
Business Transaction Broker
for z/OS IBM

Application Programming Guide
Version 1 Release 0

 SC27-1583-01

Business Transaction Broker
for z/OS IBM

Application Programming Guide
Version 1 Release 0

 SC27-1583-01

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices”
on page xi.

Second Edition (September 2002)

This edition applies to Version 1, Release 0 of Business Transaction Broker for z/OS (product number 5799-GPR) and to all
subsequent versions, releases, and modifications until otherwise indicated in new editions. Make sure you are using the correct
edition for the level of the product.

Download publications via internet at the following address:

http://www.ibm.com/software/ad/imb

Publications are not stocked at the address below.

Please address your comments to:

IBM Global Services
Sortemosevej 21
DK-3450 Alleroed
Denmark

� + (45) 45 23 30 00
Fax + (45) 45 23 68 01
E-mail SPOC@dk.ibm.com

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1992, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 Contents

Figures . vii

Tables . ix

Notices . xi
Trademarks and service marks . xi

Preface . xiii
About this book . xiii
Who should read this book . xiii
Conventions and terminology used in this book xiii
Note about version and release numbering . xiv
Bibliography . xv
Books from related libraries . xv
How to send your comments . xvi

Summary of changes . xvii

Part 1. The MailRoom . 1

Chapter 1. MailRoom infrastructure . 5
Document formats . 5
Understanding the M-record . 8
SAP R/3 IDOC support . 12
XML document support . 15
Document handling in CICS . 21
Linking envelopes . 24

Chapter 2. MailRoom exits . 29
Source exits . 31
Document exits . 42
MailRoom Service and Subscription attributes 48
SAP Naming exits . 55
Routing exits . 56
MailRoom supplied source exits . 58
MailRoom supplied document exits . 60

Chapter 3. MailRoom CICS APIs . 71
CICS MailRoom write API—KBAXWRP . 72
CICS MailRoom read API—KBAXREP . 77
CICS MailRoom acknowledgment API—KBAXACP 84
CICS MailRoom Document Browser API—KBAXDBP 87

Chapter 4. MailRoom Batch utility programs 91
Sample JCL for batch write utility—KBASBWX 92
Sample JCL for batch read utility—KBADBRX 94
Sample JCL for batch write via MQSeries utility—KBASMPX 96
Sample JCL for batch MQSeries read utility—KBADMGX 100

 Copyright IBM Corp. 1992, 2002 iii

Chapter 5. MailRoom MQSeries support 103
Using MQSeries MQPUT to send documents to MailRoom 104
Using MQSeries MQGET to receive documents from MailRoom 106
Sending a Business Acknowledgment to MailRoom using MQSeries 107
Data conversion and MQSeries . 108
MQSeries definitions to access the MailRoom 110
MQSeries definitions to receive technical acknowledgement 112

Chapter 6. MailRoom TIE/IMS support . 115
Using TIE-Write to send documents to MailRoom 116
Using TIE-Read to receive documents from MailRoom 117
Sending a Business Acknowledgment to MailRoom using TIE 118
TIE-IMS Scenario using ISClink . 120
TIE-MQ Scenario . 121
TIE or TIE-MQ? . 123
Understanding error situations . 124

Chapter 7. MailRoom TCP/IP programs . 127
TCP/IP MailRoom write/send program—F2T 128
TCP/IP MailRoom read/receive program—T2F 129
Sending a Business Acknowledgment to MailRoom using TCP/IP 130
AIX MailRoom scanner program—KBAUSCAN 131
OS/2 MailRoom write/send program—FILE2TCP 132
OS/2 MailRoom read/receive program—TCP2FILE 133

Chapter 8. MailRoom APPC programs . 135
APPC MailRoom write/send program—F2A 136
APPC MailRoom read/receive program—A2F 137
Sending a Business Acknowledgment to MailRoom using APPC 138

Part 2. Gateway client/server support . 139

Chapter 9. Client/server infrastructure . 141
Overview of Gateway support . 141
Access to DB2 . 142
Security . 142
Standard BTB Profiling query support . 142
Standard send structure . 143
Standard receive structure . 143
BPI Navigator error messages . 143
User profile BPI . 144
Access list BPI . 145
Optional BPI Navigator logging facility . 147
Limit the availability of a BPI . 148

Chapter 10. Client programming guidelines 149
Introduction . 149
Access using CICS DPL . 149
Access using native LU6.2 . 149
Access using CIS-CSCS . 151
Access using TCP/IP . 152

Chapter 11. Midlayer server programming guidelines 153

iv BTB Application Programming Guide

Standard BPI input and output structures . 153
Standard error message server . 154
Super BPI exits . 155
BPI CSP modules . 155

Chapter 12. Remote server programming guidelines 157
CICS DPL . 157
Link to application server via the generic BEC-BPI 157

Part 3. NPT application design and development . 159

Chapter 13. NPT/3270 applications under BTB 161
CICS and CSP concepts . 161
Multi Language Support implementation . 162
Transaction change . 163
Internal navigation . 163

Chapter 14. Business Transaction Broker CSP application modules . . 167
Stub applications . 170
List applications . 170
Browse applications . 173
Detail applications . 175
Referential Integrity . 180

Chapter 15. Back-end programming . 183
Calling BEC . 183
CICS to CICS programming guidelines . 188
CICS to IMS programming guidelines . 190

Part 4. Common programming APIs . 195

Chapter 16. Generic BTB programming APIs 197
Sundry texts, prompt and validation . 197
System Errorlog . 202
Codepage translation services . 213
Validating and calculating dates—KBHDATE 218
Mail and Fax API—KBHFTXP . 222
Send File to user panel—KBHSFAP . 229
Internet e-mail API—KBHSMTP . 232
Generate unique TS queue names—KBHUQNP 239
Allocate a VSAM data set from a pool—KBHUVSP 241
XML Text Scanner, primitive XML Parser—KBHXMLM 243

Chapter 17. Programming APIs and structures for CSP 3270 applications 251
BTB online help system . 251
Application data in KAAWCOM . 258
Common work area—KAAWCOM . 260
F-keys string builder—KBHPFKP . 263
Extended scope API—KBHECAP . 265
String handler—KBHSTRP . 269

Appendix A. DB2 tables used by BTB . 277

 Contents v

Understanding table relationships . 277
Table descriptions . 281

Appendix B. Recommended naming standards for CSP objects 297
Examples . 297

Index . 299

vi BTB Application Programming Guide

 Figures

1. BTB MailRoom component overview . 2
2. Structure of extended M-record . 9
3. Structure of simple M-record . 11
4. SAP mapping table . 14
5. Multiple TS queues . 22
6. MailRoom List of Events . 25
7. Creating events that link to another envelope 26
8. Setting up the codepage conversion exit parameters 61
9. Setting up the DataInterchange exit parameters 61

10. Setting up the MQSI exit parameters . 63
11. Setting up the Super exit parameters . 64
12. Setting up the Mercator exit parameters 66
13. MailRoom control information for OTMA exit 69
14. BTB MQSeries message format(s) . 105
15. BTB MQSeries message format of Business Acknowledgment 107
16. SAP-MQ . 108
17. MailRoom TCP/IP document format of Business Acknowledgment . . . 130
18. MailRoom APPC document format of Business Acknowledgment . . . 138
19. Client support . 141
20. Technical messages . 144
21. Access using CIS-CSCS . 151
22. Structure list for main application . 164
23. Main process of main application (Stub application) 165
24. Main process structure in called application 166
25. Persons panel . 167
26. Insert new Person panel . 168
27. Adding a new Person . 168
28. Application flow . 170
29. List panel (List) . 172
30. List panel (Prompt) . 172
31. List panel . 176
32. Detail panel (Insert) . 177
33. Detail panel (Action) . 177
34. Detail panel (Action) . 178
35. Detail panel (Action) . 178
36. Detail panel (Action) . 179
37. Parent-child referential relation . 180
38. Front-End/back-end communication through BEC 183
39. CSP working storage KBBECWA . 184
40. CSP working storage KBBECW_SEND 185
41. CSP working storage KBBECW_RECV 186
42. Call CSP/BEC call API . 187
43. CICS to CICS. 188
44. CICS to IMS. 190
45. IMS input message area . 190
46. P3 area . 191
47. Main structure of main program on IMS site. 191
48. IMS reply message area . 192
49. P4 area . 192
50. Sundry Prompt list . 197

 Copyright IBM Corp. 1992, 2002 vii

51. Sundry Text Prompt List . 199
52. Sundry, list valid values . 200
53. Sundry, verify a value . 201
54. Sundry between character search . 202
55. Searching in System Errorlog Browse application 210
56. Detailed information in the System Errorlog Browse application. 211
57. Details of System Errorlog - Help panel 211
58. Common DB2 Resource Types - Help panel 212
59. Common DB2 Reason Codes - Help panel 212
60. Mail and Fax API, protocol modules and routing options. 222
61. Send file panel . 231
62. Panel Help . 253
63. Mixed Field and Panel Help . 253
64. Other Help . 254
65. Example of use of the Scope facility. 268
66. BTB DB2 tables for various registrations. 278
67. BTB tables for Trading Partners and persons. 279
68. BTB DB2 tables used for the MailRoom. 279
69. BTB DB2 tables used for back-end communication. 279
70. BTB DB2 tables used to control MailRoom TIE-MQ in remote systems. 280

viii BTB Application Programming Guide

 Tables

1. Document formats supported by MailRoom 6
2. SAP Control Record priming . 14
3. SAP Control Record Version 4 priming . 15
4. XML document support . 16
5. XML conversion options . 21
6. KBHLTSQ . 23
7. Source exit availability table . 31
8. Relation between type of source and Sender Identity 32
9. Service definition table . 48

10. Attributes with electronic addresses . 53
11. Type dependent overlay for electronic addresses 54
12. CICS and CSP execution mode terminology 161
13. System Errorlog . 204
14. SBCS codepage translation tables . 214
15. MBCS codepage translation tables . 216
16. Mail addressing modes . 226
17. CSP naming standard . 297

 Copyright IBM Corp. 1992, 2002 ix

x BTB Application Programming Guide

 Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Subject to
IBM's valid intellectual property or other legally protectable rights, any functionally
equivalent product, program, or service may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction with
other products, except those expressly designated by IBM, are the responsibility of
the user.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Trademarks and service marks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

ACF/VTAM MQSeries
AIX MVS/ESA
CICS OS/2
DB2 OS/390
ExpEDIte QMF
IBM RACF
IBM Global Network VTAM
IMS WebSphere

The following terms, used in this publication, are trademarks of other companies:

Mercator Mercator Software, Inc.
SAP SAP AG

Windows and Windows NT are trademarks of Microsoft Corporation in the United
States and/or other countries.

