

b̂usiness on demand software

© 2009 IBM Corporation

®

z/OS® Operating System

Using BSAM and QSAM

V1R0-Using-BSAM-QSAM.ppt Page 1 of 21

© 2009 IBM Corporation 2 Using BSAM and QSAM

Basic access method

�What is an access method?

•An access method defines the technique and API by
which the data is stored and retrieved.

•Each generally has its own data set structures (data
set organization) to organize data.

- An access method defines the technique that is used to store and retrieve data.

- Access methods have their own data set structures to organize data, macros to define
data sets, and utility programs to process data sets.

V1R0-Using-BSAM-QSAM.ppt Page 2 of 21

© 2009 IBM Corporation 3 Using BSAM and QSAM

Summary of DFSMS ™ access methods

VSAM, DIV LDS

BDAM Direct

VSAM KSDS

VSAM RRDS

VSAM ESDS

VSAM QSAM BSAM UNIX® file

VSAM QSAM BPAM, BSAM Partitioned

QSAM BSAM Sequential

VSAM Queued Basic Data set
organization

- Access methods are identified primarily by the data set organization.

- For example, use the basic sequential access method (BSAM) or queued sequential
access method (QSAM) with sequential data sets.

- However, there are times when an access method identified with one organization can
be used to process a data set organized in a different manner. For example, a sequential
data set created using BSAM can be processed by the basic direct access method
(BDAM) and vice versa.

V1R0-Using-BSAM-QSAM.ppt Page 3 of 21

© 2009 IBM Corporation 4 Using BSAM and QSAM

User Block

D

D

CBA

Basic sequential access method (BSAM)

�Arranges records sequentially in the order in which
they are entered to form sequential data sets

� The user organizes records with other records into
blocks: basic access

�Used to access: sequential data set, partitioned
member and UNIX files (such as z/FS)

-BSAM arranges records sequentially in the order in which they are entered.

-A data set that has this organization is a sequential data set.

-The user organizes records with other records into blocks. This is basic access.

-The application program must block and unblock its own input and output records. BSAM

only reads and writes data blocks.

-The application program must manage its own input and output buffers. It must give

BSAM a buffer address with the READ macro, and it must fill its own output buffer before

issuing the WRITE macro.

-You can use BSAM with the following data types: sequential data set, partitioned member

and UNIX files (such as z/FS)

V1R0-Using-BSAM-QSAM.ppt Page 4 of 21

© 2009 IBM Corporation 5 Using BSAM and QSAM

User Record

System Block

D

CBAD4

D1
D2
D3
D4

Queued sequential access method (QSAM)

� Arranges records sequentially in the order they are entered
to form sequential data sets

� The system organizes records with other records into
blocks

� To improve performance, QSAM reads these records into
storage before they are requested and writes behind:
queued access

� Used to access: sequential data set, partitioned member
and UNIX files

•QSAM arranges records sequentially in the order that they are entered to form sequential
data sets, which are the same as those data sets that BSAM creates.

•The system organizes records with other records.

•QSAM blocks and unblocks records for you automatically.

•QSAM manages all aspects of I/O buffering for you automatically. The GET macro
retrieves the next sequential logical record from the input buffer. The PUT macro places
the next sequential logical record in the output buffer.

•QSAM anticipates the need for records based on their order.

•To improve performance, QSAM reads these records into storage before they are
requested. This is called queued access.

•Can use QSAM with the following data types: sequential data set, partitioned member
and UNIX files

V1R0-Using-BSAM-QSAM.ppt Page 5 of 21

© 2009 IBM Corporation 6 Using BSAM and QSAM

Record A Record F Record E Record D Record C Record B Blocked Records

Data

Record

Record A Record B Record C Record D UnBlocked Records

Block Block Block Bloc
k

Block Block RECFM = FB

RECFM = F

RECFM = FS, FBS Unblocked Standard or Blocked Standard Records

• Each block in the data set, except maybe last, contains the same number of records.
• Each track contains the same number of blocks.

