

®

IBM Software Group

© 2007 IBM Corporation

Updated June 19, 2008

IBM® WebSphere ® Extended Deployment V6.1

Compute Grid – Programming models

This presentation will provide an explanation of the programming models that can be used

with the Compute Grid component offered in WebSphere Extended Deployment V6.1

This module references WebSphere Extended Deployment Operations Optimization,

which is now called WebSphere Virtual Enterprise.

Though the module uses the previous names, the technical material covered is still

accurate.

XD61z_ComputeGrid_Programmingmodel.ppt Page 1 of 28

 –

IBM Software Group

2

Compute Grid Programming models © 2007 IBM Corporation

Agenda

�Compute Grid programming models
�Job control (xJCL)

�Batch programming model

�MVS batch

�Job life cycle

�Compute intensive

This presentation will introduce the job control language used to configure and control job
execution, and then it will explain the batch process programming model that is supported
by Compute Grid and discuss how this maps naturally to MVS batch. Next it will discuss
Compute Grid integration with native z/OS batch capabilities and support for native, non
J2EE, applications. Finally, this presentation will cover the computationally intensive
programming model.

XD61z_ComputeGrid_Programmingmodel.ppt Page 2 of 28

 –

IBM Software Group

3

Compute Grid Programming models © 2007 IBM Corporation

Job control (xJCL)Job control (xJCL)

Section

This section will explain the batch job control language used by WebSphere extended
deployment.

XD61z_ComputeGrid_Programmingmodel.ppt Page 3 of 28

 –

IBM Software Group

4

Compute Grid Programming models © 2007 IBM Corporation

Job control
� XML based job control language (xJCL)

� Describes the behavior of a grid program
� Class or program to run
� Runtime parameters
� Resources needed by program
� Control parameters

� Compute Grid scheduler clients pass an xJCL document as a job
submission request

� The grid scheduler uses the information in the xJCL
� Match job submission requests to applications available on execution

environments
� Possibly start new execution environments for jobs

� Grid runtime uses information in the xJCL
� Set up runtime environment
� Control job execution

The behavior of compute grid long-running application must be defined within an XML
based Job Control Language, called xJCL. The xJCL definition of a job is not part of the
application, but is constructed separately and submitted to the job scheduler.

xJCL has constructs for expressing all of the information needed for compute-intensive,
batch, and native jobs; though some xJCL elements are only applicable to specific job
types. The xJCL for a job specifies the “program” to run for each job step. The program
could be a Java™ class for compute intensive jobs or JNDI name of a stateless session
bean for batch jobs. The xJCL also specifies any runtime resources needed by the
executable, such as environment variable and runtime parameters; and information used
by the runtime to control the job.

A job can consist of multiple steps which run sequentially.

The job scheduler uses information in the xJCL to determine where and when the job
should be run, matching the job to available nodes within the environment.

XD61z_ComputeGrid_Programmingmodel.ppt Page 4 of 28

 –

IBM Software Group

5

Compute Grid Programming models © 2007 IBM Corporation

Batch programming modelBatch programming model

Section

This section will explain the batch process programming model.

XD61z_ComputeGrid_Programmingmodel.ppt Page 5 of 28

 –

IBM Software Group

6

Compute Grid Programming models © 2007 IBM Corporation

Flow of a typical batch program

Input
data

Output
data

Batch
logic

(Step 1)

Batch
logic

(Step 2)

Input stream

Input stream

Read next record
(batch loop)

Read next record
(batch loop)

DB

DB

Commit work
(Checkpoint)

Commit work
(Checkpoint)

� Typical batch process
� Read data (1 or more records)

from an input stream

� Perform batch process logic
using data

� Write any output data if needed

� Commit work performed by
batch process to a database
(checkpoint)

� Loop to get next record

� Each batch job can be made up
of multiple batch steps

� The output from one batch step
can be an input to another batch
step

In a typical batch process the application will read data from an input stream, perform
business logic on that data, write output data if needed, commit the work to a database,
and then loop to the next record to repeat the process. A batch job can be comprised of
one or more batch steps, and the output from one batch step can be the input into another
batch step in the process. Dividing a batch application into steps allows for separation of
distinct tasks in a batch application. A batch job can be made up of any number of
individual batch steps.

