

z/OS V1R13

JES2: Batch modernization
Session objectives
� In this session we will introduce JES Batch Modernization changes

– Introduce instream data set support in JCL PROCs and INCLUDEs
– Introduce JOBRC support to set a jobs return code
– Introduce support to evict jobs on a step boundary
– Introduce Spin Any Spin support

Overview – JCL instream data sets
� Support added to allow instream data in JCL PROCs and INCLUDE sections

– Works like instream data in normal JCL stream
– Does not support generating //SYSIN DD *

� Support is based on where the job converts (z/OS 1.13)
– Can run on downlevel system

� New SYSIN data sets are included in extended status DSLIST function
� New SYSIN data sets are NOT included in SPOOL Data Set Browse of JCLIN

– Were not part of original JCL submitted
� New SYSIN are NOT transmitted to other nodes or offloaded

– Were not part of original JCL submitted
� Works for batch jobs as well as started tasks

Usage and invocation – JCL instream data sets
� Embedding instream data in a JES2 procedure
//HELLO PROC
//STEPA EXEC PGM=IEBGENER
//SYSIN DD DUMMY
//SYSPRINT DD SYSOUT=A
//SYSUT2 DD SYSOUT=A
//SYSUT1 DD DATA
HELLO WORLD
/*
// PEND

Overview – Job completion code
� Problem Statement / Need Addressed

– Highest completion code of a job may not be the most meaningful
� Solution

– New JCL keyword added to control reported completion code
– Can select last step, specific step, or highest step completion code

� Benefit / Value
– Can better determine success of a job without having to look at the job output

� New JOBRC keyword on JOB card
– Possible values for JOBRC keyword

• MAXRC – Default, job return code is the max of any step
• LASTRC – Job return code is the return code of the last step
• (STEP,stepname.procstepname) – Job return code is indicated step if it executes, otherwise same as MAXRC

� $T JOBCLASS(x) was enhanced with a new JOBRC operand
– JOBRC=MAXRC|LASTRC
� JOBRC keyword on job card takes precedence

� Extended status STTRMXRC and STVBMXRC (traditional) fields
– Two new conditions on how a job can end

• Converter error – The converter returned a bad return code and failed the job
• System failure – The job was executing at the time of a system failure and was not re-queued for execution

– Old maximum return code in verbose job STVBMXRC field
� $DJQ,CC= value
� ENF 70 field ENF70_MAXCC
� Uses new step end SSI to extract the step return code

– New JES2 exit 58 called in step end SSI
– Can be used to influence the step return code

� Updated HASP165 message text
– Jobname ENDED AT node reason
– Examples of reason:

• MAXCC=code - JOBRC was not specified
– Code is now always 4 digits (MAXCC=0000)

• JOBRC=code - JOBRC was specified and affected the return code
• MAXRC=code - JOBRC was specified but MAXRC was returned

• ABENDED Sxxx,Uyyy
• ABENDED abend_code, JOBRC=code

– JOBRC=(STEP,stepname), step executed, but later step ABENDed

Usage and invocation – Job completion code
� JOBRC=LASTRC

– This specification indicates to use the return code of the last executed step as the completion code for the job.
� JOBRC=(STEP,C.HLASM)

– Use the return code for the C step in the HLASM procstepname as the completion code for the job.

Overview – Evict job on step boundary
� Problem Statement / Need Addressed

– Need an orderly way to get jobs out of execution
� Solution

– Implemented a new operand on the $E J command that forces a job out of execution when the current step ends
– Job resumes execution from next step

� Benefit / Value
– More orderly shutdown of system

Usage and invocation – Evict job on step boundary
� New JES2 command option

– $EJxxxx,STEP[,HOLD]
– Deals with cross member requests

� Forces job out of execution when current step ends
� Job requeued for execution (and held if requested)
� Utilizes existing restart logic (continue restart) to perform function

– Requires JES journal to be active (JOBCLASS(x) JOURNAL=YES)
� Uses new step end SSI to communicate with initiator to requeue job

– New JES2 exit 58 called in step end SSI
– Can be used to inhibit or trigger function

Overview – Spin any spin
� Problem Statement / Need Addressed

– Existing JESLOG spin only deals with job logs and system message data sets
– Other spin data sets may exist that can’ t be spun

� Solution
– JES2 will provide the ability to ‘spin’ any spin SPOOL datasets

� Benefit / Value
– Can free SPOOL space associated with log data sets created by long running jobs

� JESLOG function supports spinning a job’s JESMSGLG and JESYSMSG
� Based on command, size, or time (interval or absolute time)
� Similar spin processing for any spin data set
� The SPIN= DD JCL is enhanced to support operands similar to JESLOG=
� $T JOB was enhanced with a new DDNAME= operand when specified with the SPIN operand.

