
XD61z_ComputeGrid_Example.ppt Page 1 of 25

®

IBM Software Group

© 2007 IBM Corporation

Updated October 18, 2007

IBM® WebSphere ® Extended Deployment V6.1

Compute Grid example

This presentation will provide an example of how to use the compute grid component
offered in WebSphere Extended Deployment V6.1.

XD61z_ComputeGrid_Example.ppt Page 2 of 25

IBM Software Group

2

Compute Grid example © 2007 IBM Corporation

Agenda

�Compute Grid exercise

� Implementation of the solution

This presentation will provide an example of how to configure your WebSphere
environment to support the compute grid and explain how to deploy long-running
applications to the environment.

XD61z_ComputeGrid_Example.ppt Page 3 of 25

IBM Software Group

3

Compute Grid example © 2007 IBM Corporation

Compute Grid exerciseCompute Grid exercise

Section

The following slides contain an example to demonstrate an effective application of
Compute Grid functionality.

XD61z_ComputeGrid_Example.ppt Page 4 of 25

IBM Software Group

4

Compute Grid example © 2007 IBM Corporation

Financial calculator

Financial

application1

Financial

application2

Financial

application3

Batch

application

Exercise: Financial business application

The slide presents a problem you might want to solve on a z/OS® system. Several types of
applications (retirement modeling, student loan forecasting, and others) access some
common set of functions, for example a financial calculator libraries. In this example, the
Financial Calculator application is a ‘Kernel’ application that must be available to
numerous other banking applications, including asynchronous batch-type applications that
perform tasks such as calculating interest and credit scores. The goal of the exercise is to
use just one implementation of the financial calculator. The financial application is
implemented as J2EE. However, it must also be accessible from existing batch
applications. The data that the financial calculator must process asynchronously resides in
EBCDIC in an IMS™ database on the mainframe. This data must remain on the
mainframe to take advantage of the robust security, high-availability, and scalability
features of z/OS and WebSphere on z/OS. How do you asynchronously process this
native data while reusing the financial calculator application?

XD61z_ComputeGrid_Example.ppt Page 5 of 25

IBM Software Group

5

Compute Grid example © 2007 IBM Corporation

Aggregate
data from

native datasets

Dataset 1

Dataset 2

Dataset .. N

COBOL
Data writer
application

Update datasets
With new data

COBOL
Data reader
application

Convert data
To XML

COBOL application

MQ-Series

MQ-GetMQ-Put

MDB

WebSphere Application
Server-Base z/OS

DB2Core business logic bean
(Calculate and update account records)

MQ-PutMQ-Get

TX-REQUIRED

IMS DB

Solution without Extended Deployment

There are two ways to solve this problem. The first way is for you to generate code to
connect WebSphere and classical applications. The second way is to take advantage of
batch programming in WebSphere Extended Deployment. This presentation presents both
approaches to highlight the differences.

This slide shows an example of the first solution: an elaborate design pattern based on
WebSphere MQ that provides some batch-like behavior. The steps in this solution follow
the arrows in a clockwise direction, beginning with the bottom center of this slide. First,
aggregate the data to be processed from the various IMS datasets. This data then flows
into a COBOL application which converts each record of the IMS data to ASCII and then
to XML and places it on the message queue. This application submits the converted IMS
data record to WebSphere using message-driven beans and WebSphere MQ messaging,
as shown in the upper left of this slide. From here the WebSphere framework notifies a
message-driven bean within WebSphere to retrieve that message from the message
queue and passes that message on to the business logic. The business logic then
converts the XML into a Java™ object and passes the Java object to a kernel bean and
performs the financial calculations on it. After performing the calculation, the business
logic converts the Java Object back to XML and pushes the XML back onto the message
queue. The WebSphere framework then notifies the native application and persists the
message back into the IMS database.

