

b̂usiness on demand software

© 2009 IBM Corporation

®

z/OS Operating System

Predictive failure analysis overview

Predictive Failure analysis is a new component on z/OS® which was shipped on z/OS
V1R10 as an SPE. It provides a way to detect soft failures, otherwise know as “sick, but
not dead” incidents. It uses IBM Health Checker for z/OS remote check support to provide
this function.

V1R11_PFA.ppt Page 1 of 20

© 2009 IBM Corporation 2 Predictive failure analysis overview

Introduction

� This presentation discusses Predictive Failure
Analysis (PFA)
�PFA infrastructure

�PFA checks
� Common storage usage

� LOGREC arrival rate

� Frames and slots usage

� Message arrival rate

�You should also read the chapters on PFA found in
the z/OS Problem Management Guide for R11

This module will provide an introduction to PFA. It will discuss why it was needed and
what it is intended to do.

It will also cover the four checks that are available with PFA and the differences between
PFA’s checks and other remote health checks.

Predictive Failure Analysis is a new component of z/OS that was made available as an
SPE in March 2009 for R10. The first two checks, Common Storage Usage and LOGREC
Arrival Rate, were made available for R10 and the second two checks, Frames and Slots
Usage and Message Arrival Rate are available starting with R11.

The highlights of PFA and the checks available are discussed in this module. Since this
presentation does not cover all of the details of PFA, you should also read the PFA
chapters of the z/OS Problem Management Guide which was updated with PFA
information for R10 and was made available on-line at the end of March, 2009. That
version of the PFA documentation contains information on everything that is available with
the R10 SPE. PFA enhancements for R11 are available in the R11 version of that
document.

V1R11_PFA.ppt Page 2 of 20

© 2009 IBM Corporation 3 Predictive failure analysis overview

The next great resiliency challenge

� Customer view of soft failures
�20% of problems

�Long duration – generate 80%
of business impact
�Hard to diagnose

� What is the real cause?
� Every problem is unique
� Can be triggered by any area of
software or hardware
� Occur infrequently
� Cause sympathy sickness or
creeping failures)

�Hard to determine what actions
to take to recover

Reducing the “sick, but not dead” incidents or soft failures

“Sick, but not dead” or

soft failures

Hard failures

Masked
failures

• Characteristics of sick, but not dead
• Hard for component to detect internally

• Probabilistic, not deterministic

There are three general categories of software detected system failures: masked failure,
hard failure, and failure caused by abnormal behavior. A masked failure is a software
detected system failure which is detected by the software and corrected by the software. A
hard failure is when the software fails completely, quickly and cleanly. For example, a hard
failure occurs when an operating system kills a process.

A system failure caused by abnormal behavior is defined as unexpected, unusual, or
abnormal behavior which causes the software solution to not provide the service
requested. This abnormal behavior of the software combined with events that usually do
not generate failures produce secondary effects that may eventually result in a system
failure. These types of failures are know as soft failures.

These soft failures are a small percentage of the problems when compared to masked
failures and hard failures, but they cause most of the business impact.

They are hard to diagnose due to the fact that the failure likely does not occur in the
address space causing the problem, but more likely occurs in another address space. This
sympathy sickness has been observed when either hard failures or abnormal behavior
generates a system failure which could not be isolated to a failing component or
subcomponent. Failures caused by abnormal behavior often generate sympathy sickness
where the problem escalates from a minor problem to the point that the service eventually
stops working. Because they are difficult to detect, are very unique, can be triggered
anywhere in either software or hardware, and occur infrequently, failure isolation is very
difficult.

Hard failures are deterministic in nature. However, a failure caused by soft failures is
difficult to recognize within the component and are probabilistic and depend on secondary
effects to cause observable damage.

V1R11_PFA.ppt Page 3 of 20

© 2009 IBM Corporation 4 Predictive failure analysis overview

How PFA addresses the next great resiliency challenge

�Cause of “sick, but not dead”
�Review of significant number of
incidents has identified the
following generic causes of why a
z/OS image just stop functioning
� Damaged systems

– Recurring or recursive errors caused by
software defects anywhere in the
software stack

� Serialization
– Priority inversion

– Classic deadlocks

– Owner gone

� Resource exhaustion
– Physical resources

– Software resources

� Indeterminate or unexpected states

�Predictive failure analysis uses
�Historical data

�Machine learning and mathematical
modeling

to detect abnormal behavior and the
potential causes of this abnormal
behavior

�Objective
�Convert “sick, but not dead” to

� Correctable incident

Our analytical understanding of this problem is by inference, not by direct measurement. Based on analysis
and the input from subject matter experts, this area accounts for between 15-30% of problems that impact
business.

A detailed study of all of the customer-reported problems from a set of our largest customers was performed.
That analysis found that single system outages and single application outages were more prevalent than
multiple system outages and multiple application outages. As part of this analysis, we investigated how long
it took from the customer was first aware of a soft failures until an outage actually occurred. Some, but not
all, of the these outages which occurred on a human time scale were observed when the system just
seemed to stop functioning.