Fixed-length record formats

•The size of fixed-length (format-F or -FB) records is constant for all records in the data
set.

•The records can be blocked or unblocked.

•If the data set contains unblocked format-F (format-F) records, one record constitutes one
block.

•If the data set contains blocked format-F (format-FB) records, each track contains the
same number of blocks, except maybe the last.

•STANDARD FORMAT (FS, FBS)

•A standard-format data set must conform to these specifications:

•Only the last block can be truncated.

•Each block in the data set, except maybe last, contains the same number of
records.

•Each track contains the same number of blocks.

•A sequential data set with standard format records (format-FS or -FBS) sometimes can
be read more efficiently than a data set with format-F or -FB records.

•This is because each track contains same number of blocks, and each block except the
last contains the same number of records, the system is able to determine the address of
each record to be read.

V1R0-Using-BSAM-QSAM.ppt Page 6 of 21

 0 0

 s

© 2009 IBM Corporation 7 Using BSAM and QSAM

LL 00 Record D Record E Record F

Nonspanned, Format V records

LL 0 Record B LL 0 Record D

LL 00

LL 00 Record A Record B Record C

LL 00 Record C

Blocked Records

UnBlocked Record

Block Length: 2 Bytes
Reserved: 2 bytes

LL

RDW Data

BDW LL

Block

BDW Block LL

Block

RECFM=VB

RECFM=V

Variable-length record formats

•In a variable-length record data set, each record or record segment can have a different
length.

•This figure shows blocked and unblocked variable-length records

•A block in a data set containing unblocked records is in the same format as a block in a
data set containing blocked records. The only difference is that with blocked records each
block can contain multiple records.

•Block Descriptor Word (BDW)

•A variable-length block consists of a block descriptor word (BDW) followed by one
or more logical records or record segments.

•The block descriptor word is a 4-byte field that describes the block.

•It specifies the 4 byte block length for the BDW plus the total length of all
records or segments within the block.

•Record Descriptor Word (RDW)

•A variable-length logical record consists of a record descriptor word (RDW)
followed by the data.

•The record descriptor word is a 4 byte field describing the record.

•The first 2 bytes contain the length (LL) of the logical record (including the 4
byte RDW).

•All bits of the third and fourth bytes must be 0 (because other values are
used for spanned records, and this is non-spanned records)

V1R0-Using-BSAM-QSAM.ppt Page 7 of 21

 t

L

Data

© 2009 IBM Corporation 8 Using BSAM and QSAM

Spanned, Format VS Records

LL

BDW

Last Segmen
of Logical
Record A

First Segment
of Logical
Record B

Intermediate
Segment of
Logical Record B

LL

LL
Block

Last Segment
of Logical
Record B

First Segment
of Logical
Record C

LL

Block length: 2 bytes

Reserved: 2 bytes

First Segment
of Logical
Record

Intermediate
Segment of
Logical Record

Last Segment
of Logical
Record

LL L LL

Data Portion
of

First Segment

Data Portion
of

Last Segment

Data Portion
of

Intermediate Seg.

Logical Record Interface
(In User's Work Area)

LL

RDW

LL

Data Portion of Logical Record B

SDW

LL

Reserved: 1 Byte
Segment Control Code: 1 Byte

Segment Length: 2 Bytes

RECFM=VBS

Variable-length record formats (continued)

This figure shows how the spanning feature of the BSAM and QSAM lets you create and
process variable-length logical records that are larger than one physical block.

•It allows you to split the records into segments so that they can be written into more than
one block.

•A block is using the same BDW, but for each record segment, it consists of a segment
descriptor word (SDW) followed by the data.

•SDW is similar to RDW

•SDW is a 4 byte field that describes the segment. The first 2 bytes contain the length (LL)
of the segment, including the 4 byte SDW.

•The third byte of the SDW contains the segment control code that specifies the relative
position of the segment in the logical record.

•The remaining bits of the third byte and all of the fourth byte are reserved for possible
future system use and must be 0.