UNIX is a registered trademark in the United States and/or other countries licensed
exclusively through X/Open Company Limited.

 Copyright IBM Corp. 1992, 2002 xi

xii BTB Application Programming Guide

 Preface

About this book
This book is intended to help you understand how to create and implement
applications in Business Transaction Broker for z/OS (BTB).

IBM Business Transaction Broker for z/OS helps address brokering requirements
and helps enable enterprises to implement brokering solutions with confidence.
While IBM Business Transaction Broker for z/OS is designed to facilitate
Application-to-Application (A2A) brokering for interchange between internal
applications within a customer's enterprise, the dominant strength of this product is
revealed and appreciated when implementing Business-to-Business (B2B)
brokering for the external interchange outside of the customer's enterprises.

To better emphasize its B2B brokering capabilities, the IBM program product
formerly known as Intelligent Message Broker for z/OS has now been renamed
Business Transaction Broker for z/OS (BTB).

This book is split into four parts:

� Part 1, “The MailRoom” on page 1 describes asynchronous support provided
by the MailRoom.

� Part 2, “Gateway client/server support” on page 139 describes the
synchronous client/server support and explains how this can be used in your
applications.

� Part 3, “NPT application design and development” on page 159 describes NPT
application design and development under Business Transaction Broker.

� Part 4, “Common programming APIs” on page 195 describes the application
programming interface (API).

Who should read this book
This book is for application designers and developers who need to implement
applications using the Business Transaction Broker infrastructure. This book is also
intended for anyone requiring a detailed knowledge of the design principles and
applications services provided by Business Transaction Broker.

Conventions and terminology used in this book
In this book, Business Transaction Broker for z/OS is referred to as "Business
Transaction Broker" or simply "BTB" where the context makes the meaning clear.

CICS refers CICS Transaction Server for OS/390.

RACF means the Resource Access Control Facility or any other external security
manager that provides equivalent function.

 Copyright IBM Corp. 1992, 2002 xiii

Note about version and release numbering
Where the documentation for Business Transaction Broker - in particular the
Installation Guide - refers to the actual contents of the product, e.g. dataset
names, it will refer to Version 4, Release 5. This is because this product has a
history of being distributed internally within IBM as Intelligent Message Broker (IMB)
for a number of years. Within IBM the product has matured to a Version/Release
level of 4.5.

xiv BTB Application Programming Guide

 Bibliography
Business Transaction Broker for z/OS books

Business Transaction Broker for z/OS General Information GC27-1580
Business Transaction Broker for z/OS Facilities Guide SC27-1584
Business Transaction Broker for z/OS Installation Guide GC27-1581
Business Transaction Broker for z/OS Application Programming Guide SC27-1583
Business Transaction Broker for z/OS System Administration Guide SC27-1582
Business Transaction Broker for z/OS User Administration Guide SC27-1585

Futher copies of the Business Transaction Broker for z/OS publications can be
downloaded from the product web site:

http://www.ibm.com/software/ad/imb

Books from related libraries
CICS TS books

CICS Transaction Server for OS/390 Release Guide GC34-5352
CICS Transaction Server for OS/390 Installation Guide GC33-1681
CICS Transaction Server for OS/390 System Definition Guide SC33-1682
CICS Transaction Server for OS/390 Resource Definition Guide SC33-1684
CICS Transaction Server for OS/390 Operations and Utilities Guide SC33-1685
CICS Transaction Server for OS/390 System Programming Reference SC33-1689
CICS Transaction Server for OS/390 Messages and Codes GC33-1694
CICS Transaction Server for OS/390 Intercommunication Guide SC33-1695
CICS Transaction Server for OS/390 Performance Guide SC33-1699

DataInterchange for MVS books

DataInterchange Messages and Codes SB34-2000
DataInterchange Programmer's Reference SB34-2001
DataInterchange Administrator's Guide SB34-2002

DB2 books

DB2 for OS/390 Administration Guide SC26-8957
DB2 for OS/390 Application Programming and SQL Guide SC26-8958
DB2 for OS/390 Command Reference SC26-8960
DB2 for OS/390 Utility Guide and Reference SC26-8967

Expedite/CICS books

Customizing and Developing Applications with Expedite/CICS GC34-3304

IBM EDI Services Information Exchange books

IBM EDI Services Information Exchange Interface Programming Guide GC34-2222

MQSeries books

MQSeries Planning Guide GC33-1349
MQSeries for OS/390 System Management Guide SC34-5374

 Preface xv

MVS books

MVS Planning:Global Resource Serialization GC28-1759

RACF books

OS/390 Security Server (RACF) Administrator's Guide SC28-1915

Automated Operations Control/MVS books

AOC/MVS Planning and Installation GC28-1082
 AOC/MVS Operations GC28-1084

ACF/VTAM books

Advanced Communications Function for VTAM Installation
and Resource Definition SC23-0111

How to send your comments
Your feedback is important in helping to provide the most accurate and highest
quality information. If you have any comments about this book or any other BTB
documentation:

� Send your comments by email to SPOC@dk.ibm.com. Be sure to include the
name of the book, the part number of the book, the version of BTB, and, if
applicable, the specific location of the text you are commenting on (for
example, a page number or table number).

� Mail or fax your comments to the address at the front of this book.

xvi BTB Application Programming Guide

Summary of changes

The major enhancements to this release of Business Transaction Broker are:

Source Exit BTB now supports source exits, which makes it easier to
implement support for new document types. One new area in
this release is XML document routing support. The source
scenario will handle incoming documents like this:

� A business document in its original format is passed to
BTB. MailRoom will perform a lookup to determine if a
source exit should be invoked.

� For MQSeries based scenarios there is an Unpack Exit
that should split the received MQ buffer into records.

� For all scenarios (except BATCH and TIE-IMS) there is a
Source exit that can build BTB routing information (the
M-record) if it is not available in the received document.

� The received document together with the generated
M-record is stored in the transport table. The remaining
processing is unchanged.

� The MailRoom source exit table holds registrations of
exits used by source scenarios. Source exits are either
global for a scenario, or specific for a single sender.

� MailRoom supplied source exits will, as default, be used
to build the M-record for the DI-EDI, EXP-FILE, SAP and
SAP-MQ source scenario. A source exit with XML
support is available (see below). Other user written
source exits can be written to extend the format support
in MailRoom.

XML support BTB now supports receiving and dynamic routing of XML
documents. A XML source exit is available to extract XML
elements for building BTB routing information (the M-record).
A new panel is available to define which XML elements or
attributes should be extracted for each XML document type.
A new kernel / destination exit can automatically convert a
received XML document to a basic flat file format.

MQSI V1.1 (MVS) reformatter exit
BTB now has an MQSI reformatter exit. In the first version it
can format a document to a stream format (records
separated with character delimitors), put it on a queue, wait
for MQSI to reformat it, get the reformatted stream and finally
return it to MailRoom as an updated version of the document.

MailRoom Continuous Receive panel.
A new online function makes it easy to check the status of
DataInterchange and Expedite/CICS continuous receives. DI
profiles can be stopped and started. It is possible to define a
number of profiles as mandatory. A function key can be used
to check if the mandatory profiles are active.

 Copyright IBM Corp. 1992, 2002 xvii

Archiving depending on status
Every installation must archive data from the MailRoom DB2
tables in order to remove old data. It is now possible to
define the status codes that are applicable for archiving. It is
thereby possible to reflect the day to day operational method
in the archiving strategy. E.g. FAILed documents are
considered open problems and stay in MailRoom until fixed
(status changes to FINISH or manually CANCELed). Another
principle could be that FAILed documents should be
automatically archived.

Schedule process change
A change has been made in the Output Schedule in
MailRoom to control the order of sending scheduled
envelopes for the same destination. Previously the sending
order was in envelope key sequence. Now scheduled
envelopes to the same destination are grouped in a single
destination envelope and the sending order has been
changed to the received order.

Possibility to Mail Text segments
In error situations, when processing EDI like EDIFACT and
ANSI X12, a copy of the EDI document is needed for
documentation. A new function has been implemented to
mail the DataInterchange reports and segments to a specific
user Id and node or e-mail address.

Reflow of saved DI audit reports
The text in the DataInterchange audit reports is now
automatically reflowed to the width of the panel. It is no
longer necessary to scroll right and left to read the audit
report.

Segmentation of saved EDIFACT envelope
The saved EDIFACT envelope file is now split in segments to
improve the readability.

Handling of a group of envelopes/requests
A new facility is made available to handle more than one
envelope using a single group command. Some of the online
functions (cancel, fail, finish, resend, restart, sysack) are
made available as a group command for multiple envelopes.

Automatic resending of MAIL destination to Internet
We now put documents on the MailRoom XMIT queue if the
SMTP server is temporary unavailable.

New MQSeries Batch Read Utility
In addition to the MQSeries Batch Write Utility introduced in
last release we now also have a MQSeries Batch Read Utility
that can get MailRoom formatted messages from a MQ
queue and write them to a file.