In these scenarios, the system stayed up, but was not processing work. For example, the system was
unresponsive because of recurring failures in a CICS® transactions or the system was unresponsive
because of a hardware failure causing IOS to go through recovery to re-establish a path to the DASD and
shortly after re-establishing the path, it failed again.

In general we think these errors fall into categories like recovery, logical errors, over-consumption, and
sympathy sickness.

After reviewing many incidents, it was determined that there are four generic causes of why the system
stopped functioning. The first is a damaged system. The indication of a damaged system is typically when
there are recurring or recursive errors anywhere in the software stack. The second type is serialization.
Serialization problems are most often caused by priority inversion, classic deadlocks, and owner gone
scenarios. The third type is physical or software resource exhaustion. The last type is indeterminate or
unexpected states.

PFA addresses this resiliency challenge by focusing on the damaged systems and resource exhaustion
categories. PFA uses historical data along with machine learning and mathematical modeling to detect
abnormal behavior and the potential causes of this abnormal behavior. PFA’s objective is to convert soft
failures to correctable incidents.

PFA is somewhat analogous to the National Weather Service. Based on historical data, we predict when a
soft failure might be occurring, alert the system operator of the situation, and provide information to assist in
resolving the problem.

V1R11_PFA.ppt Page 4 of 20

© 2009 IBM Corporation 5 Predictive failure analysis overview

PFA infrastructure

Health
checker
started

task

IBM Health
Checker for z/OS

support

SDSF health
checker support

Health
checker

commands

SDSF
actions

requests

Health checker
exception
messages

PFA
address
space
started

task

Modeling
prediction

(using machine
learning)

JVM

Data collection

Historical data
Unix file system

Health
checker
remote
check

support

Schedule
modeling

runs

predictions

PFA
commands

It is important to understand the relationship between IBM Health Checker for z/OS and PFA so that the consumer can take full
advantage of the health checker and PFA integration.

PFA is built using remote health checks. Therefore, the health check commands, interface using SDSF, and reporting mechanism
available through health checker are fully usable for the PFA checks.

PFA consists of an infrastructure which manages the PFA address space, connects to IBM Health Checker for z/OS (referred to as
Health Checker from now on), displays the status of PFA, and launches the JVM™ to model the data to create a prediction.

PFA also contains check-specific code which collects the data for an individual check, models the data to generate a prediction, and
compares the actual values to the predictions to issue an exception or an informational message.

It is very important to understand that PFA checks have three basic internal functions. First, they collect data. Data collection for a
check is specific to that check meaning that the check’s code collects data from the system that is pertinent to the check. For example,
if the check needs to calculate a type of storage usage, it interrogates the system control blocks to accumulate the storage used. If it is
counting message arrivals of some kind, it uses the appropriate system interface to collect that data. Data collection happens
asynchronously on an interval that is configurable by the end user. For example, the default value for the data collection function for
checks might be to collect data every 15 minutes. This parameter is called COLLECTINT.

The second major function of PFA checks is to model the data to generate a prediction based on the data collected. This modeling
function takes the data that was collected and predicts the value that it expects to see at the end of the model interval or at this point in
time. The model interval is also configurable by the end user. For example, the default value for the modeling interval for checks might
be to model data every six hours. This parameter is called MODELINT. Modeling also runs asynchronously when it is determined that
it is time to model based on the configured value.

The third major function of PFA checks it to perform the comparisons needed to issue an exception or an informational message. It
compares what is occurring on the system to what was predicted and issues the appropriate message and report. This function is
typically initiated by Health Checker when the time in the INTERVAL parameter for the check is reached. It can also be done for most
checks by an end user running the check using Health Checker commands. For some checks, the comparisons are performed at the
end of every collection rather than using the INTERVAL parameter in Health Checker.

PFA also manages its data store which is in the UNIX file system. The collected data is stored for use by the modeling code to
produce a prediction. The predictions are also stored in the file system for use by the code that performs the comparisons and
produces the reports.

All PFA checks have two additional check-specific parameters: COLLECTINACTIVE and DEBUG. The COLLECTINACTIVE
parameter is set to yes by default and means to collect and model data for the check even if the check is not ACTIVE(ENABLED) in
Health Checker. The DEBUG parameter is used to collect additional debug information to aid in analyzing a PFA problem.

PFA checks can also have check-specific parameters. At this time, each check has a parameter to assist PFA in reducing exception
message for situations that will not cause a system outage. These parameters are also configurable by the end user to allow for
greater flexibility on a per-system basis.