XD61z_ComputeGrid_Example.ppt Page 6 of 25

IBM Software Group

6

Compute Grid example © 2007 IBM Corporation

Overhead without Extended Deployment

�EBCDIC to ASCII to XML conversions

�Global transactions do not span the entire process
�Requires processing a single record at a time

�Checkpoint

�Complex code base that is not flexible

The solution presented on the previous slide is complicated and the overhead of the
infrastructure is high, relative to the actual business processing for each record.
First, there are two conversions performed between EBCDIC, ASCII and XML and these
types of conversions are very expensive. The initial conversion translated data from
EBCDIC to ASCII to XML in order to pass the data into the WebSphere framework. The
second conversion translated the processed data back into EBCDIC. In this example,
these conversions are made in the COBOL application; however JzOS could offer a
potential performance improvement by using Java to make the translation which could run
on a zAAP – a zSeries application assist processor.
JzOS supports neither global transactions - which span the entire process - nor unified
checkpoints. In particular, a global transaction is required to place a record onto the
queue. Then, a separate global transaction retrieves the record from the queue by way of
a message-driven bean. After processing, another global transaction is used to place the
resulting data onto the queue and a process outside of WebSphere requires a global
transaction to read the data from the queue. This process might initially be the most
obvious approach, but it is complicated, inefficient and difficult to maintain.

XD61z_ComputeGrid_Example.ppt Page 7 of 25

IBM Software Group

7

Compute Grid example © 2007 IBM Corporation

Output
dataset

WebSphere Application Server
+ Extended Deployment z/OS

Batch bean

Core business
logic beans

Input
dataset

TX-REQUIRED
(Transaction is committed after

processing N records)

DB2®

COBOL
Data writer
application

IMS database
(contains client account records)

COBOL
Data reader
application

COBOL Application

(Input batch data stream
using JzOS, converts
EBCDIC data to Java
objects)

(Output batch data stream
using JzOS, converts Java
objects to EBCDIC data)

(Dataset is
populated with
all records to
be processed
before Extended
Deployment batch
job is started)

(Dataset is
populated with
all records that have
been processed by
Extended
Deployment batch
before the data
writer starts
accessing)

Submit xJCL

Solution with Extended Deployment

WebSphere Extended Deployment batch provides a J2EE-centric batch processing
environment. This environment allows the business logic to directly access native data
and, therefore, eliminates much of the infrastructure overhead introduced in the
WebSphere MQ-based solution. This solution requires you to create two JzOS Batch Data
Streams: one for input, one for output, and a batch step bean with a processJobStep().
The method processJobStep() logic retrieves a record from the JzOS batch data stream
and invokes the financial calculator with the retrieved record. The framework in
WebSphere Extended Deployment repeatedly invokes the processJobStep() of the batch
step bean in a loop. Upon each iteration of processJobStep(), the batch step bean creates
a Java Object that represents the data retrieved from the input JzOS Batch Data Stream
and passes that object to the financial calculator for processing. The processJobStep()
logic takes the output of the financial calculator and persists the data to the output MVS
dataset through the output JzOS batch data stream and returns to the Extended
Deployment framework. The Extended Deployment framework continues this cycle until
the processJobStep() method has processed each input record, the output has persisted,
and the job has returned a process completed result to the framework.

XD61z_ComputeGrid_Example.ppt Page 8 of 25

IBM Software Group

8

Compute Grid example © 2007 IBM Corporation

Enhancements with WebSphere Extended
Deployment

� Performance

� Flexibility
�Checkpoint algorithm
�Batch data streams

� Simplicity
�Code base
�Intermediaries
�Administration

� Capability
�Checkpoint and recovery
�Adjust for peak workloads
�Health management

The WebSphere Extended Deployment solution provides several enhancements over the
previous solution.

Most of the MIPS consumed are zAAP-eligible therefore significantly reducing the overall
cost of processing a single record. Performance data collected at a test site showed that
this solution reduces both the MIPS and processing time roughly by half.

This solution allows more flexibility in adjusting the checkpoint algorithm without the need
to modify any application code. This, in turn, affects the transaction scope and resource
locking schemes. Additional flexibility is afforded through the ability to change data
sources by defining new Batch Data Streams and through the isolation of application
changes to specific sections of the code.

The solution also simplifies your implementation. The amount of code you have to produce
and maintain is reduced by eliminating the need for intermediaries to massage the data
format. Compute Grid is able to parse the raw data through the batch data stream
definitions and convert that raw data straight to a Java-Object, as opposed to converting
data to XML, to ASCII, and so on. Your system administration of the batch environment is
simplified, since Compute Grid integrates with WebSphere Administration Console and
Tivoli Process Manager to monitor batch jobs running in the system.