SAP R/3 Version 4 improvements
MailRoom now supports sending and receiving SAP R/3
Version 4 IDOCs.

xviii BTB Application Programming Guide

Codepage conversion exit
A new codepage conversion exit is now available as kernel
or destination exit. With supplied codepage translation tables
it can convert a document from one codepage to another.

Mercator remapping exit improvements
The Mercator exit has been improved with support for
selection of profiled or fixed length for input and output (:P or
:W parameters to Mercator). Now it is also possible to pass
additional command options to Mercator.

 Summary of changes xix

xx BTB Application Programming Guide

 Part 1. The MailRoom

The BTB MailRoom can process EDI and other documents asynchronously. The
document (application data wrapped with an M-record) is put into the MailRoom by
one of the write APIs or send methods, then checked against MailRoom
registrations or subscriptions and routed to the final destination. For information
about functionality and setup possibilities for the MailRoom, refer to the System
Administration Guide.

This section covers the programming aspects of using the MailRoom APIs.

These areas are covered:

� Internal structure of the MailRoom

 – The M-record
 – Data formats
– Multiple or single TS queues

 � MailRoom exits

 – Source exits
 – Routing exits
– SAP global exits

 – Document exits
 – BTB-supplied exits

� The APIs in CICS

– CICS MailRoom Write API
– CICS MailRoom Read API
– CICS MailRoom Acknowledgment API
– CICS Document Browser API

� The batch utilities

– Batch MailRoom Write utility
– Batch MailRoom Read utility
– Batch MailRoom Write utility using MQSeries.
– Batch MailRoom Read utility using MQSeries.

� Accessing MailRoom through MQSeries

 – Sending documents
 – Receiving documents
 – Sending acknowledgments

 � TIE/IMS Support

 – Sending documents
 – Receiving documents
 – Sending acknowledgments
– Using TIE with MQSeries.

� TCP/IP APIs (for OS/2, AIX, Windows 95/NT/2000)

– Generic TCP/IP MailRoom Read and Write Program
– AIX MailRoom scanner program
– OS/2 MailRoom Relay File2Tcp and Tcp2File

� APPC APIs (for OS/2, Windows 95/NT/2000)

 Copyright IBM Corp. 1992, 2002 1

– Generic APPC MailRoom Read and Write Program

Overview of the MailRoom
Figure 1 shows an overview of the MailRoom components.

 ┌───────────────────────────┐ ┌───────┐ ┌───────┐
 │ BUSINESS PROCESS │"......................│SYS ACK│""│ │

└────────────┬┬┬────────────┘ └───────┘ │ A │
))) │ │
── │ S │
 SOURCE LAYER │ │
 ┌───────┐ ┌───────┐ ┌───────┐ ┌───────┐ ┌───────┐ ┌───────┐ │ C │
 │ DI- │ │ EXP- │ │ PGM │ │ MQ │ │ TCPIP │ │ SAP │ . . │ │
 │ EDI │ │ FILE │ │ │ │ │ │ │ │ │ . . "──────EXIT │ A │
 └───────┘ └───────┘ └───────┘ └───────┘ └───────┘ └───────┘ │ │
 │ │
── │ │
 │ KERNEL LAYER │ │
 ┌──────┬──┬──┬──┬──┐ │ │ │

│)))))) │ S │
 │ ┌───┐ │ T │
 │ │ SECURITY CHECKING │ │ A │
 │ └─────────┬──────────────────┬───────────────┬────────────┘ │ T │
 │) │) "──────────────────EXIT │ U │
 │ ┌───────────────────┐ │ ┌─────────────────────────┐ │ S │

│ │ EXTENDED ROUTING │ "─EXIT │ │ DESTINATION │ "───────────EXIT │ │
│ └─────────┬─────────┘ │ │ PREPROCESSING │ │ │
└────────────┘ │ │ (E.G. DI TRANSLATING) │ │ A │

│ └────────────┬────────────┘ │ N │
)) │ D │

 ┌───┐ │ │
│ ROUTING │ │ E │
└───┬──┬──┬──┬──┬────────────┬────────────────────────────┘ │ V │

))))) │ │ E │
┌───────────────────┐ │ │ N │
│ OUTPUT SCHEDULING │ │ │ T │

 └─────────┬─────────┘ │ │ │
│ │ │ R │
)) │ E │

── │ P │
DESTINATION LAYER │ O │

┌───────┐ ┌───────┐ ┌───────┐ ┌───────┐ ┌───────┐ ┌───────┐ │ R │
│ DI- │ │ EXP- │ │ PGM │ │ MQ │ │ SAP │ │ TCPIP │ . . │ T │
│ EDI │ │ FILE │ │ │ │ │ │ │ │ │ . . "───────EXIT │ I │
└───────┘ └───────┘ └───────┘ └───────┘ └───────┘ └───────┘ │ N │

│ G │
── ── ── ── ── ── ── ── ── ── ── ─┬┬┬─ ── ── ── ── ── ── ── ── ── ── ── ── ── ── ── │ │
))) │ │
 ┌───────────────────────────┐ ┌───────┐ │ │

│ BUSINESS PROCESS │......................7│ ACK │77│ │
 └───────────────────────────┘ └───────┘ └───────┘

Figure 1. BTB MailRoom component overview

2 BTB Application Programming Guide

 MailRoom layers
The MailRoom is structured into a number of layers, each with a distinct
responsibility.

Sending business process
While not part of the MailRoom, the sending business process is the primary
initiator of delivery services in MailRoom. It passes a business document to
MailRoom and might later receive a System Acknowledgment when processing has
completed.

 Source Layer
The Source Layer receives the passed document from the sending business
process and if necessary converts it to MailRoom format (M- and D- records) via
source exits (supplied or user written).

 Kernel layer
The Kernel Layer determines the actions to be performed on the received
document based on the M-record and MailRoom service and subscription
registrations. The document can be inspected or even converted to a different
format by a Kernel exit (supplied or user written).

Normally a document is just sent to a single receiver but if necessary it can also be
routed to multiple receivers. In Extended Routing it is possible for supplied or user
written code to dynamically determine the proper receivers (one or more) based on
the document contents or other factors.

When one or more receivers have been found and checked, Routing and Output
Scheduling determines if the documents should be sent immediately or at a later
point in time.

 Destination Layer
At this point the document is ready to be sent, but before doing so, it is possible to
let a Destination exit (supplied or user written) inspect or convert the document.
Then the document will be passed or sent to the receiver and MailRoom know from
the registrations if it should expect acknowledgments from the receiving business
process. If sending is not possible due to temporary transmission problems,
MailRoom will later automatically initiate a retransmission.

Receiving business process
Finally the document reaches its intended receiver which might generate a network
or business acknowledgment after successful processing. The acknowledgment is
returned to MailRoom and matched against previous status information about the
document and it might also trigger a System Acknowledgment to be returned to the
original sending business process.

Monitoring the processing
From the point where the document is received in the source layer until the
acknowledgment from the receiving business process has been received,
MailRoom monitors the processing and takes before and after images of the
document. Using monitoring panels, an administrator can watch the progress, view
the document before and after an exit has made changes as well as manually
initiate certain MailRoom actions like resend, restart, fail, etc..

 Part 1. The MailRoom 3

4 BTB Application Programming Guide

 Chapter 1. MailRoom infrastructure

 Document formats
The MailRoom can process various types of business documents, such as invoices
and orders. The primary format is M- and D-records, other recognized formats are
XML, SAP R/3 IDOC and EDI (EDIFACT and ANSI X12). Even flat files in other
formats can be routed through MailRoom if necessary registrations are done or
user exits written.

All processing and routing of documents in MailRoom are depending on the
MailRoom registrations and identification of sender, receiver and format contained
inside the document in an M-record, see “Understanding the M-record” on page 8.
If a document is received without an M-record it is necessary for MailRoom to build
one. For some source scenarios and well known document types, this can be done
automatically in MailRoom supplied source exits. These exits will extract fields
from the received document and dynamically build an M-record and if necessary
also encapsulate other records in D-records.

If you have other document formats, you must either build the M-record before
passing it to BTB or you can write your own source exit. Writing your own source
exit is a way to extend MailRoom to understand other document formats, see:
“Source exits” on page 29. The received file (or transmission buffer for MQSeries)
is passed to the source exit which must return a valid document with M- and
D-records.

The document will now be stored in the transport tables as a standard MailRoom
document, where the first record is the M-record. The remaining records are data
records (first character usually D) or special purpose control records (for example
DataInterchange C-, E-, I-, and Q-records). One or more documents received
within the same syncpoint are considered to be one envelope, which is assigned a
unique envelope ID by the MailRoom.

The format support in MailRoom is shown in Table 1 on page 6.

 Copyright IBM Corp. 1992, 2002 5

Table 1 (Page 1 of 3). Document formats supported by MailRoom

MailRoom
M- and
D-records

MEXTREC00123TPA TPX ORDERS
D.....data.....records.....
D.....data.....records.....
D.....data.....records.....
D.....data.....records.....
D.....data.....records.....
D.....data.....records.....

Sending:
All source scenarios except DI-EDI, SAP and
SAP-MQ can be used.

Receiving:
All destination scenarios except DI-EDI, SAP
and SAP-MQ can be used.

MailRoom M- and D-records is the native MailRoom format. The received document is stored As
Is in the MailRoom transport table. The M-record controls the processing and routing in
MailRoom.

Read about the M-record in “Understanding the M-record” on page 8.

EDI,
EDIFACT,
ANSI X.12

UNA:+./ '
UNB+UN0A:1+MAILBOX1:ZZ+MAILBOX2:ZZ+011015:1310+67'
UNH+128+INVOIC:1:902:UN'
BGM+384:TESTINVOICE+0000323 15+011015'
NAD+SU++John Doe:ADDRES'
NAD+ANY+CITYANYWHERE+DOE:ADDRES ¢2'
UNS+D'
LIN+1++++:1'
LIN+2++++:1'
UNS+S'
TMA+207002'
UNT+11+128'
UNZ+1+67'

Example is EDIFACT. ANSI X.12 is also
supported.

