

© 2012 IBM Corporation

z/OS V1R13

XL C/C++: z/OS V1R13 enhancements

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 1 of 82

 IBM Presentation Template Full Version

Session objectives

� Performance Improvement
– Improved Metal C optimization
– New hardware built-ins
– Multiply and Add for hexadecimal types

� Feedback Improvement
– Informational messages as default in USS
– Metal C: Function property information

� Usability Improvement
– Metal C: DSA Support, Argument Parsing
– C++: Template depth

� Source and Binary Portability Improvement
– Compatibility Support: Text following #endif, Function attributes (gnu_inline, used,

malloc), Temporary lifetimes, Rvalue bindings, Intrinsic complex types, Addressable
labels

– Standards Support (C++0x): Trailing Return Type
� Debugging Support Improvement

– New Debugging APIs
– Debugging Inlined Procedures

2 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 2 of 82

 IBM Presentation Template Full Version

Session objectives: Performance improvement

� Improved Metal C optimization
� New hardware built-ins
� Multiply and add for hexadecimal types

3 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 3 of 82

 IBM Presentation Template Full Version

Overview: Improved Metal C Optimization

� Problem Statement / Need Addressed
– Higher order optimization options were not supported in Metal C.

� Solution
– Enable the HOT and IPA options for Metal C.

� Benefit / Value
– The performance of Metal C applications can get a boost with these options.

4 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 4 of 82

Usage and invocation: HOT

� Invoking HOT option:
xlc -O3 -qmetal -qhot -S a.c

This produces a.s

5 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 5 of 82

IBM Presentation Template Full Version

Usage and invocation: IPA

IPA compile phase:
xlc -qmetal -qipa -c x.c

This produces x.o
xlc -qmetal -qipa -c y.c

This produces y.o
IPA link phase:

xlc -qmetal -qipa -S x.o y.o

This produces a.s
Assembly phase:

as -mgoff a.s

This produces a.o
Bind/Link phase:

ld -e //main a.o

This produces a.out

6 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 6 of 82

© 2012 IBM Corporation 7

Interactions and dependencies

� None.

IBM Presentation Template Full Version

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 7 of 82

© 2012 IBM Corporation 8

Migration and coexistence considerations

� None.

IBM Presentation Template Full Version

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 8 of 82

 IBM Presentation Template Full Version

Overview: New hardware built-ins

� Problem Statement / Need Addressed:
– Interlocked-storage-access instructions, available on models where the interlocked­

access-facility is installed, provide a means by which a load, update and store operation
can be performed with interlocked update in a single instruction. Interlocked storage
instructions are not directly available for user source.

� Solution:
– Add support for built-in functions corresponding to the interlocked storage access

instructions.

– Supported interlocked-storage-access instructions are:

• Load and Add (LAA, LAAG)
• Load and Add Logical (LAAL, LAALG)
• Load and And (LAN, LANG)
• Load and Exclusive Or (LAX, LAXG)
• Load and Or (LAO, LAOG)
• Load Pair Disjoint (LPD, LPDG)

� Benefit / Value:
– Source code can now use interlocked-storage-access instructions through built-in

functions providing the benefit and speed of the hardware instructions.

9 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 9 of 82

 IBM Presentation Template Full Version

Usage and invocation

� The instructions ending with G operate on 64-bit operands. The built-in functions will follow
the same convention. Applications that make use of built-in functions that operate on 64-bit
operands will have to be compiled and linked with the LP64 compiler option.