WebSphere Extended Deployment enhances this solution through the capability to recover
from the last check-pointed position in case of system failures, such as temporary network
or database failures. In the case of resource contention, you can temporarily suspend or
cancel jobs. For example, if an unexpected peak in online workload occurs, Compute Grid
can suspend work and use the server for online-transaction processing. You can assign
service policies to jobs; for example give higher priority to platinum customer batch
workloads. You can quickly create a conditional flow of job steps using xJCL. Finally, you
can take advantage of health management features of WebSphere Extended Deployment

XD61z_ComputeGrid_Example.ppt Page 9 of 25

IBM Software Group

9

Compute Grid example © 2007 IBM Corporation

Implementing the solutionImplementing the solution

Section

The remaining slides present many details of the various pieces required to implement a
batch grid job like you just saw.

XD61z_ComputeGrid_Example.ppt Page 10 of 25

IBM Software Group

10

Compute Grid example © 2007 IBM Corporation

Scheduler configuration

� Use default Derby grid databases and data source, or

� Manually create a new data base
�DB2, Oracle, Informix®, or Derby

�Use DDL provided with WebSphere Extended Deployment to
create scheduler and execution environment tables

�Define corresponding data source in WebSphere Application
Server
� The data source must be accessible by all nodes that can run the scheduler

and execution endpoints

�Configure the scheduler with the JNDI name and authentication
information for the data source

� Create servers and clusters for job scheduler and
execution environments

Several steps are required to create an environment that will support long-running
applications. First you must create the databases for the scheduler component and for the
grid execution environment; DDLs to accomplish this are provided with WebSphere
Extended Deployment. If you choose use Derby, the database instances are created
automatically when the runtime components are installed. Once the tables are created,
you must define corresponding data sources in WebSphere. The data sources must be
accessible to any nodes that will host either the scheduler or run long-running applications.
The scheduler must then be configured with the JNDI name for the resource and any
security information it may need to use the data source. The deployment of the job
scheduler and the grid execution environment, if applicable, is automatic.

XD61z_ComputeGrid_Example.ppt Page 11 of 25

IBM Software Group

11

Compute Grid example © 2007 IBM Corporation

Job scheduler configuration panel

The Job Scheduler configuration panel is located under System Administration in the left
frame of the administration console. Under the configuration panel for the scheduler you
can configure where the scheduler will reside, schema used in the database, and the JNDI
name for the data source. You can also specify classification rules and the Job Classes
(resource restrictions) as discussed in the compute grid overview presentation.

XD61z_ComputeGrid_Example.ppt Page 12 of 25

IBM Software Group

12

Compute Grid example © 2007 IBM Corporation

WSGrid configuration

� System application

� Manually configured
� Scheduler message-driven interface

� Service integration bus

� JMS queues

Job scheduler

Com.ibm.ws.grid.InputQueue

Com.ibm.ws.grid.OutputQueue

Job scheduler bus

com.ibm.ws.grid.InputQueue

eis/com.ibm.ws.grid.ActivationSpec

com.ibm.ws.grid.InputQueue

eis/com.ibm.ws.grid.ActivationSpec

Job

scheduler

MDI

The reason WSGrid and the Grid Scheduler are system applications is so that WebSphere
service can be applied to them when necessary. WebSphere service cannot be applied to
Enterprise application, since they are copied to locations outside of the WebSphere
product directory. In the current release of WebSphere Extended Deployment, configuring
WSGrid is optional and you have to deploy and configure the application. WSGrid uses the
WebSphere enterprise service bus for communications. There are three steps you must
complete to configure WSGrid as a participant of the service bus.

XD61z_ComputeGrid_Example.ppt Page 13 of 25

IBM Software Group

13

Compute Grid example © 2007 IBM Corporation

Developing long-running applications

� Develop long-running applications using normal
development tools
�J2EE

� WebSphere Application Developer

� IBM Rational® Application Developer

� Eclipse

�Java

�External programs
� Compiled (FORTRAN, COBOL, …)

� A J2EE or Java transactional batch long-running
application can be packaged in an ordinary EAR file
deployed to a WebSphere Application Server

Application developers create long-running applications based on either the
computationally intensive or batch programming model using normal J2EE development
tools. Long-running applications are packaged into normal ear files. The EJB jar file for
the application contains some specific information for long-running applications, such as
the deployment information for the controller bean and the actual bean implementations of
the applications.