Sending:
The DI-EDI source scenario is normally used.
An M-record will automatically be built by the
global DI-EDI source exit based on
information received from DI, see “BTB
standard DI-EDI Source Exit KBASXDP” on
page 59.

Receiving:
The DI-EDI destination scenario is normally
used.

EDI sent to or received from MailRoom via IBM Information Exchange with the DI-EDI scenarios
will be translated to or from InHouse by DataInterchange under MailRoom control. The Inhouse
format, together with an M-record, is stored in the MailRoom transport table.

It is also possible to use other scenarios than DI-EDI to send and receive EDI to/from MailRoom.
The EDI could be sent to MailRoom as a flat file (see below) with an M-record built by a source
exit. Translation to InHouse format can then be performed with an exit, see “DataInterchange
translation exit KBAGXDP” on page 61. The opposite direction is also possible.

XML
<Invoice>
 <OrderNumber>AA456</OrderNumber>
 <Date>20010901</Date>
 <Buyer Id="BUYER1">
 <Supplier Id="SUPPLIER1">
 <InvoiceDetails>
 <PartNum>A001</PartNum><Qty>2</Qty><Price>100</Price>
 <PartNum>B033</PartNum><Qty>1</Qty><Price>500</Price>
 </InvoiceDetails>
 <TotalPrice>700</TotalPrice>
</Invoice>

Sending:
All source scenarios except BATCH, DI-EDI,
SAP, SAP-MQ and TIE-IMS can be used. It
is then necessary to activate an MailRoom
supplied source exit to dynamically build an
M-record based on defined XML elements,
see “BTB XML Processor Source Exit
KBASXMP” on page 59.

Receiving:
All destination scenarios except DI-EDI, SAP
and SAP-MQ can be used. Use the
STRIP-MD function to get the XML document.

The XML document will be encapsulated in M- and D-records before it is stored in the MailRoom.

Read about definition of XML documents for BTB in the System Administration Guide. For more
information about processing XML documents, refer to “XML document support” on page 15.

6 BTB Application Programming Guide

Table 1 (Page 2 of 3). Document formats supported by MailRoom

SAP R/3
IDOC

EDI_DC 120000000000000901830E 69INVOIC012SAPGC0 FIIBMEDI . . .
E1EDK01 1200000000000009018000001E1EDK01 000000010 GBP
E1EDKA1 1200000000000009018000002E1EDKA1 000000020 RS 1000000010
E1EDK02 1200000000000009018000003E1EDK02 000000020 009VENDOR-INVOIC
E1EDK03 1200000000000009018000004E1EDK03 000000020 01219961215

Sending:
The SAP or SAP-MQ source scenario is
normally used. An M-record will automatically
be built by a global source exit based on
information in the received SAP control
record, see “BTB standard SAP & SAP-MQ
Source Exit KBASXSP” on page 59.

Receiving:
Normally the SAP or SAP-MQ destination
scenario is used. The SAP control record
EDI_DC will automatically be built if it is not
available in the document.

The SAP R/3 IDOC will be encapsulated in M- and D-records before it is stored in the MailRoom.

If DI-EDI is the source or destination it is possible to use MailRoom supplied document exits to
change the length of the record identifier between SAP and DI requirements, see “SAP to DI
standard exit KBADXDP” on page 60 and “DI to SAP standard exit KBADXSP” on page 60.

For more information about SAP R/3 IDOCs, refer to “SAP R/3 IDOC support” on page 12.

Flat files
This is my record oriented flat file, record 1
This is my record oriented flat file, record 2
This is my record oriented flat file, record 3
This is my record oriented flat file, record 4
This is my record oriented flat file, record 5
This is my record oriented flat file, record 6
This is my record oriented flat file, record 7
This is my record oriented flat file, record 8
My last record...

Flat files are other record oriented files without
MailRoom M-record.

Sending:
All source scenarios except BATCH, DI-EDI,
SAP, SAP-MQ and TIE-IMS can be used. A
source exit must then be used to dynamically
build an M-record.

The EXP-FILE source scenario has a global
source exit that will build an M-record based
on sender mailbox and message user class,
see “BTB standard EXP-FILE Source Exit
KBASXFP” on page 59. The sample source
exit or a user written one can be used to build
an M-record based on file contents or
hardcoded values, see “BTB Sample Source
Exit KBGXSXP” on page 60.

Receiving:
All destination scenarios except DI-EDI, SAP
and SAP-MQ can be used. Use the
STRIP-MD function to get the flat file without
M- and D-records.

The flat file will normally be encapsulated in M- and D-records before it is stored in the
MailRoom. A record starting with M would be intrepreted as an MailRoom M-record.

For more information about writing source exits, refer to “Source exits” on page 31.

 Chapter 1. MailRoom infrastructure 7

Table 1 (Page 3 of 3). Document formats supported by MailRoom

Other
formats

This is a Very Long Buffer sent via MQSeries.........
Sending:
The MQ source scenario can be used to
receive other buffer formats than the normal
MailRoom MQ buffer format. It is necessary
to use a user written source unpack exit to
split the buffer into records. MailRoom can
also cut records at 1999 byte boundary with
MQ default unpack exit.

Receiving:
The MQ destination scenario can be used to
send other buffer formats than the normal
MailRoom MQ buffer format.

The received buffer must be cut into apropriate records which will be stored in the MailRoom
transport tables.

Understanding the M-record
The M-record is the MailRoom control record, and it is used to identify and
separate documents. Other records must not use the character M in position 1.

The M-record exists in a simple and an extended version. The extended M-record
is the preferred development method, because it is the only way to use the
extended routing and third party routing.

8 BTB Application Programming Guide

 Extended M-record
This is the structure of the MailRoom extended M-record, which is in
KBH.R450.PLINCL(KBAMRX00):

 /* +---+ */
 /* | -------- INTELLIGENT MESSAGE BROKER (IMB) --------- | */
 /* | (C) Copyright IBM Denmark. 2000. All Rights Reserved. | */
 /* | (C) Copyright IBM Corp. 2000. All Rights Reserved. | */
 /* | | */
 /* | | */
 /* +---+ */

 /* +--+ */
 /* | IMB MAILROOM EXTENDED ADDRESSING RECORD | */
/* | == | */
 /* | | */
 /* | STRUCTURE : KBAMRX00 | */
 /* | | */
 /* | LENGTH : 300 BYTES | */
 /* | | */
/* | CONTENTS : CONTROL INFORMATION ABOUT A DOCUMENT, IS | */
 /* | USED IN IMB MAILROOM | */
 /* | | */
 /* | RELATIONS : BUILT BY EITHER THE CREATOR OF DATA, OR | */
 /* | BY A SOURCE API (DI_EDI AND EXP-FILE) | */
 /* | | */
 /* +--+ */
 /* */

5 RECID CHAR(01), /* CONSTANT 'M' */
5 EYECATCH CHAR(08), /* CONSTANT 'EXTREC00' */

 5 IOPUCTY CHAR(03), /* COUNTRY/ORGANIZATION */
 5 SKBA_TPID_TO CHAR(35), /* TO TP (EXTERNAL/INTERNAL) */

5 SKBA_TPID_FROM CHAR(35), /* FROM TP (EXTERNAL/INTERNAL) */
5 SKBA_LAYOUT CHAR(16), /* DOCUMENT LAYOUT */
5 SKBA_REF_DATA CHAR(40), /* APPLICATION REFERENCE DATA */

 5 SKBA_REQ_KEY CHAR(40), /* MAILROOM REQUEST KEY */
5 SKBA_DST_DATA CHAR(40), /* DESTINATION SPECIFIC DATA */

 5 RESERVED CHAR(82) /* RESERVED */
 /* */
 /* TOTAL LENGTH 300 */
/* == API == END OF STRUCTURE KBAMRX00 == */
 /* -- */

Figure 2. Structure of extended M-record

RECID
The record identification.

EYECATCH
An eye-catcher to indicate that this is an extended M-record.

IOPUCTY
Country code.

SKBA_TPID_TO
Trading Partner identification (receiver). The Trading Partner can be either
an internal Trading Partner number or an external Trading Partner alias.

 Chapter 1. MailRoom infrastructure 9

SKBA_TPID_FROM
Trading Partner identification (sender). The Trading Partner can either be an
internal Trading Partner number or an external Trading Partner alias.

SKBA_LAYOUT
MailRoom document layout name.

SKBA_REF_DATA
Sending application reference field. A free-format field to contain a key
known to the sender. The information is available on MailRoom panels.

SKBA_REQ_KEY
MailRoom request key. Must be blank on all input and writes to MailRoom.
On output and reads from MailRoom it contains the MailRoom reference key
for the document (request).

Optionally this field can be used on input to pass a reference MailRoom
envelope key to indicate that this new document originates from another
envelope. See “Linking envelopes” on page 24 for more information.

SKBA_DST_DATA
Data specific to the selected destination scenario. Must be blank on all input
and writes to MailRoom. In the PGM-CICS scenario it contains the user
data from the service or subscription.

RESERVED
Field reserved for future use. Must be blank.