XD61z_ComputeGrid_Programmingmodel.ppt Page 6 of 28

 –

IBM Software Group

7

Compute Grid Programming models © 2007 IBM Corporation

Batch processing in WebSphere

� J2EE-based batch processing programming model

� POJO programming model

� Batch data stream

� Supports the re-use of existing services in “batch mode”

� xJCL is used to describe the behavior of a grid batch
program
�xJCL: <jndi-name> element inside <job-step>

A batch application in WebSphere Extended Deployment Version 6.1 can be implemented
as Enterprise Java Beans (EJB), or simple Plain Old Java Objects (POJO). Batch
applications follow a few well-defined interfaces that allow the batch execution
environment to manage the application for batch jobs. The batch application components
are packaged as EJB modules in an Enterprise Archive (EAR) for deployment.

A batch data stream is a Java class that implements the input or output streams that
contain the data processed by a batch step. Methods on the BatchDataStream interface
allow the batch execution environment to manage the data stream being used by a batch
step. For example, one of the methods retrieves current cursor information from the
stream to keep track of how much data has been processed by the batch step.

The compute grid support for batch applications allows legacy batch applications and
J2EE batch applications to be freely mixed in an MVS job. Legacy batch applications can
be appropriately converted to J2EE applications that can be managed by WebSphere.
xJCL is used to describe the behavior of the job to the environment.

XD61z_ComputeGrid_Programmingmodel.ppt Page 7 of 28

 –

IBM Software Group

8

Compute Grid Programming models © 2007 IBM Corporation

Batch job execution environment

Batch
Data

Stream

Batch
Data

Stream

Batch
Logic

(Step 1)

Batch
Logic

(Step 2)

Input Stream

Input Stream

Batch Loop

Batch Loop

� The grid execution
environment initializes
the Batch Data Stream
and invokes a callback
method on the
BatchJobStep object in
a batch loop

� The grid execution
environment ensures a
global transaction exists
while invoking the
callback method on the
Batch Job Step Entity
EJB

BatchJob.EAR Grid
Execution

Environment

Checkpoint
Algorithms

Batch
Execution

Engine

Database

Initialize

Initialize

BatchJobStep

BatchJobStep

The life cycle of a MVS batch job translates naturally to WebSphere Extended
Deployment. The key actions to perform a J2EE batch step are shown here. Basically it is
to initialize a step, perform the step for each input record and when finished take the step
down.

For each job step, the grid execution environment first instantiates and initialized the
application's BatchJobStep bean as specified by the xJCL for the job step. Initialization
includes setting properties and creating batch data streams defined for the job step. Once
the environment is initialized the grid execution environment repeatedly invokes the
BatchJobStep’s processJobStep until this method indicates it has processed all of its
input. This processing loop takes place in a global transaction. On each iteration of the
loop the grid execution environment queries a checkpoint algorithms to decide how often
to commit the global transaction. Checkpoints allow a job to resume at an intermediate
point if it fails and must be restarted.

A J2EE batch application is required to declare a special stateless session bean in its
deployment descriptor. This bean acts as a batch job controller and must contain
enterprise beans-references to all the batch step enterprise beans being used in the batch
application. The implementation of this bean is provided by WebSphere, not by the batch
application; it only needs to be declared in the batch application's deployment descriptor.
Only one controller bean can be defined per batch application.

XD61z_ComputeGrid_Programmingmodel.ppt Page 8 of 28

 –

IBM Software Group

9

Compute Grid Programming models © 2007 IBM Corporation

Batch
Container

setProperties(Properties p) {

…
}

createJobStep()}

…

}

processJobStep() {

…

}

destroyJobStep() {

…
}

1

2

3

4

Initialize Native Structures:
Cobol Modules, DFSort, etc…

Execute Native Structures:
Cobol Modules, DFSort, etc…

Teardown Native Structures:
Cobol Modules, DFSort, etc…

z/OS
Servant Region

Substitute Parameters …

J2EE batch and traditional z/OS interoperability

The life cycle of a batch job step translates naturally to WebSphere Extended Deployment.
The basic steps in executing a traditional step of a batch job are shown on the right. For a
traditional batch job these functions are performed by JES. The general flow is to perform
parameter substitutions in the JCL (actually done at the start of a job), set up access to
data sets, libraries and other initializations, run the program and then clean up. A J2EE
batch bean performs equivalent operations as shown in the middle of this slide. In
particular the batch bean calls setProperties in your application to record parameter
values, createJobStep to initialize and so forth.