XD61z_ComputeGrid_Example.ppt Page 14 of 25

IBM Software Group

14

Compute Grid example © 2007 IBM Corporation

Deploying long-running applications

� WebSphere
�Long-running applications are deployed as regular J2EE

applications

�When the application is deployed, WebSphere External
Deployment automatically detects that it is a long-running
application

� Install process will silently install the grid execution environment

�Can mix the transactional and grid applications in a dynamic
cluster

�The same placement controller is used for both types of workload

� Once the application is deployed, define service policies
for the new long-running application

Long-running applications are deployed like any regular J2EE application. During the
deployment process WebSphere Extended Deployment will detect that it is a long-running
application and silently install the grid execution environment if it is not already installed.
Once the application has been deployed an administrator can define service policies for
the application in preparation for submitting a job. Long-running applications do not
support the same service policies as OLTP application. The only metrics supported for
long-running applications are completion time and discretionary.

XD61z_ComputeGrid_Example.ppt Page 15 of 25

IBM Software Group

15

Compute Grid example © 2007 IBM Corporation

Submit job

� Construct xJCL to submit job to application

� Use one of the interfaces provided by the scheduler to
submit job
�Job management console

�Command line interface

�Web service

�EJB

�WSGrid utility

� Note job ID assigned by scheduler

� Use job management console

Prior to submitting a job, an administrator must construct an xJCL document to describe
the behavior of the application or an equivalent WSGRID properties file. For WebSphere
applications the xJCL contains a JNDI name to identify which application should be used
for a job step. For a non WebSphere application the xJCL specifies how to run the
application, for example is it a program or a script; and parameters that are passed to the
application. Then the administrator has a choice of interfaces to submit the job to the
scheduler. Regardless of the interface used, the return value from the submission is the
job ID assigned to the job by the scheduler. An administrator can then manage the job
using panels in the job management console or any of the other available interfaces.

XD61z_ComputeGrid_Example.ppt Page 16 of 25

IBM Software Group

16

Compute Grid example © 2007 IBM Corporation

Submit job with WSGrid from USS

� Command line utility
�Unix system services shell script

�Three forms:

� WSGrid.sh <job properties file>

� WSGrid.sh <control properties file> <job properties file>

� WSGrid.sh <control properties file> <xJCL file>

There are a few options when starting the WSGrid shell script. As shown here, the control
file contains information about where the deployment manager is running, user ID and
password. Besides the standard xJCL type of information, the job properties file can also
contain a reference to a job stored in the WebSphere Extended Deployment job
repository. The xJCL for the grid application can come from three places. First it can be
stored in the job repository and called out by a ‘repository-job’ command in the job
properties file. Second, the path to a file containing the xJCL can be passed as a
parameter. Finally, the job properties file can contain the xJCL information. The format of
both the control and job properties file is similar to standard UNIX, value pairs separated
by an equal sign.

XD61z_ComputeGrid_Example.ppt Page 17 of 25

IBM Software Group

17

Compute Grid example © 2007 IBM Corporation

Submit job with WSGrid from MVS

� JCL
//Job Card

// MVS batch job steps

// WSGrid step

// MVS batch job steps

As mentioned in the grid programming model presentation for z/OS, WSGrid steps can be
mingled with traditional batch steps in an MVS batch job. The data stream from any one
step, traditional or transactional, can be passed into a follow on step.

XD61z_ComputeGrid_Example.ppt Page 18 of 25

IBM Software Group

18

Compute Grid example © 2007 IBM Corporation

Sample WSGrid job step
//* Use JzOS sample proc JVMPRC14 or JVMPRC50

//*

//JAVA EXEC PROC=JVMPRC50,

// JAVACLS='com.ibm.ws.bootstrap.WSLauncher'

//MAINARGS DD *

com.ibm.ws.grid.comm.WSGrid

//***

//WGCNTL DD *

< WSGrid control properties >

//WGJOB DD *

< WSGrid job properties>

specify optional batch data stream

bds.myinput=com.ibm.websphere.samples.TestBatchDataStream

specify optional batch data stream properties

bds-prop.myinput.FILENAME=/batchsimulator/testdata/testbds.data

//STDENV DD *

<Java properties>

//

This slide presents the general layout of a WSGrid job step. This sample is using JzOS as
indicated by the “exec” statement. You can also see how the WSGRID control and job
properties are input. There are many job properties that you input to WSGrid, although this
example only shows lines for a batch data stream. The Java properties shown here are
basically the same as the samples delivered with JzOS.