10 BTB Application Programming Guide

 Simple M-record
This is the structure of the MailRoom simple M-record, which is in
KBH.R450.PLINCL(KBAMREC):

 /* +---+ */
 /* | -------- INTELLIGENT MESSAGE BROKER (IMB) --------- | */
 /* | (C) Copyright IBM Denmark. 1998. All Rights Reserved. | */
 /* | (C) Copyright IBM Corp. 1998. All Rights Reserved. | */
 /* | | */
 /* | | */
 /* +---+ */
 /* +--+ */
 /* | IMB MAILROOM CONTROL RECORD | */
 /* | ================================ | */
 /* | | */
 /* | STRUCTURE : KBAMREC | */
 /* | | */
 /* | LENGTH : 159 BYTES | */
 /* | | */
/* | CONTENTS : CONTROL INFORMATION ABOUT A DOCUMENT, IS | */
 /* | USED IN IMB MAILROOM | */
 /* | | */
 /* | RELATIONS : BUILT BY EITHER THE CREATOR OF DATA, OR | */
 /* | BY A SOURCE API (DI_EDI AND EXP-FILE) | */
 /* | | */
 /* +--+ */
 /* */

5 RECID CHAR(01), /* CONSTANT 'M' */
5 IOPUCTY CHAR(03), /* COUNTRY CODE */
5 ICUSPRM CHAR(09), /* TRADING PARTNER ID - ACCOUNT */

 5 SKBA_LAYOUT CHAR(16), /* LAYOUT */
5 RESERVED CHAR(10), /* FUTURE USE */
5 SKBA_REF_DATA CHAR(40), /* APPLICATION REFERENCE DATA */

 5 SKBA_REQ_KEY CHAR(40), /* MAILROOM REQUEST KEY */
5 SKBA_DST_DATA CHAR(40) /* DESTINATION SPECIFIC DATA */

 /* */
 /* TOTAL LENGTH 159 */
/* == API == END OF STRUCTURE KBAMREC == */
 /* -- */

Figure 3. Structure of simple M-record

RECID
The record identification.

IOPUCTY
Country code.

ICUSPRM
Internal Trading Partner number. Depending on the subscription type on the
service, it is either the sender or the receiver.

SKBA_LAYOUT
MailRoom document layout name.

RESERVED
Field reserved for future use. Must be blank.

 Chapter 1. MailRoom infrastructure 11

SKBA_REF_DATA
Sending application reference field. A free-format field to contain a key
known to the sender. The information is available on MailRoom panels.

SKBA_REQ_KEY
MailRoom request key. Must be blank on all input and writes to MailRoom.
On outputs and reads from MailRoom it will contains the MailRoom reference
key for the document (request).

Optionally this field can be used on input to pass a reference MailRoom
envelope key to indicate that this new document originates from another
envelope. See “Linking envelopes” on page 24 for more information.

SKBA_DST_DATA
Data specific to the selected destination scenario. Must be blank on all input
and writes to MailRoom. In the PGM-CICS scenario it contains the user
data form the service or subscription.

M-record and subscriptions
The M-record in the input data must match a service subscription so the destination
can be determined.

Input data (extended M-record)
 ┌──────────────────────────────────────┐
│MEXTREC00123TPA TPX ORDERS │

 │D.....data....... │
 │D.....data....... │
│MEXTREC00123TPB TPX ORDERS │

 │D.....data....... │
 │D.....data....... │
 └──────────────────────────────────────┘

Trading Partner TPX (which can be an alias for a real Trading Partner) sends an
envelope containing an ORDER to Trading Partner TPA and to Trading Partner
TPB (both can be aliases for real Trading Partner).

TPX must have a send subscription (or be the fixed sender Trading Partner on a
service with subscription type R) and TPA and TPB must both have a receive
subscription to the same service.

SAP R/3 IDOC support
If the destination type is SAP or SAP-MQ, the data must be in the IDOC format as
specified by SAP R/3. The MailRoom has support for SAP IDOC Version 2 and 3
for destination type SAP and SAP-MQ, and for SAP-MQ there is also support for
SAP IDOC Version 4. The SAP IDOC must be MailRoom encapsulated as
described here.

Here is an extract from an SAP IDOC Version 3:

EDI_DC 120000000000000901830E 69INVOIC012SAPGC0 FIIBMEDI . . .
E1EDK01 1200000000000009018000001E1EDK01 000000010 GBP
E1EDKA1 1200000000000009018000002E1EDKA1 000000020 RS 1000000010
E1EDK02 1200000000000009018000003E1EDK02 000000020 009VENDOR-INVOIC
E1EDK03 1200000000000009018000004E1EDK03 000000020 01219961215

12 BTB Application Programming Guide

To be able to sucessfully transmit it through MailRoom to SAP R/3 (either through
BTB SAP bridge (SAP) or through the MQSeries link for R/3 (SAP-MQ), the IDOC
must be placed inside an M-record and D-records as shown here:

MEXTREC00120IBMEDI 1000000010
DEDI_DC 120000000000000901830E 69INVOIC012SAPGC0 FIIBMEDI
DE1EDK01 1200000000000009018000001E1EDK01 000000010 GBP
DE1EDKA1 1200000000000009018000002E1EDKA1 000000020 RS 1000000010
DE1EDK02 1200000000000009018000003E1EDK02 000000020 009VENDOR-INVOIC
DE1EDK03 1200000000000009018000004E1EDK03 000000020 01219961215

The SAP Control record EDI_DC or EDI_DC40 is required by SAP, depending on
which SAP IDOC Version that is used. The SAP Control record is optionally created
by MailRoom, if it is not provided in the sent data.

The EDI_DC record will be primed with values as shown in Table 2 on page 14 for
SAP IDOC Version 3. The MailRoom LAYOUT is interpreted in a special way if
MailRoom is creating the EDI_DC. The first 8 characters are used to specify the
name of the IDOC type (field DOCTYP in EDI_DC) through the mapping table. The
next 6 characters specify the EDI message type (field STDMES in EDI_DC).

For SAP IDOC Version 4 the EDI_DC40 will be primed with values as shown in
Table 3 on page 15. The mapping between MailRoom LAYOUT and IDOCTYP in
the EDI_DC40 record is managed by field SAP IDoc type from the
Service/Subscription. For use of this field when setting up SAP-MQ source or
destination scenarios, refer to System Administration Guide.

The sending application can also choose to create the EDI_DC or EDI_DC40 itself
and pass it to MailRoom (and thereby specify all possible control values).

The mapping table can be extended to handle other private formats by changing
the SAP global naming exit for destination, see “SAP Naming exits” on page 55.
Figure 4 on page 14 shows an example of the mapping table.

For SAP sources it is possible to write a source exit that use other principles to
build the M-record, see “Source exits” on page 31, or the MailRoom supplied SAP
source exit, see “BTB standard SAP & SAP-MQ Source Exit KBASXSP” on
page 59 can override individual M-record fields with fixed values.

 Chapter 1. MailRoom infrastructure 13

char 1-8 of LAYOUT IDOC type
 -------------------+-------------------------+------------
 Mapping of BTCXID01 BTC_ID01
 standard IDOCS BTCXID02 BTC_ID02
 BTCXID03 BTC_ID03
 DESXID01 DES_ID01
 INVXID01 INV_ID01
 ORDXID01 ORD_ID01
 WBBXID01 WBB_ID01
 WPXEAN01 WP_EAN01
 WPXPER01 WP_PER01
 WPXPLU01 WP_PLU01

 Mapping of ZX824XXX Z_824
 non-standard IDOCs ZRDXID01 ZRD_ID01

 Other xxxxxxxx xxxxxxxx

Figure 4. SAP mapping table

A SAP Inbound Order response in (version 3.0) IDOC format can be addressed
with a LAYOUT:
ORDERS01ORDRSP (IDOC type ORDERS01 and EDI message type ORDRSP).

The same document in (version 2.x) IDOC format must be named:
ORDXID01ORDRSP (IDOC type ORD_ID01 and EDI message type ORDRSP).

Table 2. SAP Control Record priming

SAP Id Position Attribute MR Source Comment

TABNAM 1-10 Char(10) Hardcode EDI_DC

MANDT 11-13 Char(03) M-record Current Country Number

STATUS 34-35 Char(02) Hardcode 50 (IDOC has to be processed)

DOCTYP 36-43 Char(08) Table One-to-one mapping table between LAYOUT(1:8) and IDOC-type

DIRECT 44-44 Char(01) Hardcode "2" meaning SAP Inbound

RCVPOR 45-54 Char(10) Service/Sub SAP System Id (receiving system)

RCVPRT 55-56 Char(02) Service/Sub SAP Receiver TP Type (SAP TEDST table)

RCVPRN 57-66 Char(10) M-record To trading partner from extended M-record

RCVLAD 88-157 Char(70) DI I-record Interchange Receiver ID and Group application rec.ID
field IRID cols 51-85 and field GRID cols 212-246

STDMES 165-170 Char(06) M-record EDI message e.g. INVOIC or 850 from LAYOUT(9:6)

MESCOD 171-173 Char(03) Service/Sub SAP Logical Msg code

TEST 178-178 Char(01) DI C-record column 61 (Test indicator)

SNDPOR 179-188 Char(10) Hardcode MailRoom left justified

SNDPRT 189-190 Char(02) Service/Sub SAP Sender TP Type

SNDPRN 191-200 Char(10) M-record From trading partner from extended M-record

SNDLAD 222-291 Char(70) DI I-record Logical sender address. Field ISID cols 16-50 and GSID cols 177-211

REFINT 292-305 Char(14) DI I-record field IHXCTL cols 2-15. Interchange control number

REFGRP 306-319 Char(14) DI I-record field GHXCTL cols 157-170. Group control number

REFMES 320-333 Char(14) DI I-record field THXCTL cols 303-316. Transaction control number

ARCKEY 334-403 Char(70) MR Key MailRoom reference number left justified

14 BTB Application Programming Guide

Table 3. SAP Control Record Version 4 priming

SAP Id Position Attribute MR Source Comment

TABNAM 1-10 Char(10) Hardcode EDI_DC40

MANDT 11-13 Char(03) M-record Current Country Number

STATUS 34-35 Char(02) Hardcode 50 (IDOC has to be processed)

DIRECT 36-36 Char(01) Hardcode "2" meaning SAP Inbound

TEST 39-39 Char(01) DI C-record column 61 (Test indicator)