V1R11_PFA.ppt Page 5 of 20

© 2009 IBM Corporation 6 Predictive failure analysis overview

Common storage usage check overview
� Detects a damaged system by predicting resource exhaustion
� Measures the usage of common storage by the z/OS image

� Common storage check models two entities and can issue an exception when either entity is in
danger of being exhausted
1. CSA + SQA – below the line common storage
2. ESQA + ECSA – above the line common storage

� Overview
� Creates a heuristic model by combining historical common storage usage into buckets and mathematically

predicting future usage to detect problems
� Model output points to potential villains (top contributors to change)
� Waits one hour to let common storage usage stabilize
� Model runs asynchronously on customer specified schedule and reports to Health Checker if problem

detected or when customer requests through Health Checker

� Unable to detect
� Fragmentation
� Rapid growth – on machine time frame such as within a collection interval

� Does not detect
� Common storage usage exceeds a specific threshold (function provided by

VSM_COMMON_STORAGE_USAGE)
� An address space uses an unusual amount of common storage without impacting the z/OS image

In the R10 SPE, the PFA team focused on two areas of soft failures. The first was
“exhaustion of common resources.” PFA has a check to determine when common storage
usage will be exhausted. Note that this check does not monitor individual jobs. It also does
not simply detect when a threshold has been reached and alert the system operator.
Rather, it uses machine learning and historical data from this particular system to predict
the future level of common storage usage and determine if the current trend is going to
exceed the available common storage.

The check combines CSA and SQA, and ESQA and ECSA to give predictions for below
the line storage and above the line storage.

It uses a heuristic model to combine the storage into these two buckets and then
mathematically models the future storage to detect problems. If storage is not going to be
exhausted, it will issue an informational message. If PFA believes storage will be
exhausted before the next model, it will issue an exception. PFA produces a report that
shows the top contributors to change. In most cases, the address space causing the
storage exhaustion will be in this list.

To reduce false positives after an IPL, the first hour of data collected concerning storage
usage is not used in the predictions.

As with all PFA checks, collection and modeling occur asynchronously on a customer-
specified schedule.

The common storage usage check is not able to detect all types of common storage
exhaustion. It cannot currently detect exhaustion due to fragmentation nor to rapid growth
on a machine-time scale.

It is also does not duplicate the function of the VSM_COMMON_STORAGE_USAGE
check which detects when common storage usage has exceeded a specific threshold. It
also does not detect when an address space uses an unusual amount of common storage
without impacting the z/OS image.

V1R11_PFA.ppt Page 6 of 20

© 2009 IBM Corporation 7 Predictive failure analysis overview

Common storage usage prediction report
� “Top predicted users” contains up to 15 users of common storage whose usage has recently increased

the most
� This list is displayed when an exception occurs or when debug is on
� This list is sorted by predicted usage

� In order to eliminate overhead, no attempt is made to accumulate current usage for *SYSTEM so
UNAVAILABLE is displayed

� The THRESHOLD parameter can be used to adjust the sensitivity of the comparisons

� The .prediction file in the PFA_COMMON_STORAGE_USAGE/data directory is available to do further
analysis such as find the ASID and the PSW of the location in storage from which the CSA or SQA
was requested

Common Storage Usage Prediction Report
(heading information intentionally omitted here)
Below line CSA+SQA (in kilobytes):

Current usage : 750
Future prediction : 613
Capacity when predicted: 5212

Above line CSA+SQA (in kilobytes):
Current usage : 205555
Future prediction : 235408
Capacity when predicted: 526112

Top predicted users:
Job Storage Current Usage Predicted Usage
Name Location (in kilobytes) (in kilobytes)
__________ ________ _______________ _______________
CSATST4 ABOVE 35002 40023
CSATST3 ABOVE 32364 33530
CSATST1 ABOVE 12456 12478
ZTTLARM0 ABOVE 3102 3110
SYSTEM ABOVE UNAVAILABLE 190

A partial Common Storage Usage check prediction report is shown on this chart. Notice
that the “below the line” and the “above the line” storage are represented separately. They
are also compared separately and either can cause an exception.

A common heading is provided on the reports of all PFA checks that will provide the last
data collection time, the collection interval, the last model time, and the model interval.

All values are in kilobytes.

The future prediction is the value that was modeled at the last model interval that is the
predicted value at the end of the model interval (or two hours ahead if the model interval is
less than two hours).

The top predicted users’ list is provided only if an exception is issued or debug is on. If the
check determines that there is no problem such that the informational message is issued,
this list is not provided. Producing this list requires some performance overhead and due
to the fact that this check’s comparisons are done every minute, the list of jobs is not
provided unless necessary to analyze a problem.

The top predicted users’ list can be used to determine the address spaces causing the
potential storage exhaustion. If more information is needed, the files in this check’s /data
directory can be used for further analysis. Details on what information is provided in each
file can be found in the PFA documentation.

Due to the fact that the *SYSTEM* owned storage can be from many places, the current
usage is not accumulated on the report to further reduce overhead.