XD61z_ComputeGrid_Example.ppt Page 19 of 25

IBM Software Group

19

Compute Grid example © 2007 IBM Corporation

Job management console
� Web interface

� Job management

� Job repository

� Job scheduler

A key interface to manage grid jobs is the job management console. The job management
console resides in the Job Scheduler system application, and has a browser interface
which is independent of the WebSphere administrative console. The job management
console has three sections.

The Job Management section is used to submit a job to run or manage submitted jobs.

The Job Repository saves job definition xJCL into the Job Scheduler data base. Saved
jobs can be viewed from the Job Repository panels.

Finally the Job Scheduler allows jobs to be scheduled for running at a future time or for
running periodically.

XD61z_ComputeGrid_Example.ppt Page 20 of 25

IBM Software Group

20

Compute Grid example © 2007 IBM Corporation

Job management console: Job management

� Submit a job
�xJCL

�Parms

�Schedule

� Manage submitted jobs
�View job logs

�Cancel

�Resume

�Restart

�Stop

�Suspend

Job submission requires pointing to xJCL for the job. The xJCL contains information
required to run the applications in the job. The xJCL also contains descriptions of
parameters (for non WebSphere applications) or other environmental settings. You can
optionally specify when the job will run, similar to the Job Schedule section of the job
management console. Once a job is submitted, it can be viewed and managed in the
“View jobs” panel. The state of a job is shown (submitted, running, paused, ended). Also
shown is the node and application server where the job ran. Clicking on a job will show
details of the job’s execution and provide an opportunity to view the job logs. From this
panel you can also manage the job during its life cycle.

XD61z_ComputeGrid_Example.ppt Page 21 of 25

IBM Software Group

21

Compute Grid example © 2007 IBM Corporation

Job management console: Job repository

� Save a job definition
�xJCL

� Manage saved jobs
�Submit

�View xJCL

�Delete definition

�Schedule

Saving a job to the job repository requires a name and a path to the defining xJCL. Once
saved, the xJCL can be viewed by clicking on the job name. You can also replace or
remove xJCL job definitions already in the job repository.

You can submit the saved job from the “Submit a job” panel, or schedule it for periodic
submission on the “Create a schedule” panel.

XD61z_ComputeGrid_Example.ppt Page 22 of 25

IBM Software Group

22

Compute Grid example © 2007 IBM Corporation

Job management console: Job schedules

� Save a job definition
�xJCL

�Schedule
� Date and time

� Repeating

� Manage schedules
�View details

�Cancel

Scheduling a job is similar to submitting job by its xJCL or a job from the repository for
delayed submission. You can schedule a job to be submitted once at a give date and time
from the “Submit a job” panel or you can schedule the job to run on a periodically. From
the “View schedules” panel you can view the details of the job schedule or cancel the
schedule.

XD61z_ComputeGrid_Example.ppt Page 23 of 25

IBM Software Group

23

Compute Grid example © 2007 IBM Corporation

Summary

�WebSphere Extended Deployment provides an
environment for managing and running batch-style
and compute-intensive applications
�Jobs are scheduled using the grid scheduler

(LongRunningScheduler.ear)
�Jobs are run in the long running execution environment

(GEE.ear)

�A WebSphere Extended Deployment compute grid
can dynamically balance the needs of long-running
work against the needs of transactional
applications within a cell

In summary, this presentation showed by example how to use the new compute grid
component provided with WebSphere Extended Deployment V6.1.

XD61z_ComputeGrid_Example.ppt Page 24 of 25

IBM Software Group

24

Compute Grid example © 2007 IBM Corporation

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_XD61z_ComputeGrid_Example.ppt

You can help improve the quality of IBM Education Assistant content by providing
feedback.

XD61z_ComputeGrid_Example.ppt Page 25 of 25

IBM Software Group

Compute Grid example © 2007 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

DB2 IBM IMS Informix Rational WebSphere z/OS

Rational is a trademark of International Business Machines Corporation and Rational Software Corporation in the United States, Other Countries, or both.

EJB, J2EE, Java, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include
technical inaccuracies or typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any
statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this
document to IBM products, programs, or services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM
operates or does business. Any reference to an IBM Program Product in this document is not intended to state or imply that only that program product may be used.
Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY
WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and
conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License Agreement, etc.) under which
they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly
available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other
claims related to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding
patent or copyright licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented
as illustrations of how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will
experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration,
and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements equivalent to the
ratios stated here.

© Copyright International Business Machines Corporation 2007. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule
Contract and IBM Corp.