IDOCTYP 40-69 Char(30) Service/Sub SAP IDoc type

CIMTYP 70-99 Char(30) Service/Sub SAP Extension type

MESTYP 100-129 Char(30) Service/Sub SAP SAP Logical message type

MESCOD 130-132 Char(03) Service/Sub SAP Logical Msg code

STDMES 143-148 Char(06) Service/Sub SAP EDI message type

SNDPOR 149-158 Char(10) Hardcode MailRoom left justified

SNDPRT 159-160 Char(02) Service/Sub SAP Sender TP Type

SNDPRN 163-172 Char(10) M-record From trading partner from extended M-record

SNDLAD 194-263 Char(70) DI I-record Logical sender address. Field ISID cols 16-50 and GSID cols 177-211

RCVPOR 264-273 Char(10) Service/Sub SAP System Id (receiving system)

RCVPRT 274-275 Char(02) Service/Sub SAP Receiver TP Type (SAP TEDST table)

RCVPRN 278-287 Char(10) M-record To trading partner from extended M-record

RCVLAD 309-378 Char(70) DI I-record Interchange Receiver ID and Group application rec.ID
field IRID cols 51-85 and field GRID cols 212-246

REFINT 393-406 Char(14) DI I-record field IHXCTL cols 2-15. Interchange control number

REFGRP 407-420 Char(14) DI I-record field GHXCTL cols 157-170. Group control number

REFMES 421-434 Char(14) DI I-record field THXCTL cols 303-316. Transaction control number

ARCKEY 435-504 Char(70) MR Key MailRoom reference number left justified

XML document support
XML Documents are widely used in e-Business (B2B) as a replacement for, or
alternative to traditional EDI. BTB MailRoom can receive and route XML
Documents the same way as flat files with M- and D-records. The XML support in
MailRoom is summarized in Table 4 on page 16.

The reader is expected to have some knowledge about XML before reading this
section.

 Chapter 1. MailRoom infrastructure 15

Table 4. XML document support. Summary of XML support in MailRoom.

Send
format

Description Receive
format

Description

XML Root element of XML document
must be registered and the XML
Processor setup as source exit,
see: “Receiving XML Documents
in MailRoom” on page 16.

All MailRoom source scenarios
with source exit support can be
used.

XML Supported
This is plain routing without
modifications. Remember to
remove the MailRoom
encapsulation with the function
STRIP-MD in the transmission
parameters on the service.

Other Possible with user exit
A user written kernel or
destination exit is necessary to
perform the conversion from XML
to another format (corresponding
record oriented format). This is
not a simple task, since it requires
an XML Parser, see: “Reading
XML in MailRoom exits.” on
page 20.

Other Normal MailRoom setup. XML Possible with user exit
A user written kernel or
destination must process the
received record oriented format
and write out the corresponding
XML document, which is a straight
forward task, see: “Writing XML in
MailRoom exits.” on page 20.

Receiving XML Documents in MailRoom
The following steps are needed to process XML Documents in MailRoom:

� Setup the BTB XML Processor (source exit)
� Define your XML Documents (how to build M-record)
� Define MailRoom Services and Subscriptions

Using the XML processor source exit
You need to activate the BTB XML processor for your specific use. Normally the
processor is not invoked when documents are received and you can therefore not
process XML Documents in MailRoom without activating the XML Processor as a
source exit. It can either be activated for a single input channel (MQSeries queue,
TCP/IP host, etc.) or for all input channels of the same type (same MailRoom
source scenario type).

Defining your XML Document in MailRoom
XML Document definitions are used by MailRoom to dynamically assign an
M-record for arriving XML Documents. The values for the M-record can either be
fixed or determined at runtime based on the contents of the received XML
Document.

Identify the Root Element of your XML Document and consider which other
elements or attributes should be used when building the M-record.

XML Root Element: The XML Root Element identifies the XML Document type. It
is the first normal tag in the XML file. The Root Element is case sensitive. The
XML Root Element is the key of the XML Document definition and it must be
unique.

16 BTB Application Programming Guide

Consider an XML Document where the first tag is <Order>. MailRoom can process
this document if Order is defined as the Root Element.

It should be noted that Order, order and ORDER are different Root Element names
because XML element names are case sensitive.

Building the M-record for XML documents: Four fields of the M-record (Country
Code, Layout, From & To Trading Partner) are mandatory to have values assigned
to and one field (Application Reference) is optional. The values for these fields can
either be extracted from the received XML Document at runtime or hardcoded or a
combination.

Extracting data from the received XML Document is done by defining a Path to the
element or attribute you need to extract.

XML Paths: An XML Path is an absolute or relative addressing method used to
identify a specific element or attribute in the XML Document. Addressing an
element is done by just giving the element name. Addressing an attribute is done
by giving the element name followed by $ and the attribute name.

The XML processor will always use the first occurrence of an element or attribute
matching the XML Path. It can therefore be necessary to further qualify the element
by giving the hierarchical structure of the elements separated by /.

Consider the following XML fragment:

<Aaaa>
 <Bbbb Ee="CICS">
 <Vvv>Transaction Server</Vvv>

<Xxx>Customer Information Control System</Xxx>
 </Bbbb>
 <Cccc Ff="APPC">

<Xxx>Advanced Program-to-Program Communication</Xxx>
 </Cccc>
 <Cccc Ff="TCPIP">

<Xxx>Transmission Control Protocol/Internet Protocol</Xxx>
 </Cccc>
</Aaaa>

The Root Element is Aaaa. There is one Bbbb element and two Cccc elements

XML Path Type Mode Expands to value
-------- ---- -------- -----------------
Vvv Elem Relative Transaction Server
Bbbb/Vvv Elem Relative Transaction Server
Cccc/Vvv Elem Relative <not found>
/Aaaa/Bbbb/Vvv Elem Absolute Transaction Server
Xxx Elem Relative Customer Information Control System
Cccc/Xxx Elem Relative Advanced Program-to-Program Communication
/Aaaa/Cccc/Xxx Elem Absolute Advanced Program-to-Program Communication
Bbbb$Ee Attr Relative CICS
/Aaaa/Bbbb$Ee Attr Absolute CICS
Cccc$Ff Attr Relative APPC
/Aaaa/Cccc$Ff Attr Absolute APPC

As seen above, element Xxx appears in two different elements: Bbbb and Cccc. For
such elements it is recommended to further qualify with the previous element:
Bbbb/Xxx or Cccc/Xxx or the full path: /Aaaa/Cccc/Xxx

 Chapter 1. MailRoom infrastructure 17

Restriction: It is currently not possible to extract the last Xxx element in second
occurrence of Cccc (with text: Transmission Control...) because it would require
additional input parameters such as:
Give me Cccc/Xxx for Cccc$Ff = "TCPIP"

Defining MailRoom services and subscriptions
When an XML Document has been successfully processed in the XML Processor it
will have a normal M record as first record and all XML lines prefixed with a 'D'.

The setup of services and subscriptions are then normal. The source scenario type
should be the same as the method the XML Document originally arrived with.

Which XML Documents are supported
MailRoom needs to browse through the XML Document while building an M-record.
For this to work it is necessary to only pass XML Documents already in EBCDIC or
to use a MailRoom source scenario with codepage conversion support (e.g.
MQSeries, TCP/IP, etc.).

Restriction: Double byte, Unicode and UTF-16 encoded XML Documents are not
supported.

Warning: It should also be noted that the encoding attribute inside the XML
Document <?xml version="1.0" encoding="UTF-8"?> will be invalidated by an
ASCII to EBCDIC codepage conversion. The XML Document will then be converted
to EBCDIC while it internally still claims to be encoded in ASCII (UTF-8).

This can be a problem if the XML Document originates from an ASCII based
computer, and is going to be used on an EBCDIC based computer by a XML
parser or receiving program that respect the encoding attribute inside the XML
Document. It might be necesasary to instruct the parser to ignore the encoding
attribute.

Sample XML Document flow in MailRoom

Fruit Shop Invoice
Joe has a small shop where he sells fruit and other stuff. He has just placed an
order of apples, bananas and oranges at Fruit Corporation. Fruit Corporation has
delivered the apples and oranges and now wants to send an invoice to Joe for
these two line items.

Fruit Corporation is using BTB as its message broker. The invoice is created in the
invoicing system and sent to BTB with MQSeries for further delivery via e-mail or
other transport methods.

 Sample XML
<MailRoomXMLInvoice>
 <InvoiceHeader>
 <InvoiceDate>20010901</InvoiceDate>
 <SupplierOrderNumber>AA456</SupplierOrderNumber>
 <BuyerOrderNumber>XXX01ABC99</BuyerOrderNumber>
 <InvoiceCurrency>DKR</InvoiceCurrency>
 </InvoiceHeader>
 <InvoiceParties>
 <Buyer Id="BUYER1">
 <Name1>Joe s Shop</Name1>
 <Address1>Kongevejen 234</Address1>
 <City>Allerord</City>

18 BTB Application Programming Guide

 <PostalCode>3450</PostalCode>
 <Country>Denmark</Country>
 </Buyer>
 <Supplier Id="SUPPLIER1">
 <Name1>Fruit Corporation</Name1>
 <Address1>Bredgade 321</Address1>
 <City>Copenhagen</City>
 <PostalCode>1325</PostalCode>
 <Country>Denmark</Country>
 </Supplier>
 </InvoiceParties>
 <ListOfInvoiceDetail>
 <InvoiceDetail LineItemNum="1">
 <PartNum>APPLE001</PartNum>

<ItemDescr>Big box with Granny Smith Apples</ItemDescr>
 <Quantity>5</Quantity>
 <InvoiceUnitPrice>200.75</InvoiceUnitPrice>
 </InvoiceDetail>
 <InvoiceDetail LineItemNum="3">
 <PartNum>ORANG002</PartNum>

<ItemDescr>Oranges, quality 2, 5 kg. box</ItemDescr>
 <Quantity>1</Quantity>
 <InvoiceUnitPrice>75.00</InvoiceUnitPrice>
 </InvoiceDetail>
 </ListOfInvoiceDetail>
 <InvoiceSummary>
 <SubTotal>1078.75</SubTotal>
 <Tax>
 <TaxPercent>25.0</TaxPercent>
 <Location>Denmark</Location>
 <TaxAmount>269.69</TaxAmount>
 <TaxableAmount>1078.75</TaxableAmount>
 </Tax>
 <Total>1348.44</Total>
 </InvoiceSummary>
</MailRoomXMLInvoice>

Extracting values from the XML Document
The Root Element is Invoice which we will register in the XML Document
definitions table in BTB. This registration must contain specifications on how to
build the M-record. By looking at the XML Invoice we might assign the M-record as
follows:

M-record field XML Path Method Value
-------------- -------- ------ -----
Country Code hardcoded 123
Layout hardcoded XMLINVOICE
From TP Supplier$Id evaluated to SUPPLIER1
To TP Buyer$Id evaluated to BUYER1
Appl Ref. BuyerOrderNumber evaluated to XXX01ABC99

Country Code and Layout will be hardcoded (all XML Documents with Root
Element Invoice will get these values) and From & To Trading Partner and
Application Reference will be taken from the received XML Document.