V1R11_PFA.ppt Page 7 of 20

© 2009 IBM Corporation 8 Predictive failure analysis overview

LOGREC arrival rate check overview

� Detects a damaged system or address space by measuring the
number of software failures using the number of LOGRECs which
arrived during the collection interval
� Predicts the expected number of software failures in time ranges by key

� Issues an exception message if an unusual number occur

� Provides a list of jobs that caused the software failures
� If the LOGREC arrivals are isolated to a job or small number of jobs, an address

space is usually damaged

� If the LOGREC arrivals cannot be isolated to a specific job or small number of jobs,
the z/OS image is usually damaged

� Unable to detect
� A single critical failure

� Burst of failures that don’t generate software LOGRECs

� Burst of failures that don’t provide usable SDWA with LOGREC

� Pattern of LOGRECs when number does not exceed critical arrival rate

The second type of soft failure which PFA detects in R10 is for excessive failures by key.
This check is called the LOGREC Arrival Rate check. It measures the number of software
failures using the number of LOGRECs which arrive during the collection interval. It
categorizes the software failures by key into three categories. The three categories are
key 0, keys 1-8, and keys 9-15. Each category can trigger the exception for this check
because PFA creates predictions for the expected number of software failures for each of
these key categories. If the number of exceptions is unusually high, the exception is
issued. A list of jobs that had high arrivals are included in the report. If the arrivals are
isolated to a single job or a small number of jobs, the address space or address spaces
are damaged. If the arrivals cannot be isolated, the z/OS image is likely damaged.

The LOGREC arrival rate check is not able to detect all types of failures that could lead to
a system soft failure. It cannot detect a single critical failure. It also does not track other
types of failures. It only tracks software failures. It needs the SDWA record with the
LOGREC in order to track the failure. Therefore, if there is no usable SDWA record for the
failure, it will not be tracked by the check. It also is looking for an excessive number of
LOGRECs. Therefore, if there is a pattern of LOGRECs where the number of LOGRECs
arriving does not exceed the critical rate, no exception can be issued.

V1R11_PFA.ppt Page 8 of 20

© 2009 IBM Corporation 9 Predictive failure analysis overview

LOGREC arrival rate prediction report
� Comparisons are done using the most recent arrivals in the number of minutes specified for the

collection interval rather than the arrivals accumulated at the time of the last collection.
� For example, if the collection interval is 60 minutes, the actual count in the last 60 minutes is used in the

comparisons when the check is run rather than the arrivals collected at the end of the last collection interval.
� “Arrivals in las t collec tion interv al”denotes the mos t recent arrivals used in the comparison.

� “Jobs having LOGREC arrivals in last collection interval” lists the jobs contributing to the arrival count.
The list is displayed only if the arrival count greater than 0.

� The STDDEV parameter can be used to adjust the sensitivity of the comparisons.
LOGREC Arrival Rate Prediction Report

(heading information intentionally omitted)

Key 0 Key 1-7 Key 8-15

__________ __________ __________

Arrivals in last

collection interval: 1 0 2

Predicted rates based on...

1 hour of data: 1 0 1

24 hours of data: 0 0 1

7 days of data: 0 0 1

30 days of data: 0 0 1

Jobs having LOGREC arrivals in last collection interval:

Job Name ASID Arrivals

________ ____ ________

LOGREC08 0029 2

LOGREC00 0027 1

This chart shows the LOGREC arrival rate prediction report.

It is important to understand what timeframes the arrivals occurred to understand which
arrivals are included in the comparison. The comparisons are done using the most
recently arrived LOGRECs compared to the modeled predictions for the three key buckets
and for the four time ranges which will be described in more detail. The most recent
arrivals are accumulated from the current time back for the number of minutes specified in
the collection interval. The report shows the most recent arrivals as the “Arrivals in last
collection interval.”

PFA models the LOGREC arrivals for three buckets of keys – key 0, keys 1-7, and keys 8­
15. It models predictions for those three categories for four different ranges of data. That
is, the arrivals are modeled using data that was collected in the last hour, data that was
collected over the last 24 hours of data, data that was collected over the last 7 days of
data, and data that was collected over the last 30 days of data. If there is not enough data
collected for all of those time ranges, the line for that time is not included on the report.

The report shows the arrivals in the last collection interval’s worth of time by key and the
predictions by key for predictions based on those four different models of data. Any one of
those keys and prediction times can cause the exception to be issued when compared to
the arrivals in the last collection interval’s worth of time after the configurable standard
deviation is applied.

The list of jobs in the “Jobs having LOGREC arrivals in last collection interval” list the jobs
that contributed to the arrival count. If there were no arrivals, the list is not displayed. Most
often, the job or jobs with the most arrivals are the reason the exception was issued.

V1R11_PFA.ppt Page 9 of 20

© 2009 IBM Corporation 10 Predictive failure analysis overview

Frames and slots usage check overview

• Detects a damaged system by predicting resource
exhaustion by detecting abnormal increased usage of
frames and slots by persistent address spaces
� Detects persistent address spaces which are growing their use of virtual

storage by tracking the address spaces’ use of frames and slots
� Predicts the expected number of frames and slots used by the address space
� Issues an exception message if an excessive number of frames and slots are used by the

address space when compared to its prediction
� Provides a list of jobs with their current usage and expected usage.
� The usage for each persistent job is calculated as the sum of the following:

– Number of 4K frames used (includes data spaces)
– Number of AUX slots used

� Each individual persistent address space is checked for storage leakage
(unlike the common storage usage check where common storage for the
entire system is monitored).