– int __lad(int* op1, int op3, int* op2);	 // LAA
– int __ladg(long* op1, long op3, long* op2);	 // LAAG
– int __ladl(unsigned int* op1, unsigned int op3, unsigned int* op2); // LAAL
– int __ladlg(unsigned long* op1, unsigned long op3, unsigned long* op2); // LAALG
– int __lan(unsigned int* op1, unsigned int op3, unsigned int* op2); // LAN
– int __lang(unsigned long* op1, unsigned long op3, unsigned long* op2); // LANG
– int __lax(unsigned int* op1, unsigned int op3, unsigned int* op2); // LAX
– int __laxg(unsigned long* op1, unsigned long op3, unsigned long* op2); // LAXG
– int __lao(unsigned int* op1, unsigned int op3, unsigned int* op2); // LAO
– int __laog(unsigned long* op1, unsigned long op3, unsigned long* op2); // LAOG
– int __lpd(unsigned int* op3, unsigned int* op4, unsigned int* op1, unsigned int* op2); //LPD
– int __lpdg(unsigned long* op3, unsigned long* op4, unsigned long* op1, unsigned long* op2); //LPDG

10	 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt	 Page 10 of 82

 IBM Presentation Template Full Version

Interactions and dependencies

■ Hardware Dependencies:

This is an offering for z196 instructions.

■ Software Dependencies:

It is implemented under architecture option, ARCH(9).

11 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 11 of 82

© 2012 IBM Corporation 12

Migration and coexistence considerations

� None

IBM Presentation Template Full Version

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 12 of 82

 IBM Presentation Template Full Version

Overview: Multiply and add for hexadecimal types

� Problem Statement / Need Addressed
–	 The fused multiply and add instructions are not generated for hexadecimal floating point

types.
–	 Due to performance and hardware reasons, it is not a good idea to emit these

instructions in general cases.

� Solution

–	 The new support for zEnterprise makes this feasible to do.
–	 Allow FLOAT(MAF) + FLOAT(HEX) for ARCH >= 9.

� Benefit / Value
–	 Multiply and Add instructions can be generated potentially increasing performance of

the application.

13	 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt	 Page 13 of 82

 IBM Presentation Template Full Version

Usage and invocation

Example: xlc -qfloat=hex -qfloat=maf -qarch=9 mysource.c

14 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 14 of 82

© 2012 IBM Corporation 15

Interactions and dependencies

� None

IBM Presentation Template Full Version

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 15 of 82

© 2012 IBM Corporation 16

Migration and coexistence considerations

� None

IBM Presentation Template Full Version

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 16 of 82

 IBM Presentation Template Full Version

Session objectives: Feedback improvement

� Informational Messages as Default in USS
� Metal C:

– Function Property Blocks

17 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 17 of 82

 IBM Presentation Template Full Version

Overview: Informational messages as default in USS

� Problem Statement / Need Addressed
–	 When using the INFO option to get diagnostic messages in USS, users have to

remember to specify the FLAG(I) option to view the informational severity messages.
� Solution

– Make FLAG(I) the default in USS as it is in Batch compilation.
� Benefit / Value

–	 Users will no longer get the false impression that there is no potential errors in their
code if they forget to specify FLAG(I).

18	 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt	 Page 18 of 82

© 2012 IBM Corporation 19

Interactions and dependencies

� None

IBM Presentation Template Full Version

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 19 of 82

 IBM Presentation Template Full Version

Migration and coexistence considerations

� Any existing compilations that did not turn on FLAG(I) and used the INFO or CHECKOUT
options may get new diagnostic messages of informational severity appearing.

20	 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt	 Page 20 of 82

 IBM Presentation Template Full Version

Overview: Metal: Function property blocks (C only)

� Problem Statement / Need Addressed
–	 It is hard to find information about functions in Metal generated code.

� Solution
–	 Add per-function property data that can be used to identify the C function and the

associated properties by code scanning or dump reading.
–	 Called Function Property Block (FPB) and can be found via the new Function Entry

Point Marker placed immediately before the entry point of each function.
–	 Also contains an offset that can be used to find the Prefix Data generated for each

compilation unit.
� Benefit / Value

–	 Enables Metal C users to find additional information about a function.