XD61z_ComputeGrid_Programmingmodel.ppt Page 9 of 28

 –

IBM Software Group

10

Compute Grid Programming models © 2007 IBM Corporation

Checkpoint algorithms
� Checkpoint algorithms control the life cycle of the global transactions

started by the grid execution environment
�Upon committing the global transaction the grid execution

environment retrieves cursor information from the batch data
stream and stores it to the batch database

� Checkpoint policies are applied to a batch job when it is submitted
�These policies determine which checkpoint algorithm to use for a

particular batch job

� WebSphere Extended Deployment V6.1 contains 2 checkpoint
algorithms
�Time based
�Record based

� An interface is also provided
� write custom checkpoint algorithms
� plug them into a grid execution environment through xJCL

The grid execution environment uses checkpoint algorithms to decide how often to commit
global transactions under which batch steps are invoked. These algorithms are applied to
a batch job through the xJCL definition. Properties specified for checkpoint algorithms in
xJCL allow for checkpoint behavior, such as transaction timeouts and checkpoint intervals,
to be customized for each batch step. WebSphere Extended Deployment provides time-
based checkpoint and record-based algorithms. It also defines a service provider interface
for building custom checkpoint algorithms. On each batch step iteration, the grid
execution environment consults the checkpoint algorithm applied to that step to determine
if it should commit the global transaction. Callback methods on the checkpoint algorithms
allow the grid execution environment to inform the algorithm when the global transaction is
committed or started.

XD61z_ComputeGrid_Programmingmodel.ppt Page 10 of 28

 –

IBM Software Group

11

Compute Grid Programming models © 2007 IBM Corporation

Running the batch application - Details
GEE Batch data stream Batch job step bean Checkpoint algorithm

Begin transaction

Commit transaction

Begin transaction

Commit transaction

GEE DB
1. getRecommendedTimeoutValue()

2. startCheckpoint()

3. externalizeCheckpointInformation()

5. stopCheckpoint()

6. startCheckpoint()

4. Insert externalized checkpoint information

7. intermediateCheckpoint()

8. processJobStep()

STEP_CONTINUE
9. shouldCheckpointBeExecuted()

11. shouldCheckpointBeExecuted()

false

true

10. processJobStep()

STEP_CONTINUE

12
Inner loop

Outer loop

This slide illustrates the key steps within the grid execution environment’s processing loop
for a job step. Notice that a global transaction is bounded by the checkpoint interval. All
work done within that checkpoint interval would be rolled back in case of failure, but upon
success all work is committed together. This allows a job to be restarted at the last
checkpoint in case of a failure during the job processing.
In the sequence shown, steps 2 through 5 perform an initial checkpoint when just
beginning to run a J2EE batch step. First the batch bean verifies it needs to perform a
checkpoint by calling the checkpoint algorithm. Next the batch bean retrieves the batch
data stream checkpoint information for each batch data stream and then sends that
information to the grid execution environment library to record the checkpoint. The final
piece of the initialization is to notify the checkpoint algorithm the checkpoint has completed
and then the start of the next checkpoint sequence in step 6. Step 7 notifies the batch data
stream to set to mark the beginning of a new checkpoint. The batch bean executes the
batch process, querying the checkpoint algorithm when to perform a checkpoint. This
continues until the batch job step bean signals completion.
The sequence for restarting a step at a checkpoint is similar except steps 2 through 5 are
replaced with retrieving the checkpoint for the execution environments data base and
setting the batch data streams to the selected checkpoint. The processing then continues
as shown here.

XD61z_ComputeGrid_Programmingmodel.ppt Page 11 of 28

 –

IBM Software Group

12

Compute Grid Programming models © 2007 IBM Corporation

MVS batchMVS batch

Section

This section will explain native execution jobs.