� Unable to detect
� Small virtual storage leaks
� Fragmentation
� Rapid growth – machine time scale

The first check available starting with R11 also detects exhaustion of shared resources.
The Frames and Slots Usage check was created to detect virtual storage leaks in a
persistent address space by detecting an abnormally high usage of frames and slots when
compared to the expected usage. A “persistent” address space is defined to be an
address space that starts within one hour after IPL.

The frames and slots usage check tracks frames and slots used by persistent address
spaces. It models a prediction for the persistent address spaces that have had the largest
change in their frames and slots storage usage. It predicts the number of frames and slots
that the address space is expected to be consuming. It issues an exception if one of these
persistent address spaces exceeds the prediction for that address space after the
standard deviation is applied. The report issued with the exception lists the address
spaces whose current usage is abnormally high.

The frames and slots usage check is not able to detect small virtual storage leaks nor is it
meant as a virtual storage monitor. It cannot detect virtual storage fragmentation nor can it
detect rapid growth on a machine-time scale.

V1R11_PFA.ppt Page 10 of 20

© 2009 IBM Corporation 11 Predictive failure analysis overview

Frames and slots usage prediction report
� The jobs whose frames and slots usage increased the most recently are

selected as “Address spaces with the highest increased usage”
�At the most, 14 top users can be printed or displayed in the report
�This list is sorted by expected usage

� An exception is raised when one or more jobs use substantially more frames
and slots than expected

� The STDDEV parameter can be used to adjust the sensitivity of the
comparisons.

Frames and Slots Usage Prediction Report

(heading information intentionally omitted here)

Address spaces with the highest increased usage:

Job Current Frames Expected Frames

Name ASID and Slots Usage and Slots Usage

---­

ZFS 0029 12223 12329

XCFAS 0048 1593 1601

VTAMOSR3 0027 1885 1881

TRACE 0036 367 367

SMS 0025 682 687

The address spaces with the highest increased usage are those whose usage has
recently increased the most. Only the top 14 persistent jobs are selected to be printed or
displayed in the report when no exception is issued. This list is sorted by expected usage.
If an exception is issued, only those jobs causing the exception are listed.

The report will show the current and the expected usage for the jobs displayed. The
current and expected usage values shown are the total number of 4K frames and AUX
slots in used.

Once the modeling is done, the current usage is compared to the expected usage for each
individual persistent address space and the value in the user-configurable STDDEV
parameter is applied. If it is determined that an address space is using substantially more
frames and slots compared to the expected number, an exception is issued. This
algorithm differs from the CSA check where an exception is raised for the entire storage
usage, not for individual persistent address spaces.

V1R11_PFA.ppt Page 11 of 20

© 2009 IBM Corporation 12 Predictive failure analysis overview

Message arrival rate overview

� Detects a damaged system based on a message arrival
rate that is too high
�Detects an abnormal number of console messages normalized by

CPU utilization
� Predicts the number messages normalized by CPU utilization
� Issues an exception message if an abnormal number of messages for the z/OS

image, for persistent address spaces that are being individually tracked, or for other
persistent address spaces and non-persistent address spaces as a group

� Provides a list of jobs that caused the message burst
– If the high rate is isolated to a job or small number of jobs, an address space is usually

damaged
– If the high rate cannot be isolated to a specific job or small number of jobs, the z/OS image is

usually damaged

� Messages included are WTO and WTOR messages (not BEWTO).
– Messages are counted before possible exclusion by Message Flooding Automation
– Rate is calculated by dividing arrivals in collection interval by CPU seconds used in collection

interval.

� Unable to detect
– Abnormal message patterns
– Single critical messages

The second check available in R11 detects excessive failures. The Message Arrival Rate check detects an
abnormal arrival rate of console messages. That is, it counts the number of write to operator (WTO) and
write to operator reply (WTOR) messages. It specifically excludes branch entry write to operator (BEWTO)
messages. The rate is calculated by dividing the count of the arrivals in the collection interval with the
number of seconds of CPU used in the collection interval.

If the arrival rate found at the last collection is excessively high when compared to the prediction, an
exception message is issued. The exception message can be issued by comparing the collected and
predicted rates for the entire system, for each individual persistent job being tracked, for the other persistent
jobs as a group, or for the non-persistent jobs as a group.

The definition of persistent jobs is the same as for the frames and slots usage check. That is, the job is
considered persistent if it starts within one hour after IPL. All message arrival rates collected in the first hour
after IPL are discarded to allow the system time to stabilize after the IPL.