21	 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt	 Page 21 of 82

 IBM Presentation Template Full Version

Usage and invocation

� The function property block is generated for all Metal C compiles.
� The function property block is made up of a fixed part (20 bytes in size) followed by a

contiguous optional part, with the presence of optional fields indicated by flag bits.
–	 Optional fields, if present, are stored immediately following the fixed part of the FPB

aligned on fullword boundaries in a given order.
� The detailed layout of FPB is documented in z/OS Metal C Programming Guide and

Reference.
� Note: When the COMPRESS compiler option is in effect the function name fields will not be

present in the FPB.

22	 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt	 Page 22 of 82

© 2012 IBM Corporation 23

Interactions and dependencies

� None

IBM Presentation Template Full Version

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 23 of 82

© 2012 IBM Corporation 24

Migration and coexistence considerations

� None

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 24 of 82

 IBM Presentation Template Full Version

Session objectives: Usability improvement

� Metal C:
– DSA Support
– Argument Parsing

� C++:
– Template depth

25 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 25 of 82

 IBM Presentation Template Full Version

Overview: Metal: DSA support (C only)

� Problem Statement / Need Addressed
–	 A common practice of pointing to the dynamic storage area in user source can be

overwritten by compiler generated code.

� Solution

–	 A new option DSAUSER is added for requesting a user field of the size of a pointer to
be reserved on the stack. This user field can be utilized by the user provided
prolog/epilog code for the purpose it was intended for. The user field can be located via
the new HLASM global set symbol &CCN_DSAUSER which provides the offset to the
user field. The compiler merely allocates the new field on the stack without any code to
initialize it.

� Benefit / Value
– Metal C users now can have a reliable way to get a field of the size of a pointer (i.e. 4

bytes for AMODE 31 and 8 bytes for AMODE 64) on the stack reserved for the user.

26	 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt	 Page 26 of 82

IBM Presentation Template Full Version

Usage and invocation

Name DSAUSER | NODSAUSER

Abbreviation DSAU

Default NODSAUSER

Category Object control mode

#pragma option None

Syntax |- NODSAUSER -|
>>---- DSAUSER ----------------><

Description When DSAUSER is specified with the METAL option, a field of the size of a pointer is reserved on the stack.
The user field is a 4-byte field for AMODE 31 and an 8-byte field for AMODE 64. The user field is only
allocated if the function has the user supplied prolog/epilog code. The user field can be addressed by using the
global set symbol &CCN_DSAUSER ,which is described in z/OS Metal C Programming Guide and Reference.

IPA effects:
If the DSAUSER option was specified during any of the IPA compile step, it will be applied to all partitions
created by the IPA link step.

27 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 27 of 82

IBM Presentation Template Full Version

New informational global set symbol

Global Set Symbol Type Description

&CCN_DSAUSR Character The assembly time computed offset to the user field on the stack of the
function.

28 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 28 of 82

© 2012 IBM Corporation 29

Interactions and dependencies

� None

IBM Presentation Template Full Version

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 29 of 82

© 2012 IBM Corporation 30

Migration and coexistence considerations

� None

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 30 of 82

 IBM Presentation Template Full Version

Overview: Metal: Argument parsing (C only)

� Problem Statement / Need Addressed
– The common method of processing command line arguments (argc and argv) in C

programs is not natively supported in Metal.

� Solution

– The “argc” and “argv” format parsing capability is added to Metal C programs. If your
main() function uses the standard argc and argv arguments, the Metal C initialization
routine is called to parse the raw parameter data received from the hosting environment
and to convert the parameter to the standard argc and argv format.

– If your program is not invoked in the UNIX System Services (USS) environment, you can
use the ARGPARSE or NOARGPARSE options to determine if the EXEC PARM needs
to be further parsed into individual arguments; the EXEC PARM has to be in this format:
a halfword length field followed by a maximum of 100 characters where the length field
contains a binary count of the number of bytes in the PARM field. For more information
about the ARGPARSE option, see ARGPARSE | NOARGPARSE in z/OS XL C/C++
User’s Guide.

