are caching any data or require shared state information, 

the overhead of replicating that data can become large as the size of the cluster 

increases. If the quality of service declines in this environment under increased load, 

adding more application servers will probably not improve the situation.



XD6_Partition_Facility.ppt Page 6 of 24

Partitioning solves this scalability problem. The cluster is divided into several uniquely 

addressable partitions, based on the data sets they will work with, and the database is 

also partitioned on the same lines. When a request comes in for a particular set of data, 

such as a given stock symbol, it is predictably routed to a particular partition. The 

application server hosting that partition has exclusive access to the data related to the 

requested stock symbol, and exclusive access to the database instance that holds that 

data. This means that database read and write activities for the stock symbol ‘ABC’ will not 

cause contention with a request from another server. Additionally, the application can be 

designed to cache data in memory more aggressively, resulting in fewer database 

transactions, since no other servers will be accessing that data. As load on the system 

increases over time, servers can be added to the environment, spreading the application 

and database partitions across more servers. This gives more computing resources to 

each partition, as they are spread more thinly. In this scenario, adding hardware will allow 

the application to scale efficiently and keep up with the increased demand.



XD6_Partition_Facility.ppt Page 7 of 24

This section will discuss concepts associated with partitioning.



XD6_Partition_Facility.ppt Page 8 of 24

A partition is a uniquely addressable endpoint within a cluster. Each cluster member might 

host multiple partitions, but each partition exists on only one cluster member. Each 

partition is started as a highly available singleton, managed by the High Availability 

Manager infrastructure. This ensures that the partitions remain constantly available while 

running in only one cluster member at any given time.



XD6_Partition_Facility.ppt Page 9 of 24

The WebSphere XD runtime provides a separate workload management router for 

partitioned applications, which is started automatically when a partitioned application is 

detected. This router locates and routes the request to the appropriate partition based on a 

partition key. The application defines partition keys and how they are mapped to partitions. 

The partition key could be a parameter passed to the method being called, or a hash 

based on such a parameter. If a partition key is not associated with the request, it will be 

handled by the normal workload manager, just like any other IIOP request.



XD6_Partition_Facility.ppt Page 10 of 24

A partitioned application contains one or more Partitioned Stateless Session Beans. These 

beans implement the PartitionHandlerLocal interface, and instruct the partitioning facility 

as to how partitions should be created and how requests should be mapped to partitions. 

The WebSphere XD runtime identifies partitioned applications by looking for these beans.



XD6_Partition_Facility.ppt Page 11 of 24

An extra step is required to deploy a partitioned application. Use the ‘ejbdeploy’ tool to 

deploy the enterprise beans, as you would for any other application. Then run the 

‘wpfstubutil’ command, which modifies the EJB stubs to reflect the partitioned routing 

scheme. It is important not to redeploy the EJBs after calling ‘wpfstubutil’, because the 

partitioning-specific changes will be undone, requiring you to run ‘wpfstubutil’ again.



XD6_Partition_Facility.ppt Page 12 of 24

WebSphere XD provides a command line tool, ‘wpfadmin’, for managing a partitioned 

application environment. Wpfadmin allows you to view the location of partitions within your 

cluster, to move partitions from one server to another, and to configure the High Availability 

Manager, among other things. Wpfadmin is an interface to a Jython script, wpfadmin.pty, 

that is well documented and makes a useful example for implementing your own 

partitioning facility management scripts.



XD6_Partition_Facility.ppt Page 13 of 24

Partition aliases are a new feature in WebSphere XD version 6. Aliases give you increased 

flexibility in how client requests are mapped to partitions. It allows you more flexibility in 

programming because partition names can be changed later if client code is using aliases. 

Partitions also give you the ability to group partitions within the same context, or to route 

requests to a partition based on a value other than the partition name.



XD6_Partition_Facility.ppt Page 14 of 24

This section will discuss database partitioning.



XD6_Partition_Facility.ppt Page 15 of 24

In addition to partitioning your application, partitioning the database that your application 

accesses can drastically increase scalability. Database partitioning involves creating a 

separate database instance for the subset of data that will be accessed by each partition. 

This gives each partition exclusive access to the data that it will be using, reducing 

database contention and giving the application the freedom to more aggressively cache 

values in memory. It also gives you the ability to easily scale the database across multiple 

servers, rather than implementing a database clustering solution. Database partitioning 

requires careful planning and consideration at the time of application design; it is not a 

feature for which there is a simple on-off switch



XD6_Partition_Facility.ppt Page 16 of 24

WebSphere XD enables applications to access partitioned databases by utilizing a special 

Data Source, called a Proxy Data Source. A Proxy Data Source allows an application to 

specify the name of another Data Source to use for each database transaction. The 

application therefore has the ability to dynamically access different database instances 

based on the partition context of each request.



XD6_Partition_Facility.ppt Page 17 of 24

WebSphere XD currently only supports database partitioning when using the DB2 JDBC 

drivers or the Oracle Type 4 JDBC driver. It is also important to keep in mind that beans 

using container-managed persistence must be invoked using their local interfaces. Also, 

the “test connection” feature of the Administrative Console does not support Proxy Data 

Sources.



XD6_Partition_Facility.ppt Page 18 of 24

This section will discuss HTTP partitioning.



XD6_Partition_Facility.ppt Page 19 of 24

WebSphere XD also provides support for partitioning of applications that are accessed 

over HTTP, which is particularly useful when Web module and EJB module are collocated. 

This means that HTTP requests are predictably routed to a single endpoint, just as IIOP 

requests are. To accomplish HTTP partitioning, the On-Demand Router interacts with the 

partitioning facility to route requests to unique partitions based on regular expressions 

specified by a PSSB or by a partition.xml file.



XD6_Partition_Facility.ppt Page 20 of 24

A partitioned HTTP application must always contain a Partitioned Stateless Session Bean, 

even if the partition mappings are defined in a partition.xml file, because the existence of 

the bean is what identifies an application as being partitioned. HTTP partitions can exist 

only on one server within a cluster, so node-scoped partitioning, which is an option for EJB 

partitioning, is not available for HTTP partitioning. Also, HTTP partitioning is not designed 

to work with Dynamic Clusters, and partitions can not be automatically rebalanced.



XD6_Partition_Facility.ppt Page 21 of 24

Many potential performance advantages are inherent in the partitioned application model. 

Partitioned applications can cache data very aggressively, and these caches are effective 

even with high write rates. The need for overqualified updates introduced by optimistic 

locking is reduced when using partitioning, since each partition has exclusive access to a 

database instance. Partitioning can also help increase parallelism within an application, 

because lock contention within the application server itself can also be reduced. Lastly, 

applications can be designed to take advantage of the fact that they exclusively handle 

requests for certain data sets by performing batched database writes to decrease load on 

the database.



XD6_Partition_Facility.ppt Page 22 of 24

Several helpful resources are available to help you get started with the partitioning facility. 

The partitioning facility user’s guide is included in the WebSphere Extended Deployment 

Information Center, and thoroughly covers developing, managing, and tuning partitioned 

applications. You can also find several samples of partitioned applications in the 

‘installableApps’ directory after installing WebSphere XD. Lastly, the Javadoc installed with 

the product is the official documentation for the partitioning API.



XD6_Partition_Facility.ppt Page 23 of 24

In summary, the partitioning facility in WebSphere XD is a programming framework and 

runtime infrastructure that enables you to build high-performance J2EE applications that 

can scale efficiently on distributed hardware. Partitioning addresses the drawbacks 

typically associated with large-scale clustering, such as data contention, distributed 

caching, and data replication.



XD6_Partition_Facility.ppt Page 24 of 24