Usage and invocation – Spin any spin
� An additional operand on SPIN=(UNALLOC) specification in JCL

– Similar in function to JESLOG= keyword on job card
• SPIN=(UNALLOC,value) where value is one of:
• ‘hh:mm’ – Spin data set at specified time
• ‘+hh:mm’ – Spin data set at interval specified
• nnn [K|M] – Spin every nnn records
• NOCMD – Cannot spin data set by command (current processing)
• CMDONLY – Spin only when a command is issued (default)

� Also supported in dynamic allocation and TSO ALLOC
� $T JQ(xxx),SPIN,DDNAME=ddname – command can spin data set on demand

– If you omit DDNAME= all active spin data sets will be spun

Usage and invocation – SSI 82 updates
� Node information SSI – sub-function of JES properties SSI (SSI 82)

– Enhanced to provide information about NJE nodes from all active members of JES2 MAS
– Node information is available from JES2 MAS members starting from z/OS 1.11 (requires coexistence APAR on

z/OS 1.11 and z/OS1.12)
� New function is exploited by SDSF
� For more information, see publication MVS Using the Subsystem Interface

– The node information	 sub-function of the JES properties SSI (mapping macro is IAZJPNJN) was enhanced to
support requesting information from other members in MAS.

– This information is available on z/OS 1.13 from any z/OS 1.11 MAS member and later.	 The information is provided
via node data gatherer code that is common for all releases starting from z/OS 1.11. To support requests from z/OS
1.13, you must apply the node data gatherer APAR on your z/OS 1.11 or 1.12 system.

– This new function is exploited by the SDSF. There are no external changes, however new function simplifies SDSF
installation and configuration in a multi-system environment.

Migration and coexistence considerations
� A down level member will not be allowed to join the MAS and a HASP720 message will be issued in the following

situations:
– A SPOOL migration is active or pending
– An Extend SPOOL is active or pending
– A SPOOL volume has STATUS=MAPPED
– A SPOOL prefix has been defined using generics

� To request an Extend SPOOL data set or SPOOL Migration, all members of the MAS must be at JES2 z/OS 1.13
� To request a SPOOL Migration the MAS must be running in z11 checkpoint mode
� From JES2 z/OS 1.9 or 1.10

– Can all member warm to z/OS 1.13
– No coexistence support
– Fall back implications

• Some new data structures created by z/OS 1.13 JES2 may result in problems in z/OS 1.10 and prior
• Prior to z/OS 1.10 may not be able to use SPOOL volumes with non-standard data set names

� From JES2 z/OS 1.11 or z/OS 1.12
– COMPAT APAR OA31806 is needed on a z/OS 1.11, or z/OS 1.12 member to coexist in a MAS with z/OS 1.13
� APAR also highly recommended for fall back as well

• Some new data structures created by z/OS 1.13 JES2 may result in problems if OA31806 is not installed.
� Applications that directly access SPOOL data without using published SSI interfaces will encounter severe problems

accessing data for migrating/migrated volumes.
� If you do I/O to SPOOL directly you will break

– I/Os need to be serialized to the data migrator
– Need to notify data migrator of intent to do I/O
– Need to know which device (source or target) to direct I/O to

Session summary
� All customers have some JCL needed to run their business.

– Batch Modernization enhancements will help simplify the creation of that JCL library. It is expected that application
programmers as well as system programmers will benefit from these changes.

Appendix - References
� Publications

– z/OS V1R13.0 JES Application Programming – SA23-2240-03
– z/OS V1R13.0 JES2 Commands – SA22-7526-12
– z/OS V1R13.0 JES2 Initialization and Tuning Guide – SA22-7532-11
– z/OS V1R13.0 JES2 Initialization and Tuning Reference – SA22-7533-11
– z/OS V1R13.0 JES2 Installation Exits – SA22-7534-13
– z/OS V1R13.0 JES2 Macros – SA22-7536-11
– z/OS V1R13.0 JES2 Messages – SA22-7537-11
– z/OS V1R13.0 MVS Using the Subsystem Interface - SA22-7642-11