– If your main() function uses argc and argv arguments and you do not want the parsing to
be performed, you can set the new Global Set Symbol &CCN_APARSE to 0 in your
prolog code to conditionally bypass the argument parsing.

� Benefit / Value
– This allows Metal C programs that do need the standard argc and argv style of

parameters to have the arguments automatically parsed.

31 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 31 of 82

IBM Presentation Template Full Version

Usage and invocation

� It is available in all Metal C compiles.
� Requires the need for SCCNOBJ in the bind step.
� User modifiable Global Set Symbols:

Global Set Symbol Type Default Description

&CCN_APARSE Logical 1 Set to "1" to trigger parser call.

Set to "0" to disable parser call.

32 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 32 of 82

© 2012 IBM Corporation 33

Interactions and dependencies

� None

IBM Presentation Template Full Version

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 33 of 82

© 2012 IBM Corporation 34

Migration and coexistence considerations

� None

IBM Presentation Template Full Version

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 34 of 82

 IBM Presentation Template Full Version

Overview: Template depth (C++ only)

� Problem Statement / Need Addressed
–	 Immutable limit of 50 recursively instantiated template specializations are processed by

the compiler before it halts compilation and emits an error.
� Solution

–	 Option TEMPLATEDEPTH with a single integer suboption allows users to specify their
own value for how deep they want the compiler to instantiate recursive template
specializations.

� Benefit / Value
–	 The reason this limit exists is to prevent the compiler from entering infinite loops while

instantiating improperly written user template code.
• This limit has been increased to 300 and now it is controlled by the

TEMPLATEDEPTH option.

• Carefully crafted template code which needs more recursive instantiations is now

able to compile.

35	 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt	 Page 35 of 82

 IBM Presentation Template Full Version

Usage and invocation

template <int n> void nom() {

nom<n-1>();

}

template <> void nom<0>() {}

int main() {

nom<400>();

}

� Even a limit on recursive template instantiations of 300 will not be enough to compile this
program. However, -qtemplatedepth=400 will now allow this to compile.

36	 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt	 Page 36 of 82

© 2012 IBM Corporation 37

Interactions and dependencies

� None

IBM Presentation Template Full Version

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 37 of 82

© 2012 IBM Corporation 38

Migration and coexistence considerations

� None

IBM Presentation Template Full Version

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 38 of 82

 IBM Presentation Template Full Version

Session objectives: Source and binary portability improvement

� Compatibility Support:
– Text Following #endif
– Function Attribute gnu_inline
– Function Attribute used
– Function Attribute malloc
– Temporary Lifetime Extension
– Binding rvalue to non-const reference
– Intrinsic Complex Types
– Addressable Labels

� Standards Support (C++0x):
– Trailing Return Type

39 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 39 of 82

 IBM Presentation Template Full Version

Overview: Suppresses diagnostic for text following #else and #endif
(1 of 2)

� Problem Statement / Need Addressed
–	 C99 standard does not allow extraneous text following #else and #endif.
–	 XL C/C++ compiler issues a warning on any extraneous text that is found after #else

and #endif.
� Solution

–	 A new suboption of LANGLVL, textafterendif, was implemented to instruct the
compiler to suppress the warning for extraneous text following #else and #endif.

� Benefit / Value
–	 The warning message is only suppressed if the new suboption of LANGLVL is explicitly

specified.
–	 The feature enables users to indicate that they want XL C/C++ compiler to be silent

about this deviation from the standard, increasing portability.

40	 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt	 Page 40 of 82

Overview: Suppresses diagnostic for text following #else and #endif
(2 of 2)

Source mysource.c:
#ifdef MY_MACRO

#else MY_MACRO not defined

#endif MY_MACRO

int main(void) {

return 55;

}

Compilation command:
xlc -qlanglvl=textafterendif mysource.c

Returns with no errors.