XD61z_ComputeGrid_Programmingmodel.ppt Page 12 of 28

 –

IBM Software Group

13

Compute Grid Programming models © 2007 IBM Corporation

WSGrid and external scheduler integration
Job control by external workload scheduler (TWS, Control-M, etc)

TWS JES

//JOB1 JOB ‘…’
//STEP1 PGM=IDCAMS
// …

//STEP2 PGM=WSGRID,
//SYSIN DD *
// jndi-name=“ejb/DOIT”
// …

submit

monitor

WXD
submit

monitor

‘DOIT’
EJB

<job name=“JOB1" …
<job-step name="STEP2">
<jndi-name>”ejb/DOIT”</jndi-name>
…

WSGrid

Operation
Plan

Status Listener Mgr

TWS
Listener

other
Listener …

‘MODIFY CPEXT’
(update current
operation plan)

WSGrid is a z/OS JCL application and is called as shown in the lower left. To start the
interaction, Tivoli Workload Scheduler (TWS) starts a z/OS task (JES). As shown here,
step is traditional batch step and proceeds as always. Tivoli Workload Scheduler monitors
the job until the step completes. The second step is a J2EE batch step and requires an
ear file called DOIT to complete the work. This job step uses a new interface called
WSGRID. When WSGRID executes in JES, it will read the xJCL from SYSIN and submits
that to grid job scheduler. As resources allow, the DOIT application will run on a
WebSphere node reading and writing batch data streams. To complete the picture and
make the J2EE batch behave as traditional batch, J2EE batch has to monitor the progress
of DOIT and report back to an external workload scheduler if present. WSGRID performs
this monitoring and supports a listener framework. This picture shows a Tivoli Workload
Listener plugged into the status listener framework. Here the TWS_Listener modifies the
operational plan for Tivoli Workload Scheduler. While you view the Tivoli Workload
Scheduler console the J2EE batch display the same as traditional batch.

XD61z_ComputeGrid_Programmingmodel.ppt Page 13 of 28

 –

IBM Software Group

14

Compute Grid Programming models © 2007 IBM Corporation

Grid utility clusters for Compute Grid

�Group of servers with similar capabilities
�Capabilities specified as text pairs
� Node custom properties

�Text names and values are not pre-specified

�Example:
� Function=’PortfolioAnalysis’

Grid utility clusters are logically formed based on the intersection of advertised capabilities.
A grid utility node may simultaneously be a member of multiple clusters. Moreover, grid
utility clusters may heterogeneously be comprised of both grid utility and WebSphere
nodes with common advertised capabilities. Capabilities are optionally defined to the grid
utility server by setting node custom properties. The example shown indicates that the
node is capable of performing the ‘portfolio analysis’ function. The choice of capability
names, values, and semantics is completely user defined with the ‘grid.apps’ and ‘grid.env’
custom properties being reserved names.

The Job Scheduler assigns work based on a match between a job’s needed capabilities as
specified in its xJCL and both grid utility and WebSphere nodes’ advertised capabilities.

XD61z_ComputeGrid_Programmingmodel.ppt Page 14 of 28

 –

=‘ ’

=‘ ’

=‘ ’

=‘ ’

=‘ ’

=‘ ’

=‘ ’

=‘ ’

=‘ ’

=‘ ’

IBM Software Group

15

Compute Grid Programming models © 2007 IBM Corporation

Grid utility clustering (continued)

Grid utility cluster
Species birds

Grid utility cluster
Function
Portfolio analysis

Grid utility cluster
Species fish

WebSphere
Application Server
Cluster 1

Grid utility cluster
Function
Inventory suite

Grid utility
Node A

Species birds

Function PortfolioAnalysis

Grid utility
Node B

Species birds

Function PortfolioAnalysis
Grid utility

Node C

Species pets

Function PortfolioAnalysis
Grid utility

Node D

Species fish

Function Inventory suite

Grid utility
Node E

Species fish

Function Inventory suite

WebSphere
Application Server

WebSphere
Application Server

This picture shows four grid utility clusters formed from two capabilities ‘Species’ and
‘Function’. Each of these clusters is a virtual cluster -- their membership is determined by
their claimed capabilities. In addition to the grid utility clusters there is a cluster of two
WebSphere Application servers that was created by normal WebSphere administrative
processes. In the case shown, all the nodes shown are each in two clusters, for example
nodes ‘A’ and ‘B’ are in the grid utility clusters with ‘Species = birds’ and ‘Function =
Portfolio Analysis’. In a similar way, the WebSphere Application Server nodes host the
two grid utility clusters with “Species=fish” and “Function = Inventory suite”.