Flow in MailRoom
The MQSeries Queue used by Fruit Corp. is defined in MailRoom to use the XML
Processor as source exit.

The XML processor reads the XML Document and see that the Root Element is
Invoice. It then lookup in the XML Document definitions table and finds out how the
M-record should be built.

 Chapter 1. MailRoom infrastructure 19

The XML Document is now stored in MailRoom as a normal M-D record Document
and processed according to the service and subscription.

Joe might have a subscription, where it is specified that he wants to receive
invoices from Fruit Corp. via e-mail.

It is also possible to have a kernel or destination exit that changes the XML
Document to another format before it is sent. Some receivers might be able to
process the XML while others could need traditional record format.

MailRoom then build an e-mail by stripping off the M-record and removing the
D-prefix. The result is a plain XML file that is sent as an e-mail attachment to Joe.

<....Sender...> <.................MailRoom.............> <Receiver>
Fruit Corp. MQSeries Source exit Kernel/Dest e-mail Joe
 queue XML processor Opt. exits attachment
 (build M-rec) (strip M-rec)

Processing XML in MailRoom exits.
Existing applications with a need to either send out or receive documents in XML
format will need to write a kernel or destination exit to perform conversion between
traditional record oriented format and XML format. The generic XML conversion
support in BTB is very limited. One very basic conversion exit is available, see
“XML Parsing to flat file exit KBAGXXP” on page 64. More advanced conversion
must be done in user exits or outside of BTB. The primary reason is that there
currently is limited XML support in CICS.

Writing XML in MailRoom exits.
Writing XML is normally not a big problem when the XML format (DTD or schema)
is known and all necessary data elements are available in the input record-oriented
file. Simply read the input file, e.g. an order and write out the tags corresponding
to the fields of the record. The XML file produced in the exit must still be EBCDIC
based and placed in records in a TS queue. It is not necessary to encapsulate the
XML file in M- and D-records.

Reading XML in MailRoom exits.
Processing XML files normally require an XML Parser. Unfortunately there is very
limited XML Parser support in CICS. The XML Toolkit for OS/390 contains parsers
for Java (XML4J) and C++ (XML4C), but only the Java version is possible to use in
CICS (CICS TS 1.3). Furthermore it must run in a Java Virtual Machine (JVM)
(interpreted Java bytecode) while it is not possible to run the Java XML Parser
under High Performance Java (HPJ) (compiled Java). Using the Java XML Parser
in CICS will therefore have a performance impact due to the high cost of inititating
a new JVM for every XML document.

Due to the lack of a high performance XML Parser for CICS, the MailRoom
processing of XML documents (extracting fields for the M-record) is using our own
implementation of a XML Text Scanner. This tool is also available for usage in
other programs like kernel and destination exits, see: “XML Text Scanner, primitive
XML Parser—KBHXMLM” on page 243.

See Table 5 on page 21 for a summary of the available options for XML
processing inside or outside of BTB.

20 BTB Application Programming Guide

Table 5. XML conversion options. How can I convert to or from XML

Tool or method Where Description

User written code,
other to XML

Inside BTB. User written program writing XML format itself.

User written code,
XML to other

Inside BTB. User written program reading XML format itself.

User written code,
XML to other

Inside BTB. User written program with call to BTB XML
Text Scanner, see “XML Text Scanner,
primitive XML Parser—KBHXMLM” on
page 243.

The simple XML conversion exit in BTB is
using this method, see “XML Parsing to flat file
exit KBAGXXP” on page 64.

User written code,
XML to other

Inside BTB. User written program with call to Java XML
Parser.

See comments above about performance.

DataInterchange
XML support

Outside BTB. in a
Batch job

DataInterchange has shipped a PTF with
support for XML to/from InHouse format. It
runs only in the Batch environment.

Support for generic conversion in the CICS
environment is announced for DI version 4.

MQSeries Integrator
V2

AIX or Windows NT MQSI V2 has XML conversion support but it
currently require transport to and from a
distributed platform.

BTB has an exit which currently can call MQSI
V1 on OS/390, see “MQSI V1 exit KBAGXQP”
on page 62.

Note:

Business Transaction Broker Development Group is investigating usage of DataInterchange XML
support and/or MQSeries Integrator V2 for implementation of a generic XML conversion exit.

Document handling in CICS
When the MailRoom receives documents from source scenarios, the documents
are first written to CICS temporary storage (TS) queues and later written
permanently to the MailRoom Transport Table in DB2. TS queues are also used
when interfacing with user applications utilizing the CICS MailRoom Write and Read
APIs, and with user-written MailRoom exits.

The physical size limit for a CICS TS queue is 32K records, each with a record
length up to 32K bytes. The MailRoom only accepts and handles record lengths up
to 2000 bytes, but a document can potentially contain more then 32K records.
Therefore large documents will span multiple TS queues.

Multiple TS queues
To handle multiple TS queues an index of active queues is needed, or in MailRoom
terminology, a List TS Queue (LTSQ), which displays the names of TS queues in
use.

 Chapter 1. MailRoom infrastructure 21

┌────────────┐
│LTSQ: TSQ00│
├────────────┤
│TSQ01 │ "────┐
│TSQ02 │ "────│──────────────┐
│TSQ03 │ "────│──────────────│──────────────┐
│TSQ04 │ "────│──────────────│──────────────│──────────────┐
└────────────┘ │ │ │ │

^ ^ ^ ^
┌────────────┐ ┌────────────┐ ┌────────────┐ ┌────────────┐

 │DATA: TSQ01│ │DATA: TSQ02│ │DATA: TSQ03│ │DATA: TSQ04│
├────────────┤ ├────────────┤ ├────────────┤ ├────────────┤

 │MEXTREC00ccc│ │Dddddd │ │Dhhhhh │ │Dlllll │
 │Daaaaa │ │Deeeee │ │Diiiii │ │Dmmmmm │
 │Dbbbbb │ │Dfffff │ │Djjjjj │ └────────────┘

│. . . │ │. . . │ │. . . │
 │Dccccc │ │Dggggg │ │Dkkkkk │

└────────────┘ └────────────┘ └────────────┘

Figure 5. Multiple TS queues

In the example shown in Figure 5, the document spans four TS queues
(TSQ01-TSQ04) and the LTSQ (TSQ00) contains four rows containing the TS
queue names. The contents of the four data TS queues can be considered as one
large document.

To simplify writing size-independent programs, a set of programming routines for
PL/1 is provided. With these routines, you can initialize, read, and write documents
to or from an LTSQ. The routines and documentation are in the KBHLTSQ include
member. The sample MailRoom programs also use KBHLTSQ.

22 BTB Application Programming Guide

This is in KBH.R450.PLINCL(KBHLTSQ).

All functions use an LTSQ control structure as a parameter, which is in
KBH.R450.PLINCL(KBHLTSQS).

Table 6. KBHLTSQ. Summary of available functions.

Function Description

 To write a large document

LTSQ_INIT_WRITE Create a new LTSQ and prepare for writing

LTSQ_WRITE_REC Write a record with length xx to LTSQ

LTSQ_WRITE_RECV Write a var char string to LTSQ

 To read a large document

LTSQ_INIT_READ Prepare for reading a LTSQ

LTSQ_READ_REC Read next record from LTSQ, set length

LTSQ_READ_RECV Read next record from LTSQ into var char

LTSQ_REWRITE_REC Rewrite a record with length xx to LTSQ

LTSQ_REWRITE_RECV Rewrite a var char string to LTSQ

 To position

LTSQ_FIRST Position to first record in document

LTSQ_LAST Position to last record in document

LTSQ_GOTO Position to specified record

 To get size and deletion

LTSQ_SIZE Calculate size of document

LTSQ_DELETE Delete LTSQ and associated data TS queues

 To move to and from VSAM file

LTSQ_TO_VSAM Copy a LTSQ to a VSAM file

LTSQ_FROM_VSAM Copy a VSAM file to a LTSQ

 Special purpose calls

LTSQ_INIT_WR_ONE Init a single TS queue for writing via LTSQ_WRITE_REC

LTSQ_INIT_RE_ONE Init a single TS queue for reading via LTSQ_READ_REC

LTSQ_ADD_DATATSQ Add a separate data TS queue to a LTSQ

Single TS queue—downward compatibility
The method described in “Multiple TS queues” on page 21 provides enough space
for large documents, but reading and writing the TS queue becomes more
complicated if the document is only 10 lines long. Both the CICS MailRoom Write
API, the CICS MailRoom Read API, and the MailRoom document exit API still
support single TS queues. This downward compatibility is only available for small
documents (less than 32K records contained in one TS queue).