41 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 41 of 82

 IBM Presentation Template Full Version

Overview: Function attribute gnu_inline

� Problem Statement / Need Addressed
–	 GCC changed the inline keyword behavior to conform to Standard C99 and some

existing GCC programs still rely on the old behavior of GCC inline. A new function
attribute, gnu_inline, was introduced by GCC for the user to stick to the old GCC
inline behavior.

� Solution
–	 Implemented support for the gnu_inline function attribute to match the GCC inline

behavior.
� Benefit / Value

–	 The feature makes it easier for the users to port their programs to the XL C/C++

compiler.

–	 Note: One key difference in all the various inline behavior is under what conditions a
definition of the function is kept and externalized.

42	 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt	 Page 42 of 82

 IBM Presentation Template Full Version

Usage and invocation

Example:
extern inline __attribute__((gnu_inline)) nom() {…};

static inline __attribute__((gnu_inline)) bnd() {…};

43 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 43 of 82

Overview: Function attribute used

� Problem Statement / Need Addressed
–	 The compiler may remove functions that it does not see used in the program. Ex. The

function is referenced only in inline assembly.
� Solution:

–	 Function attribute, used, (as in GCC) is used to instruct the compiler to emit the code
for the function even if it appears that the function is not referenced.

–	 If attribute used is used in combination with attribute gnu_inline (discard the
definition), we will replicate GCC's behavior where gnu_inline wins, and function
definition is discarded.

� Benefit / Value
–	 Allows keeping functions that would otherwise be removed.
–	 Note: For static functions, a definition will be always emitted, if they are marked with

attribute used.

44	 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt	 Page 44 of 82

 IBM Presentation Template Full Version

Usage and invocation

Example:
__attribute__((used)) void nom() { }
int main() { nom(); }

45 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 45 of 82

Overview: Function attribute malloc

� Problem Statement / Need Addressed
– Certain functions have properties that can be exploited to increase performance, but

there is no way for the compiler to know it. One such property is any non-null pointer
returned cannot alias any other pointer that is valid at the time of the function call.

� Solution
– Function attribute, malloc, is used to instruct the compiler to treat a function as if any

non-NULL pointer it returns cannot alias any other pointer valid when the function
returns.

– The optimization that this attribute enables at the moment will only occur at -O5.
– Note: This function attribute cannot be used if the user cannot guarantee that the pointer

returned by a function points to unique storage. Otherwise the optimization performed
may lead to problems at run time.

� Benefit / Value
– This feature may speed up the execution time of the program since it provides

information helpful for extra optimization.

46 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 46 of 82

 IBM Presentation Template Full Version

Usage and invocation

Example:
void* nom() __attribute__ ((__malloc__)) { ... }

47 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 47 of 82

© 2012 IBM Corporation 48

Interactions and dependencies

� None

IBM Presentation Template Full Version

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 48 of 82

© 2012 IBM Corporation 49

Migration and coexistence considerations

� None

IBM Presentation Template Full Version

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 49 of 82

 IBM Presentation Template Full Version

Overview: Temporary lifetime extension (C++ only)

� Problem Statement / Need Addressed
–	 A user porting an application from another compiler, which may implement late

temporary destruction, wants to extend the lifetime of such temporaries in order to

replicate the previous non-standard compliant behavior.

� Solution
–	 The compiler option -qlanglvl=tempsaslocals is used to extend the lifetime of C++

temporaries beyond that is specified by the C++ Language Standard in 12.2

[class.temporary].

–	 When enabled, the lifetime of temporaries shall be treated as that of local variables
declared in the inner-most containing lexical scope where possible.

–	 In some contexts temporaries will be treated in the standard compliant way, even when
this feature is enabled.

� Benefit / Value
–	 When a program incorrectly depends on resources that may have been previously

released, this feature might help.