The persistent jobs that are tracked individually are determined either by the jobs that were tracked before
IPL or the jobs that had the highest arrivals after a six hour warm-up phase that begins an hour after IPL or
when PFA starts, whichever is later. If PFA had not previously been running or data had not been collected
before the IPL, PFA chooses the individual persistent jobs to track based on the arrival rates in the 6 hours
from hour 1 to hour 7 after IPL. The persistent jobs with the highest arrival rates are tracked individually. All
other persistent jobs are put in the “other persistent jobs” category. If PFA had been running prior to IPL and
had been collecting data, the jobs that were previously tracked are tracked again if that entire list of jobs is
persistent again after the IPL. And, if PFA had collected data prior to IPL, the last hour’s worth of data
collected that exists in the files when PFA starts again is discarded so that the arrivals collected during
shutdown do not skew the predictions.

Messages are counted before possible exclusion by message flood automation.

The message arrival rate check is not designed to detect abnormal message patterns or single critical
messages.

V1R11_PFA.ppt Page 12 of 20

© 2009 IBM Corporation 13 Predictive failure analysis overview

Message arrival rate prediction reports
� Message Arrival Rate differs from the other checks due to the fact that it performs the

comparisons after every collection rather than on an INTERVAL scheduled in Health
Checker

� Comparisons are done in multiple ways:
� Total system rate
� Top individual persistent jobs that typically have the highest rates
� Other persistent jobs as a group
� Non-persistent jobs as a group

� An appropriate report is printed for each type of exception.

� The STDDEV parameter and the EXCEPTIONMIN parameter can be used to adjust the
sensitivity of the comparisons.
Message Arrival Rate Prediction Report

(heading lines intentionally omitted)

Message arrival rate

at last collection interval : #######.##

Prediction based on 1 hour of data : #######.##

Prediction based on 24 hours of data: #######.##

Prediction based on 7 days of data : #######.##

Top predicted users:

Predicted Message

Message Arrival Rate

Job Arrival

Name Rate 1 Hour 24 Hour 7 Day

________ ________ ______ ______ ________

Name 1 3.25 2.89 1.78 UNKNOWN

...

NameLast 2.74 5.23 3.45 UNKNOWN

The message arrival rate check differs from the other checks in the way the check is run to do the
comparisons. Rather than having a set time INTERVAL as a Health Checker parameter, the check is
designed to run after every collection. By performing the check automatically upon successful completion of
a collection, the check is able to compare the most recent arrivals with the predictions modeled at the last
model interval. This enhances both the performance of the check itself as well as the responsiveness of the
check to the current activity of the system.

The message arrival rate check performs the comparison in several ways. It can detect a damaged system
based on the total arrival rate of the system. It can also detect a damaged address space that might lead to a
damaged system. It tracks persistent jobs that had the highest arrival rate during an internal warm-up period
or that were the same jobs being tracked before IPL if those jobs are still available and the check had data
from prior to IPL. If any of those persistent jobs have higher rates than expected, an exception will be issued.
It also tracks the other persistent jobs as a group and an exception can be issued due to those. It also tracks
the non-persistent jobs as a group and an exception can be issued due to those.

The message arrival rate check is similar to the LOGREC arrival rate check in the aspect that they both
make predictions based on 1 hour of data, 24 hours of data, and 7 days of data. Message arrival rate does
not model back using 30 days of data, however. If the amount of data required for any comparison is not
available for the system as a whole, that line is not printed on the report. For the jobs listed in the report
details, if not enough data is not available for a particular job for any given timeframe, UNKNOWN is printed
on the report.

The STDDEV parameter and the EXCEPTIONMIN parameter can be used to adjust the sensitivity of the
comparisons. For example, if an exception is issued for an address space whose current arrival rate or
predicted arrival rate are quite low and deemed insignificant, the EXCEPTIONMIN parameter can be
increased above those values to avoid the exception. The STDDEV parameter can also be increased or
reduced to further improve the calculations to fit your specific needs.

The TRACKEDMIN parameter can be used to avoid having persistent address spaces with low rates be
tracked at the first startup of PFA. Currently, the parameter has the default of 0 so that all address spaces
are candidates to be tracked.

V1R11_PFA.ppt Page 13 of 20

© 2009 IBM Corporation 14 Predictive failure analysis overview

PFA Serviceability
� Status information for the infrastructure and the individual checks are available

by using the modify PFA command.

� Reports issued with a PFA check exception provide additional data for analysis.

� PFA documentation in the z/OS Problem Management Guide outlines best
practices for each check.

� Each check has a check_name/data directory in the pfauser’s home directory
which contains
�Files with additional details
�Diagnostic logs
�Files are described in the PFA documentation.

� A “debug” parameter that is can be turned on for each check individually
�Additional diagnostic information is generated in the log files when debug is on.
�This parameter is not the debug parameter available via Health Checker because the

Health Checker parameter did not apply to all three major PFA functions

Originally, PFA was designed to be a black box. Customers were just supposed to start it
and forget it. However, it was later decided through customer interaction that more
information was needed in order to ensure that PFA was running correctly. Therefore, a
comprehensive “modify PFA” command was built to display status information for the PFA
infrastructure as well as detailed status for each individual check.