XD61z_ComputeGrid_Programmingmodel.ppt Page 15 of 28

 –

IBM Software Group

16

Compute Grid Programming models © 2007 IBM Corporation

Requirements scheduling
<job default-application-type=“Grid Utility” />

<step name=“step1” application-name=“app1 ”/>
</step

</job>

<job default-application-type=“Grid Utility” />
<job-scheduling-criteria>

<required-capability expression=“node.property$function=’ InventorySuite ’”/>
</job-scheduling-criteria/>
<step name=“step1” application-name=“app2”/>
</step

</job>

<job-scheduling-criteria>
<required-capability

expression=“node.property$function=’PortfolioAnalysis ’”/>
<required-capability

expression=“node.property$species=’pets ’”/>
</job-scheduling-criteria/>
<step name=“step1” application-name=“app3”/>
</step

Match with grid.apps on nodes

Here are a few examples of xJCL specifying capability requirements that refer to the
clustering shown on the previous slide. The top one will need to be scheduled on an any
node with the application app1 declared in the ‘grid.apps’ custom variable. The middle
example will be scheduled on nodes ‘D’ or ‘E’ in the previous slide. The bottom example
would be scheduled on node ‘C’.

XD61z_ComputeGrid_Programmingmodel.ppt Page 16 of 28

 –

IBM Software Group

17

Compute Grid Programming models © 2007 IBM Corporation

Job life cycleJob life cycle

Section

This section will provide an overview of the life cycle of a typical job in WebSphere
Extended Deployment Compute Grid.

XD61z_ComputeGrid_Programmingmodel.ppt Page 17 of 28

 –

IBM Software Group

18

Compute Grid Programming models © 2007 IBM Corporation

Submitting Extended Deployment batch jobs

User

Load balancer

GEE

Sample xJCL

<job name=“SampleJob”>
<jndi-name>batch.samples.sample1</jndi-name>
<checkpoint-algorithm name=“timebased”>

<classname>checkpoints.timebased</classname>
<props>

<name=“interval” value=“15”/>
</props>

</checkpoint-algorithm>
<job-step name=“Step1”>

<jndi-name>batch.samples.step1 </jndi-name>
<checkpoint-algorithm-ref name=“timebased”/>
<batch-data-streams >

<bds>
<logical-name > myInput </logical-name>
<impl-class > bds.sample1 </impl-class>
<props>

<prop name=“FILENAME”
value=“/tmp/input”/>

</props>
</bds>

</batch-data-streams>
</job-step>

</job>

LRS

Grid node

WebSphere

GEE

Grid node

GEE

Grid node

Submit xJCL
to the grid
scheduler

To run a job, you first submit an xJCL description of the job to the grid scheduler, depicted
as “LRS” in this figure. The scheduler evaluates the xJCL and, based on this information
determines which WebSphere Application Server managed servers in the cell are capable
of running the job, and sub-schedules the job to one of these servers. To be eligible to run
a job, a server must host the target grid execution environment-enabled application
specified in the xJCL.

XD61z_ComputeGrid_Programmingmodel.ppt Page 18 of 28

 –

IBM Software Group

19

Compute Grid Programming models © 2007 IBM Corporation

Dispatching batch job

GEE

LRS

Grid node

WebSphere GEE

Grid node

GEE

Grid node

Grid scheduler
evaluates which GEE

to dispatch job to.

The grid execution environment (GEE.ear) is a J2EE application that runs within a
WebSphere Application Server. On z/OS the grid execution environment runs within a
Servant Region and servant region behavior is applied to batch jobs. That is, if workload
and service policies deem it necessary, new servants can be dynamically started or
stopped. On distributed systems with WebSphere Extended Deployment Operations
Optimization installed, the grid scheduler will work with the application placement
controller to start or stop server instances as needed to run the job. The scheduler will
dynamically balance the needs of long-running work against the needs of transactional
applications within the cell.