50	 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt	 Page 50 of 82

 IBM Presentation Template Full Version

Usage and invocation

#include<cstdio>

struct S {

S() { printf("S::S() ctor at 0x%lx.\n", this); }

S(const S& from) { printf("S::S(const S&) copy ctor at 0x%lx.\n", this); }

~S() { printf("S::~S() dtor at 0x%lx.\n", this); }

} s1;

void nom(S s) { }

int main() {

nom(s1);

printf("hello world.\n");

return 0;

}

� With -qlanglvl=tempsaslocals, the temporary 's' created for function argument is destroyed
after the lexical block of 'main'. By default, 's' is destroyed upon returning from ‘nom'.

51	 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt	 Page 51 of 82

© 2012 IBM Corporation 52

Interactions and dependencies

� None

IBM Presentation Template Full Version

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 52 of 82

© 2012 IBM Corporation 53

Migration and coexistence considerations

� None

IBM Presentation Template Full Version

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 53 of 82

 IBM Presentation Template Full Version

Overview: Binding rvalue to non-const reference (C++ only)

� Problem Statement / Need Addressed
– Non-compliant compilers may allow a non-const reference to be bound to an rvalue.

� Solution
–	 Allow a non-const reference to bind to an rvalue only in the declaration of a function

parameter or function return type where an initializer is not required and only for user-
defined types.

–	 This feature also permits an rvalue to bind to a const-volatile reference and it only
applies to top-level CV qualifiers on reference types.

� Benefit / Value
–	 The option -qlanglvl=compatRValueBinding might accept a Non-compliant program.
–	 The option -qinfo=por will enable an informational message indicating that this binding

has taken place despite being illegal.

54	 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt	 Page 54 of 82

 IBM Presentation Template Full Version

Usage and invocation

struct hey{};

void func(hey& x){}

int main(void)

{

func(hey());

return 0;

}

� By default, this will be rejected with CCN5295 (S) A parameter of type "hey &" cannot be
initialized with an rvalue of type "hey".

� With -qlanglvl=compatRValueBinding, it will compile clean.

55	 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt	 Page 55 of 82

© 2012 IBM Corporation 56

Interactions and dependencies

� None

IBM Presentation Template Full Version

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 56 of 82

© 2012 IBM Corporation 57

Migration and coexistence considerations

� None

IBM Presentation Template Full Version

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 57 of 82

 IBM Presentation Template Full Version

Overview: Intrinsic complex types (C++ only)

� Problem Statement / Need Addressed
– Intrinsic complex types were only implemented by C compiler and C++ was lagging this

functionality.
� Solution

– The complex types, float _Complex, double _Complex, and long double _Complex are
provided by C++ compiler as built-in types, according to ISO/IEC 9899:1999 Standard.

� Benefit / Value
–	 C programs with built-in complex types can now be compiled with C++.
–	 Such programs do not need to convert intrinsic complex types to Complex class

template implementation in order to compile with C++.

58	 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt	 Page 58 of 82

 IBM Presentation Template Full Version

Usage and invocation

� The feature is normally enabled with -qlanglvl=c99complex.
� The complex types and both unary operators __real__ and __imag__ can be enabled with ­

qlanglvl=gnu_complex.
#include <stdio.h>

#include <complex.h>

int main() {

float _Complex a, b;

a= 2.0f + 3.0f * _Complex_I;

b = 4.0f - 2.0f * _Complex_I;

a = a + b;

printf("a = %f + %f * I . \n", __real__(a), __imag__(a));

}

� Compiling with -qlanglvl=gnu_complex produces the following:

a = 6.000000 + 1.000000 * I .

59	 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt	 Page 59 of 82

© 2012 IBM Corporation 60

Interactions and dependencies

� None

IBM Presentation Template Full Version

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 60 of 82

© 2012 IBM Corporation 61

Migration and coexistence considerations

� None

IBM Presentation Template Full Version

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 61 of 82

 IBM Presentation Template Full Version

Overview: Addressable labels

� Problem Statement / Need Addressed
–	 Source code ported from other platforms or compilers may not work on the z/OS XL

C/C++ compiler if it uses addressable labels.
� Solution

–	 Add support for the Labels-as-values and Computed-goto features that are implemented
by other compilers (Ex. GCC).