When a check exception is issued, the reports previously described should greatly assist
in analyzing the problem.

In addition, the PFA documentation outlines best practices for each check to provide
advice on how to analyze the problem.

Each check has a /data directory in the pfauser’s home directory. For example, if the pfa
user is “pfauser,” the data directory for the CSA usage check would be
/u/pfauser/PFA_COMMON_STORAGE_USAGE/data. The files needed by PFA to collect
data, model data, and perform the check are found in the /data directory. These files are
documented in the PFA documentation and some can be used to help you analyze the
exception data.

If a PFA problem is suspected, the /data directory also contains log files that contain
additional debug information. If the PFA debug parameter is on, additional information will
be found in the log files.

If a PFA problem is suspected, IBM service will likely request the last exception report and
the /data for the check. It is preferred that the problem has been re-created with debug on.

Note that the debug parameter for PFA is not the debug parameter provided by Health
Checker. Rather, it is a parameter listed in the check-specific parameters for each check.
The Health Checker debug parameter was not able to be used because it could not be
applied to all operations within PFA such as collect, model, and perform comparison
operations.

V1R11_PFA.ppt Page 14 of 20

© 2009 IBM Corporation 15 Predictive failure analysis overview

PFA modify command to display status

� SUMMARY: Examples: f pfa,display,checks or f pfa,display,check(pfa*),summary
AIR013I 10.09.14 PFA CHECK SUMMARY

LAST SUCCESSFUL LAST SUCCESSFUL

CHECK NAME ACTIVE COLLECT TIME MODEL TIME

PFA_COMMON_STORAGE_USAGE YES 04/05/2008 10.01 04/05/2008 08.16

PFA_LOGREC_ARRIVAL_RATE YES 04/05/2008 09.15 04/05/2008 06.32

(all checks are displayed)

� DETAIL: Examples: f pfa,display,check(pfa_common_storage_usage),detail or f pfa,display,check(pfa_c*),detail
AIR018I 02.22.54 PFA CHECK DETAIL

CHECK NAME: PFA_COMMON_STORAGE_USAGE

ACTIVE : YES

TOTAL COLLECTION COUNT : 5

SUCCESSFUL COLLECTION COUNT : 5

LAST COLLECTION TIME : 04/05/2008 10.18.22

LAST SUCCESSFUL COLLECTION TIME: 04/05/2008 10.18.22

NEXT COLLECTION TIME : 04/05/2008 10.33.22

TOTAL MODEL COUNT : 1

SUCCESSFUL MODEL COUNT : 1

LAST MODEL TIME : 04/05/2008 10.18.24

LAST SUCCESSFUL MODEL TIME : 04/05/2008 10.18.24

NEXT MODEL TIME : 04/05/2008 16.18.24

CHECK SPECIFIC PARAMETERS:

COLLECTINT : 15

MODELINT : 360

COLLECTINACTIVE : 1=YES

DEBUG : 0=NO

THRESHOLD : 5

� STATUS: f pfa,display or f,pfa,display,status
AIR017I 10.31.32 PFA STATUS

NUMBER OF CHECKS REGISTERED : 4

NUMBER OF CHECKS ACTIVE : 4

COUNT OF COLLECT QUEUE ELEMENTS: 0

COUNT OF MODEL QUEUE ELEMENTS : 0

COUNT OF JVM TERMINATIONS : 0

This chart shows examples of the PFA modify command. It can be used to display
summary or detailed information for the PFA checks and to display status information for
the PFA infrastructure.

The syntax of the PFA modify command is very similar to the Health Checker modify
command and is documented clearly in the PFA documentation.

Summary information for the checks shows the check name, whether it is active in health
checker, the last collection time and the last model time. Either all checks can be shown or
individual checks can be shown by specifying the name of a check or a wildcard that
matches more than one check. Wildcards can be specified as the last character of the
check name.

Detailed information for a check shows counts and times for collection and modeling. It
also shows the parameters for specific to this check. In fact, in order to display the
cumulative set of parameters for this check, the PFA modify command to display must be
used. PFA allows the user to modify parameters individually and accumulate the changes
rather than requiring all parameters to be specified when modifying. Displaying the check’s
parameters with Health checker commands will not show the cumulative list of parameters
if the parameters were changed using more than one modify command.

The PFA infrastructure status can also be displayed using the PFA modify command. The
number of checks registered is the number of checks that exist to the PFA infrastructure.
The number of checks active are the number of PFA checks that are ACTIVE(ENABLED)
in Health Checker.

V1R11_PFA.ppt Page 15 of 20

© 2009 IBM Corporation 16 Predictive failure analysis overview

Differences between PFA checks and other remote
health checks
�Problem: Why do I have to specify all of the

parameters on f hzsproc,update when I just want
to change one or two parameters such as turning
DEBUG on or setting just COLLECTINT and
MODELINT? The parameter list is so long I
cannot type it in 126 characters!
�Solution:

� Not all PFA check parameters are required be specified when modifying.