WebSphere Extended Deployment 6.1, introduces several new service provider interfaces
that allow more control over how a batch job is dispatched. They can be used to override
the chosen grid execution environment target, force authorization to take place before
accepting the job, assign a specific job class (which maps to a service policy) and
schedule the job to run at a later time.

These interfaces are completely pluggable and highly customizable.

XD61z_ComputeGrid_Programmingmodel.ppt Page 19 of 28

 –

IBM Software Group

20

Compute Grid Programming models © 2007 IBM Corporation

LRS

WebSphere

Grid
scheduler

table

Send status notifications
to grid scheduler

Grid node

GEE table

GEE

Job step bean

Running batch jobs

Grid scheduler updates
its tables with the
status of the job

For batch jobs, GEE
persists checkpoint data
to its tables based on the

checkpoint algorithm
defined.

The grid execution environment runs the job step with the properties specified in the xJCL
that was submitted. For batch jobs, checkpoint data is periodically persisted to the grid
execution environment database for restartability. The data that is stored during
checkpoint processing, such as current location within the batch data streams, is entirely
provided by the application. For compute intensive jobs the grid execution environment
provides a process thread and minimal runtime support. For native jobs, the grid node
runs the specified program as a separate, native process.

The grid scheduler listens for updates from the execution environment, such as ‘job failed’
or ‘job run successfully’, and updates the grid scheduler database accordingly.

Starting in Extended Deployment version 6.1 the grid scheduler provides WS-Notifications
so non Extended Deployment components can register as listeners for status on a
particular job.

XD61z_ComputeGrid_Programmingmodel.ppt Page 20 of 28

 –

IBM Software Group

21

Compute Grid Programming models © 2007 IBM Corporation

LPAR 3

Job scheduling
┐┌
└┘

controller

servants LPAR 1

┐┌
└┘

controller

servants LPAR 2

Grid job scheduler

controller

servants

• Configurable for dynamic horizontal scaling

┐┌
└┘

• Multiple servants scale vertically

• WebSphere Extended Deployment
to z/OS workload management goal
mapping

WLM
service
policy

WLM
service
policy

WLM
service
policy

TCLASS

• Workload balancing leverages
workload management statistics

WLM statistics

WLM statistics

WLM statistics

WLM statistics

Job scheduler

Job
dispatcher

Application
placement
controller

Job management console
Web application

This slide points to the similarity between the job scheduler and the on-demand router
when Compute Grid and Operations Optimization are both present. Both use many of the
WebSphere Extended Deployment workload management tools like the application
placement controller. Like the on demand router, the job scheduler interacts z/OS work
load manager, provides horizontal scaling to the z/OS work load manager’s vertical
scaling. You read more about dynamic computing in that section.

XD61z_ComputeGrid_Programmingmodel.ppt Page 21 of 28

 –

IBM Software Group

22

Compute Grid Programming models © 2007 IBM Corporation

Compute intensive programming modelCompute intensive programming model

Section

This section will explain the computationally intensive programming model.

XD61z_ComputeGrid_Programmingmodel.ppt Page 22 of 28

 –

IBM Software Group

23

Compute Grid Programming models © 2007 IBM Corporation

Compute intensive work

� Compute-intensive work typically requires significant
amounts of processing to complete

� xJCL describes the behavior of a grid program
�Compute grid Scheduler clients pass an xJCL document as a job

submission request
�xJCL: <class-name> element inside <job-step>

� The Grid Scheduler uses the information in the xJCL to
match job submission requests to applications available on
execution environments
�Possibly starting new execution environments for jobs

A computationally intensive application is an application that requires large amounts of
processing to finish. For compute intensive jobs, the xJCL must specify the fully-qualified
name of the class that implements the compute intensive job and any runtime properties.
Runtime properties are specified as name value pairs and are passed in to the compute
intensive application in a map object that you can use to change the runtime behavior of
the code. The scheduler component passes an xJCL document as part of a job
submission request. The scheduler uses the information in the xJCL to match the job to
available nodes within the environment.