� Benefit / Value
– Makes porting code over to the z/OS XL C/C++ compiler easier.

62	 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt	 Page 62 of 82

 IBM Presentation Template Full Version

Usage and invocation

� mysource.c:
int main(void) {

void* la = &&label1;

goto *la;

return 66;

label1:

return 55;

}

� Compile and run:
> xlc mysource.c

> ./a.out

Returns with code 55.

63 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 63 of 82

© 2012 IBM Corporation 64

Interactions and dependencies

� None

IBM Presentation Template Full Version

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 64 of 82

© 2012 IBM Corporation 65

Migration and coexistence considerations

� None

IBM Presentation Template Full Version

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 65 of 82

 IBM Presentation Template Full Version

Overview: C++0x – Trailing return type

� Problem Statement / Need Addressed
–	 Given an expression such as a*b, where a and b are arbitrary types, we cannot say

"type of a*b".
� Solution

–	 C++0x Trailing Return Type in conjunction with C++0x Decltype removes this limitation.
� Benefit / Value

–	 Primary motivation behind Trailing Return Type feature is the ability to declare function
templates whose return type depends on the types of the template arguments.

66	 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt	 Page 66 of 82

 IBM Presentation Template Full Version

Usage and invocation

template <class A, class B>

decltype(*(A*)(0)**(B*)(0)) multiply (A a, B b)

{

return a*b;

}

� This compiles with -qlanglvl=decltype available in R12, but it introduces code clutter and is
error prone.

template <class A, class B>

auto multiply(A a, B b)->decltype(a*b)

{

return a*b;

}

� Must more elegant syntax which removes code clutter can now be compiled with ­
qlanglvl=autotypededuction:decltype or with just -qlanglvl=extended0x.

67	 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt	 Page 67 of 82

© 2012 IBM Corporation 68

Interactions and dependencies

� None

IBM Presentation Template Full Version

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 68 of 82

© 2012 IBM Corporation 69

Migration and coexistence considerations

� None

IBM Presentation Template Full Version

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 69 of 82

 IBM Presentation Template Full Version

Session objectives: Debugging support improvement

� New Debugging APIs
� Debugging Inlined Procedures

70 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 70 of 82

 IBM Presentation Template Full Version

Overview: New debugging APIs

� Problem Statement / Need Addressed
–	 Debuggers need support to find function entry points.

� Solution
–	 CDA provides APIs for DBX to get the entry point of functions as well as the first

statement address of each function.
� Benefit / Value

–	 The newly added APIs can help the debugger developers to access debug information
in the .mdbg and .dbg files more directly.

71	 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt	 Page 71 of 82

 IBM Presentation Template Full Version

Usage and invocation

� ddpi_function_get_func_entrypt

The ddpi_function_get_func_entrypt operation returns the entry point of a function, i.e. its low pc.
int ddpi_function_get_func_entrypt(

Ddpi_Function function,

Dwarf_Addr* ret_func_entrypt,

Ddpi_Error* error);

� ddpi_function_get_first_stmt_addr

The ddpi_function_get_first_stmt_addr operation returns the address of the first executable statement of a
function, i.e. the machine instruction following the function prolog.

int ddpi_function_get_first_stmt_addr(

Ddpi_Function function,

Dwarf_Addr* ret_first_stmt_addr,

Ddpi_Error* error);

72 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 72 of 82

© 2012 IBM Corporation 73

Interactions and dependencies

� None

IBM Presentation Template Full Version

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 73 of 82

© 2012 IBM Corporation 74

Migration and coexistence considerations

� None

IBM Presentation Template Full Version

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 74 of 82

 IBM Presentation Template Full Version

Overview: Debugging inlined procedures

� Problem Statement / Need Addressed
–	 Cannot debug inlined procedures. For example, although we can set an entry

breakpoint for a procedure, the breakpoint may not be hit if the procedure is inlined. This
is because that the debugger can only set breakpoint at the original procedure, not the
inline instances.