V1R0-Using-BSAM-QSAM.ppt Page 8 of 21

© 2009 IBM Corporation 9 Using BSAM and QSAM

Record A Record B Record C

Record

Bloc
k

Bloc
k

Bloc
k

Data

RECFM = U

Undefined-length record format

•Format-U permits processing of records that do not conform to the F- or V- format.

•Each block is treated as a record.

•For format-U records, you must specify the record length when issuing the WRITE, PUT,
or PUTX macro.

•No error indication will be given if the specified length does not match the buffer size or
the physical record size.

V1R0-Using-BSAM-QSAM.ppt Page 9 of 21

© 2009 IBM Corporation 10 Using BSAM and QSAM

Processing a data set with SAM

To access a data set using BSAM or QSAM:

� Connect to the data set by issuing an OPEN macro
specifying a DCB which describes the data set.

OPEN mydcb@,[INPUT|OUTPUT]

� Add or retrieve data with BSAM/QSAM macros.

� When processing has been completed, issue a CLOSE
macro to disconnect the data set from the processing
program and free up resources no longer needed.

CLOSE mydcb@

1.A DCB (data control block), which contains the characteristics of the data set, is needed
to identify the data set to be opened.

•dcb address: Specifies the address of the data control blocks for the data sets to
be prepared for processing.

2. Can issue a series of GET or PUT (for QSAM) or READ or WRITE (for BSAM) macros
to add or retrieve data.

3. dcb address: specifies the address of the data control block for the opened data set to
be closed.

•The fields of the data control block (DCB) and DCBE are restored to the condition that
existed before the OPEN macro was issued, and the data set is disconnected from the
processing program.

V1R0-Using-BSAM-QSAM.ppt Page 10 of 21

© 2009 IBM Corporation11 Using BSAM and QSAM

BSAM:BSAM:
mydcb DCB

DSORG=PS Phys seq

DDNAME=ddname Phys seq DS
or PDS member

MACRF=R[P] READ with POINT
W[P] WRITE with POINT
R[P], W[P]

RECFM=F[B][S][A|M]
V[B][S][A|M]
U

NCP=nn Max outstanding
R/W requests

BLKSIZE =xxx Block size
LRECL=yyy Record length

QSAM:QSAM:
mydcb DCB

DSORG=PS Phys seq

DDNAME=ddname Phys seq DS
or PDS member

MACRF=G[M|L] GET Move/Loc
P[M|L] PUT Move/Loc
G[M|L], P[M|L]

RECFM=F[B][S][A|M]
V[B][S][A|M]
U

BUFNO=nn Num of buffers in
pool

BLKSIZE =xxx Block size
LRECL=yyy Record length

Note: Refer to Macro Instructions for Data Sets for a complete list of options.

Specifying an access method

Definition of parameters:

DSORG – Data set organization (like physical sequential)

DDNAME – Name that defines the data set being allocated or processed.

MACRF – Specifies type of macros (READ, WRITE, CNTRL, NOTE/POINT for BSAM) or

(GET, PUT, PUTX for QSAM) that are used with the data set being created or processed.

RECFM (record format and characteristics of the data set being allocated or processed)

NCP (max number of READ and WRITE macros that can be issued before the first

CHECK macro is issued)

BUFNO (buffers to be used for this dataset)

BLKSIZE (maximum block length in bytes)

LRECL (length, in bytes, for fixed-length record. OR max length, in bytes, for variable-

length records)

V1R0-Using-BSAM-QSAM.ppt Page 11 of 21

© 2009 IBM Corporation 12 Using BSAM and QSAM

Specifying an access method (continued)
� The DCB may also reference a DCBE

DCB DCBE=mydcbe

� The DCBE (DCB extension) expands the functions provided by the DCB.

mydcbe DCBE

RMODE31={BUFF|NONE}

EODAD=myEodad

SYNAD=mySynad

GETSIZE={Y|N}

PASTEOD={Y|N}

NOVER={Y|N}

MULTACC=n

MULTSDN=n

Definition of parameters:

•RMODE31 : specifies whether you request that OPEN get QSAM buffers above the 16
MB line (RMODE31=BUFF) or not (RMODE31=NONE) when acquiring buffers
automatically. The default is NONE.