XD61z_ComputeGrid_Programmingmodel.ppt Page 23 of 28

 –

IBM Software Group

24

Compute Grid Programming models © 2007 IBM Corporation

Compute-intensive programming model

� Each job step specifies the
name of a class that implements
the interface
com.ibm.websphere.ci.CIWork
� A sub-interface of

commonj.work.Work

� Additional constraints on
classes that implement CIWork:
� Work.isDaemon() must return

true

� Must have no-argument
constructor

� Strongly encouraged to provide
robust implementation of
Work.release()

com.ibm.websphere.ci.CIWork

void setProperties(Map props)
Map getProperties()

commonj.work.Work

boolean isDaemon()
void release()

Java.lang.Runnable
run()

A special interface is used to define the steps of a computationally intensive application.
Each step is represented by a class that implements the CIWork interface which is a part
of the WebSphere asynchronous bean programming model. Each step’s class must have
a no-argument constructor and the Boolean isDaemon() method must return true.
Developers are also encouraged to provide an implementation for the release() method,
which will be used to remove this step from the grid environment if a job is cancelled.

XD61z_ComputeGrid_Programmingmodel.ppt Page 24 of 28

 –

IBM Software Group

25

Compute Grid Programming models © 2007 IBM Corporation

Stateless session bean facade

� Since asynchronous bean functions can only be accessed
programmatically, compute-intensive jobs are also
required to define a stateless session bean

� Interface and implementation classes are provided by
WebSphere
�Only the bean definition needs to be included in the

application

�Note that default class-name based JNDI names for
stateless session bean will not work, as the same bean
will be included in multiple applications
� Suggested best practice is to append application name as a suffix,

“ejb/com/ibm/ws/longrun/LongRunningController-myCIApp”

� This JNDI name is specified in the xJCL

Each step of a computationally intensive program is written as an asynchronous bean.
Since asynchronous bean functions can only be accessed programmatically, the
applications must also define a controller bean, which is a stateless session bean defined
in the compute-intensive application's deployment descriptor. The controller bean allows
the execution environment to control jobs for the application. The implementation of this
stateless session bean is provided by WebSphere. The application's only responsibility is
to include a reference to the stateless session bean in the deployment descriptor of one of
its enterprise bean modules. Exactly one controller bean must be defined for each
compute-intensive application. Since the implementation of the controller bean is provided
in the WebSphere runtime, application deployers should not request deployment of
enterprise beans during deployment of compute-intensive applications.

XD61z_ComputeGrid_Programmingmodel.ppt Page 25 of 28

 –

IBM Software Group

26

Compute Grid Programming models © 2007 IBM Corporation

Summary

�WebSphere Extended Deployment provides an
environment for managing and executing batch-
style and compute-intensive applications
�Jobs are scheduled using the long-running scheduler

(LongRunningScheduler.ear)
�Jobs run in the grid execution environment (GEE.ear)
�Jobs can run on either WebSphere or non-WebSphere

nodes

�A WebSphere Extended Deployment Compute
Grid will dynamically balance the needs of long-
running work against the needs of transactional
applications within a cell

In summary, this presentation explained the benefits of the Compute Grid provided by
WebSphere Extended Deployment V6. It discussed the differences between
computationally intensive and batch programs and how to create them using the different
programming models.

XD61z_ComputeGrid_Programmingmodel.ppt Page 26 of 28

 –

IBM Software Group

27

Compute Grid Programming models © 2007 IBM Corporation

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:
mailto:iea@us.ibm.com?subject=Feedback_about_XD61z_ComputeGrid_Programmingmodel.ppt

You can help improve the quality of IBM Education Assistant content by providing
feedback.

XD61z_ComputeGrid_Programmingmodel.ppt Page 27 of 28

 –

IBM Software Group

Compute Grid Programming models © 2007 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM Perform WebSphere

EJB, J2EE, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include
technical inaccuracies or typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any
statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this
document to IBM products, programs, or services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM
operates or does business. Any reference to an IBM Program Product in this document is not intended to state or imply that only that program product may be used.
Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY
WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and
conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License Agreement, etc.) under which
they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly
available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other
claims related to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding
patent or copyright licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented
as illustrations of how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will
experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration,
and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements equivalent to the
ratios stated here.

© Copyright International Business Machines Corporation 2007. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule
Contract and IBM Corp.

28

XD61z_ComputeGrid_Programmingmodel.ppt Page 28 of 28