� If you have changed the parameters multiple times, you must use f
pfa,display instead of IBM Health Checker for z/OS interfaces to display
check specific parameters to get the cumulative list of parameters in use.

The PFA checks have several parameters. Health Checker requires all parameters to be
specified on a modify even if only one parameter is being changed. And, if using the
Health Checker modify command on the command line, only 126 characters are allowed
and not all PFA check parameters could be specified. In addition, it was not considered
very usable to need to input all parameters just to change the value of one parameter.

Therefore, PFA made a change so that not all parameters need to be specified when
modifying parameters using Health Checker. PFA internally tracks the values of each
parameter so that if not all parameters are specified, the previous value for the parameters
not specified are retained. However, Health Checker does not know about the internal
storage of the PFA parameters. Therefore, it only has the capability of displaying the last
modify operation performed. If you use multiple modify operations or do not specify all of
the parameters, Health Checker can only display the last parameter modified. Therefore,
in order to see all parameters in use by any PFA check, the modify PFA display command
must be used.

V1R11_PFA.ppt Page 16 of 20

© 2009 IBM Corporation 17 Predictive failure analysis overview

Differences between PFA checks and other remote
health checks (continued)
� Problem: The debug parameter in Health Checker could

not be used for collection and modeling phases.
�Solution:

� The Health Checker debug parameter is ignored.

� A PFA debug parameter is provided in its place.

� Problem : Once the exception is issued, it continues to be
issued even if no new data has been collected or no new
predictions have been made.
�Solution:

� When an exception is issued, the WTOTYPE of the check is changed to NONE in
Health Checker.

� If the check continues to issue an exception, the report is updated each time, but the
message is not sent to the operator until the check is OK.

� If the check is OK or a new model is created, the WTOTYPE is changed back to
what it was before it was changed it to NONE.

When the debug parameter in Health Checker was set, PFA was not notified until the next
run of the check. However, debug data needed to be generated for the collect and model
phases of the checks as well. Therefore, every PFA check has a debug parameter that is
a check-specific parameter which applies to all phases of PFA checks. The debug
parameter in Health Checker is ignored by PFA.

Once an exception was issued, the exception was issued every time the check was run
even though new data had not yet been collected and no new predictions had been
modeled. This problem was especially annoying for system operators that carried a pager!
Therefore, PFA was changed so that when an exception is issued, the check’s WTOTYPE
is changed to NONE in Health Checker. The check continues to collect data, model
predictions, and perform comparisons. However, if the check continues to issue an
exception, the report is updated with the most recent information, but the message is not
sent as a write to operator message. Once a new model is created or when the check is
run without issuing an exception, the WTOTYPE is changed back to what it was before it
was changed to NONE.

V1R11_PFA.ppt Page 17 of 20

© 2009 IBM Corporation 18 Predictive failure analysis overview

Predictive failure analysis summary
�Predictive Failure Analysis is analogous to
when the National Weather Service issues
a severe storm warning
�Determine if the problem will impact you and
take action if needed
�Warnings are generated based on
mathematical models which are used to
predict the future

�PFA uses key technology to detect
abnormal behavior allowing the customer
to treat the symptoms first
�Two checks delivered for z/OS 1.10 as an
SPE
� Two more checks delivered in z/OS 1.11

Predictive failure analysis uses technology which is new to detect when abnormal behavior
is occurring on the system to allow the operations team to treat the symptoms of the
problem before they fully understand the cause. It is analogous to when the National
Weather Service issues a severe storm warning. Data is provided to help determine the
cause of the problem and best practices are documented to provide guidance to the
solution.

Predictive failure analysis is using mathematical techniques borrowed from other
industries that determine if jet engines will fail or if nuclear power plants need to be
shutdown.

The common storage usage check and the LOGREC arrival rate check were delivered as
an SPE for R10. The frames and slots usage check and the message arrival rate check
were delivered in R11.

V1R11_PFA.ppt Page 18 of 20

© 2009 IBM Corporation 19 Predictive failure analysis overview

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_V1R11_PFA.ppt

This module is also available in PDF format at: ../V1R11_PFA.pdf

You can help improve the quality of IBM Education Assistant content by providing
feedback.

V1R11_PFA.ppt Page 19 of 20

© 2009 IBM Corporation

 Trademarks, copyrights, and disclaimers

© 2009 IBM Corporation20 Predictive failure analysis overview

Trademarks, copyrights, and disclaimers
IBM, the IBM logo, ibm.com, and the following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

CICS Current z/OS

If these and other IBM trademarked terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S. registered or common law
trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of other IBM
trademarks is available on the Web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

JVM, ZFS, and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any statements regarding IBM's future direction
and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or services does not imply
that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program Product in this
document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be
used instead.

THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products
are warranted, if at all, according to the terms and conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License
Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other
publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other claims related
to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2009. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

V1R11_PFA.ppt Page 20 of 20