•EODAD: specifies the address of an end-of-data routine given control when the end of an
input data set is reached.

•SYNAD: specifies the address of an error analysis (SYNAD) routine given control when
an uncorrectable input/output error occurs.

•GETSIZE: specifies that OPEN is to calculate the number of blocks in the data set and
store this number in the DCBE (DCBESIZE).

•PASTEOD: specifies that the end-of-data marker of the extended format data set, which
is saved when the data set is open for INPUT, UPDATE, OUTIN, or INOUT is to be
ignored. The default is NO.

•NOVER: specifies that OPEN should bypass any verification to determine whether the
size of the stripes of an extended format data set are consistent. The default is NO.

•MULTACC: allows the system to process BSAM I/O requests more efficiently by not
starting I/O until a number of buffers have been presented to BSAM.

•MULTSDN: Requests a system-defaulted NCP. Used to set DCBNCP depending on the
data set.

V1R0-Using-BSAM-QSAM.ppt Page 12 of 21

© 2009 IBM Corporation13 Using BSAM and QSAM

°

User Area

A

B

C

M

N

O

WRITE

READ
ABC

MNO

User Area

BSAM macros

�� READ: Read a BlockREAD: Read a Block

�The READ macro retrieves a block from a data set and places it into a
designated area of storage provided by the user.

� WRITE: Write a Block

� The WRITE macro adds or replaces a block in a data set being
created or updated. The data to be written is taken from a
designated area of storage provided by the user.

- The READ macro retrieves a block from a data set and places it into a designated area
of storage provided by the user.

- The WRITE macro adds or replaces a block in a data set being created or updated. The
data to be written is taken from a designated area of storage provided by the user.

- READ/WRITE: The input/output operation must be tested for completion using a CHECK
macro.

V1R0-Using-BSAM-QSAM.ppt Page 13 of 21

© 2009 IBM Corporation 14 Using BSAM and QSAM

BSAM macros (continued)

�CHECK: Wait for Completion of request

� Issued following a READ or WRITE
�Places the active task in the wait condition

�Tests input or output operation for errors and exceptional
conditions.

�If the operation completes successfully, control is
returned to the instruction following the CHECK macro.

�If the operation fails, the error analysis routine (SYNAD)
or end-of-data routine (EODAD) is given control.

- Issued following a READ or WRITE macro, the CHECK macro places the active task in
the wait condition, if necessary, until the associated input or output operation is completed.

- The input or output operation is then tested for errors and exceptional conditions.

- If the operation completes successfully, control is returned to the instruction following the
CHECK macro. Otherwise, the error analysis routine (SYNAD) or end-of-data routine
(EODAD) is given control.

- If CHECK fails and if the appropriate routine is not provided, the task is abnormally
terminated.

V1R0-Using-BSAM-QSAM.ppt Page 14 of 21

© 2009 IBM Corporation15 Using BSAM and QSAM

BSAM macros (continued)

Repositioning macros
NOTE: Provide Relative PositionNOTE: Provide Relative Position

�The NOTE macro returns the position of the last block
read from or written into a data set.

�� POINT: Position for AccessPOINT: Position for Access

�The POINT macro causes repositioning such that the
next READ or WRITE operation is for the requested block
(denoted by the token passed on input to the request) on
the current volume.

�� BSP: BackspaceBSP: Backspace

�The BSP macro repositions to the previous block on the
current volume.

Before issuing these three macros, all input and output operations using the same data
control block must be tested for completion.

- NOTE: The NOTE macro returns the position of the last block read from or written into a
data set. Before issuing a NOTE macro, all input and output operations using the same
data control block must be tested for completion.

- POINT: The POINT macro causes the next READ or WRITE operation to be for the
specified data set block on the current volume. Before issuing the POINT macro, all input
and output operations using the same data control block must be tested for completion.

- BSP: The BSP macro repositions to the previous block on the current volume. All input
and output operations must be tested for completion before the BSP macro is issued.