� Solution
– We need to provide debug information for each inline instance of a procedure.

� Benefit / Value
–	 With the newly generated debug information, the debugger is able to set entry

breakpoints at all inline instances so that the user will not miss the breakpoint.

75	 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt	 Page 75 of 82

Usage and invocation

� The inline debug information will be generated with DEBUG(FORMAT(DWARF)) + OPT. For
example,

xlC -qDEBUG -O2 -o a a.cpp

This generates debug information for both the original procedure and the inline

instance as follows:

<1>< 308>	 DW_TAG_subprogram

DW_AT_type <146>

DW_AT_name nom

...

<2>< 379>	 DW_TAG_inlined_subroutine

DW_AT_abstract_origin <308>

DW_AT_low_pc 0x124

76	 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt	 Page 76 of 82

© 2012 IBM Corporation 77

Interactions and dependencies

� None

IBM Presentation Template Full Version

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 77 of 82

© 2012 IBM Corporation 78

Migration and coexistence considerations

� None

IBM Presentation Template Full Version

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 78 of 82

 IBM Presentation Template Full Version

Installation

� Jobs to be run for CBPDO installation:
– No changes

� PARMLIB statements or members:
– No changes

79 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 79 of 82

 IBM Presentation Template Full Version

Session summary

� Performance Improvement
– Improved Metal C optimization
– New hardware built-ins
– Multiply and Add for hexadecimal types

� Feedback Improvement
– Informational messages as default in USS
– Metal C: Function property information

� Usability Improvement
– Metal C: DSA Support, Argument Parsing
– C++: Template depth

� Source and Binary Portability Improvement
– Compatibility Support: Text following #endif, Function attributes (gnu_inline, used,
malloc), Temporary lifetimes, Rvalue bindings, Intrinsic complex types, Addressable
labels

– Standards Support (C++0x): Trailing Return Type
� Debugging Support Improvement

– New Debugging APIs
– Debugging Inlined Procedures

80 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 80 of 82

 IBM Presentation Template Full Version

Appendix - References

� z/OS V1R13 Metal C Programming Guide and Reference (SA23-2225-04)

� z/OS V1R13 XL C/C++ User’s Guide (SC09-4767-10)

� z/OS V1R13 XL C/C++ Programming Guide (SC09-4765-12)

� z/OS V1R13 XL C/C++ Language Reference (SC09-4815-11)

� z/OS V1R13 Standard C++ Library Reference (SC09-4949-05)

� z/OS V1R13 Common Debug Architecture User's Guide (SC09-7653-02)

� z/OS V1R13 Common Debug Architecture Library Reference (SC09-7654-04)

� z/OS V1R13 DWARF/ELF Extension Library Reference (SC09-7655-04)

� z/OS V1R13 XL C/C++ Messages (GC09-4819-09)

� z/OS V1R13 XL C/C++ Compiler and Run-Time Migration Guide for the Application
Programmer (GC09-4913-09)

� z/OS Internet Library: http://www.ibm.com/systems/z/os/zos/bkserv/

� C/C++ Café: http://www.ibm.com/software/rational/cafe/community/ccpp
81	 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt	 Page 81 of 82

Trademarks, disclaimer, and copyright information

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corp., registered in many jurisdictions
worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of other IBM trademarks is available on the
web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. THE INFORMATION
CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. WHILE EFFORTS WERE MADE TO VERIFY
THE COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT PRODUCT PLANS AND
STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES
ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION. NOTHING
CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY AGREEMENT
OR LICENSE GOVERNING THE USE OF IBM PRODUCTS OR SOFTWARE.

© Copyright International Business Machines Corporation 2012. All rights reserved.

82 © 2012 IBM Corporation

zOS_V1R13_XL_CC-V1R13-Enhancements.ppt Page 82 of 82