V1R0-Using-BSAM-QSAM.ppt Page 15 of 21

© 2009 IBM Corporation 16 Using BSAM and QSAM

Available modes:

Locate Mode: Move Mode:

User Area System Buffer Register 1
System Buffer

* Returns address of the location containing the next record Returns copy of record

*

A

C
B

D

D

Omit area address Requires area address

A
B
C
D

@ D

QSAM macros

GET: Obtain next logical record

� The GET macro retrieves (reads) the next record
from a data set.

-The GET macro retrieves (reads) the next logical record.

-Various modes are available: Locate mode and Move mode.

- Locate mode: In locate mode, the GET macro locates the next sequential record or
record segment to be processed. The system returns the address of the record or
segment in register 1. You can process the record in the input buffer or move the record to
a work area.

- Move mode: In move mode, the GET macro moves the next sequential record to a work
area. The system returns the address of the work area in register 1.

V1R0-Using-BSAM-QSAM.ppt Page 16 of 21

© 2009 IBM Corporation 17 Using BSAM and QSAM

Available modes:

Locate Mode: Move Mode:

User Area System Buffer Register 1
System Buffer

* Address of the location into which your program later places the next record

Omit the area address

*

Requires area address

DA

C
B

A
B
C
D

Moves copy of record

@

QSAM macros (continued)

PUT: Write next record

The PUT macro writes a record in a data set.

-The PUT macro writes a record in a data set.

- Various modes are available: Locate mode and Move mode.

- In the locate mode, the PUT macro returns the address of an area in an output buffer in

register 1. This address is where the next sequential record or record segment should be

constructed.

- In the move mode, the PUT macro moves a logical record into an output buffer.

V1R0-Using-BSAM-QSAM.ppt Page 17 of 21

© 2009 IBM Corporation 18 Using BSAM and QSAM

A
B
C'
D

C'

System Buffer User Area

QSAM macros (continued)

PUTX: Update a record in an existing data set
The PUTX macro returns an updated record to a data set.

� Record must have been previously obtained by Get
with locate or move mode

- PUTX macro returns an updated record to the data set from which it was read. Record
must have been previously obtained by GET macro with locate or move mode.

V1R0-Using-BSAM-QSAM.ppt Page 18 of 21

© 2009 IBM Corporation 19 Using BSAM and QSAM

References

�Using Data Sets, SC26-7410

�Macro Instructions for Data Sets, SC26-7408

�SAM Logic, ZW84-4030-03 (IBM confidential)

V1R0-Using-BSAM-QSAM.ppt Page 19 of 21

© 2009 IBM Corporation 20 Using BSAM and QSAM

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_V1R0-Using-BSAM-QSAM.ppt

This module is also available in PDF format at: ../V1R0-Using-BSAM-QSAM.pdf

You can help improve the quality of IBM Education Assistant content by providing
feedback.

V1R0-Using-BSAM-QSAM.ppt Page 20 of 21

© 2009 IBM Corporation 21 Using BSAM and QSAM

Trademarks, copyrights, and disclaimers
IBM, the IBM logo, ibm.com, and the following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States,
other countries, or both:

DFSMS z/OS

If these and other IBM trademarked terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S.
registered or common law trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in
other countries. A current list of other IBM trademarks is available on the Web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include
technical inaccuracies or typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any
statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this
document to IBM products, programs, or services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM
operates or does business. Any reference to an IBM Program Product in this document is not intended to state or imply that only that program product may be used.
Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be used instead.

THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY
DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to
update this information. IBM products are warranted, if at all, according to the terms and conditions of the agreements (for example, IBM Customer Agreement,
Statement of Limited Warranty, International Program License Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained
from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products in connection with this
publication and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding
patent or copyright licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented
as illustrations of how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will
experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration,
and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements equivalent to the
ratios stated here.

© Copyright International Business Machines Corporation 2009. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule
Contract and IBM Corp.

V1R0-Using-BSAM-QSAM.ppt Page 21 of 21