Note: Old programs (accessing a single TS queue) will not operate correctly on
large documents. LTSQ methods must be used to process large documents.
Either the routines from KBHLTSQ can be used, or programming following the
LTSQ principle shown in Table 6.

 Chapter 1. MailRoom infrastructure 23

Implementation in APIs
The CICS MailRoom Write API supports both single TS queue and LTSQ. A switch
in the interface structure specifies if the passed TS queue is a single TS queue or
an LTSQ. For more information see “CICS MailRoom write API—KBAXWRP” on
page 72.

The CICS MailRoom Read API supports both single TS queue and LTSQ. A switch
in the interface structure specifies if the application expects the document to be
written to a single TS queue (pre&hypyhen.defined TS queue name) or to an LTSQ
(dynamically defined TS queue names with specified prefix). For more information
see “CICS MailRoom read API—KBAXREP” on page 77.

The MailRoom Document Exit API supports both single TS queue and LTSQ. The
exit program always receives the name of the LTSQ. If the document fits into one
TS queue, the program also receives the name of a single TS queue. For large
documents (more then one TS queue) this field is blank. For more information see
“Document exits” on page 42.

The MailRoom Routing Exit API supports only LTSQ. For more information see
“Routing exits” on page 56.

The Document Browser API supports only LTSQ. For more information see “CICS
MailRoom Document Browser API—KBAXDBP” on page 87.

Moving a large document from LTSQ to a VSAM data set can be necessary when
interfacing with other program products. The KBHLTSQ member contains routines
to move a LTSQ to and from a VSAM file, but it is still necessary to have a physical
VSAM data set, even though usage is temporary. To assist applications in
acquiring a VSAM data set from a pool of files and freeing it afterwards, an BTB
API can be used. For more information, see “Allocate a VSAM data set from a
pool—KBHUVSP” on page 241

 Linking envelopes
When new documents are inserted into the MailRoom they are assigned a unique
envelope ID. The envelope ID serves as the key to identify:

� Documents that arrived together
� Which events occurred for a document request

 � Overall status

If one document is processed by an exit, or sent to a destination, and the
processing involves creating a new document, the MailRoom can link the two
envelope IDs.

With this linking, it is possible to flip between the old and the new envelope using
the MailRoom status panels. Linking is possible in both directions.

24 BTB Application Programming Guide

Originating envelope ID for new envelope
While sending a new document into BTB, it is possible to pass the old envelope
key in the new M-record. When the information is passed in the correct format,
MailRoom will create an extra event containing the originating envelope ID. Using
the Jump action code, you can display information about the old envelope ID.
Jump is possible if the event is recognized as an envelope linking event.

� �
KBAMEMCL MailRoom List of Events IMB

Type one or more action codes, then press Enter.
Action codes: T=Text H=Help J=Jump to Envelope ?=Entire Message text

Country code . . . : 123 Layout : ORDRSP
To Tp. : CUST2 Envelope Id . . . : FGHIJ9401000
From Tp. : SUPL1 Message Language . . UK

 __________ __________
A Status Message ID Message text Last Update
_ PROC KBAKEA012 This envelope was created by ABCDE9401 01-12.30.10

Figure 6. MailRoom List of Events

The information about the originating envelope ID should be passed in the M-record
in field SKBA_REQ_KEY in this format:

M_REC.SKBA_REQ_KEY = 'IMB-ENVKEY'||OLD_ENV_KEY;

The first 10 bytes contain string IMB-ENVKEY and the next 9 bytes contain the
originating envelope ID.

If it is not possible to pass the information in the M-record (for example in SAP,
where the source scenario has no M-record), you can pass the envelope ID in
another field in the document, and then extract the key using a Kernel Exit and
create a similar event (see “Creating events that link to another envelope”).

Creating events that link to another envelope
When using the CICS MailRoom Write API to insert a document in MailRoom, the
new generated envelope ID is returned. This key can be inserted in an event on
the original envelope which has some meaningful text informing that a new
document was created with key xxx.

Using a normal message ID with special usage of the message variables will mark
the event as an envelope linking event, as shown in Figure 7 on page 26.

 Chapter 1. MailRoom infrastructure 25

� �
KBAMEMCL MailRoom List of Events IMB

Type one or more action codes, then press Enter.
Action codes: T=Text H=Help J=Jump to Envelope ?=Entire Message text

Country code . . . : 123 Layout : ORDRSP
To Tp. : SUPL1 Envelope Id . . . : ABCDE9401000
From Tp. : CUST1 Message Language . . UK

 __________ __________
A Status Message ID Message text Last Update
_ PROC KBAGSA001 Matching subscription found 01-12.30.01
_ PENDING KBADXA009 Send to PGM-CICS OK, reply is pending 01-12.30.01
_ IN PROC KBADTR003 Document read by Read API (Ack lvl 2) 01-12.30.03
_ IN PROC XXXZZZ001 Order with 10 items accepted 01-12.30.07
_ IN PROC XXXZZZ002 Order response created FGHIJ9401 01-12.30.09
_ FINISH XXXZZZ003 Order completed OK 01-12.30.10

Figure 7. Creating events that link to another envelope

The information about the link to envelope id should be placed in an event in this
format:

XXX.SKBH_MSGID = 'XXXZZZ002'; <<<<< use your own
(which has the text: Order response created &2)

XXX.SKBH_MSGVAR_X(1) = 'IMB-ENVKEY'; <<<<< mandatory
XXX.SKBH_MSGVAR_X(2) = NEW_ENV_KEY; <<<<< mandatory

The first message variable must contain the string IMB-ENVKEY, and the second
message variable must contain the new envelope ID. The message ID can contain
any text. New message IDs can be inserted in the BTB Message text table (Error
Messages and Event Messages) using option MSG.

Such events can be passed either from an exit (if the processing is done in an exit)
or using the Acknowledgment API.
For more about:

� Document Exits see “Document exits” on page 42

� Acknowledgments from CICS programs see “CICS MailRoom acknowledgment
API—KBAXACP” on page 84

� Acknowledgments from MQSeries see “Sending a Business Acknowledgment
to MailRoom using MQSeries” on page 107

� Acknowledgments from TCP/IP see “Sending a Business Acknowledgment to
MailRoom using TCP/IP” on page 130

� Acknowledgments from APPC see “Sending a Business Acknowledgment to
MailRoom using APPC” on page 138

 An example
This feature can be utilized in an order application. A customer sends an order
document through DataInterchange (ORDERS) to BTB. The order is processed in
a CICS program, and an order response document (ORDRSP) is created. This
new document is sent back to the customer through Electronic Data Interchange.

26 BTB Application Programming Guide

 1) ┌───┐ 2) ┌────────┐
 ┌────────────┐ │ │ envelope a │ Order │
│ EDI ORDERS │ ────7 │ I │ ────────────7 │ System │

 └────────────┘ │ │ (Trigger) │ │
│ M │ │ │

 │ │ 3) │ │
│ B │ envelope a │ │

 │ │ "──────────── │ │
 │ │ (Read API) │ │
 │ │ │ │
 6) │ │ 4) │ │
 ┌────────────┐ │ │ envelope b │ │
│ EDI ORDRSP │ "──── │ │ "──────────── │ │

 └────────────┘ │ │ (Write API) │ │
 │ │ │ │
 │ │ 5) │ │
 │ │ envelope a │ │
 │ │ "──────────── │ │
 │ │ (Ack API) │ │
 └───┘ └────────┘

The steps are:

1. An EDI order is sent to BTB and assigned envelope ID (envelope a).

2. The order is routed by BTB to the order system, in this example by triggering a
CICS program using a TD queue. Trigger information contains the original
envelope ID, envelope 1.

3. The order system uses the CICS MailRoom Read API to receive the order
document (envelope 1). The order is validated.

4. An order response is created in a new document. The M-record contains the
old envelope ID (envelope a). The CICS MailRoom Write API is called and a
new generated envelope ID is returned (envelope b).

5. The order system calls the CICS MailRoom Acknowledgment API to create an
event for envelope 1, informing that Order response created envelope b

6. The new order response document (envelope b) is routed by BTB, translated
with DataInterchange and sent back to the customer.

 Chapter 1. MailRoom infrastructure 27

28 BTB Application Programming Guide

 Chapter 2. MailRoom exits

As shown in the MailRoom overview (see Figure 1 on page 2), you can call a user
exit at certain points during MailRoom processing.

 Source exits
The MailRoom source layer has two exit points which can be used to reblock or
enrich a document before it is saved in MailRoom transport table. Selection of a
source exit is depending on the identity of the sender (name/queue/id/etc.) and the
source type. An exit is considered specific if it is only invoked for a single sender.
An exit is considered global if it is invoked for all senders of a source scenario.

Unpack Exit Gets control during the source processing of a document,
immediately after data is received and just before a Source
Exit. The Unpack Exit should unpack the passed buffer into
record format. A Source Unpack Exit can reject a document
if the format is unrecognized. The Unpack Exit is available
for the MQSeries based scenarios (MQ, SAP-MQ, TIE-MQ)
where data is received as one long buffer.

Source Exit Gets control during the source processing of a document,
immediately after data is received. A Source Exit can reject
a document if the format is unrecognized.

While the two Source Exits can change data, the intended purpose is only to split
the buffer into smaller records and to dynamically build the M-record.

The source exits are defined in the source exit table, see the System Administration
Guide.

Both user written source exits and MailRoom supplied source exits can be used.
The MailRoom supplied source exits can be found in “MailRoom supplied source
exits” on page 58. User written source exits must be coded according to the
instructions in “Source exits” on page 31.

 Document exits
The MailRoom kernel and destination layer also have exit points called document
exits which can be used to read and potentially update the document.

Exits are called once per Document (Request) in the Envelope.

Kernel Exit Gets control during the kernel processing of a document,
immediately after the security check has been performed. A
Kernel Exit can read or update the document and if
necessary FAIL or LOCK it to stop further processing.

The exit can also insert up to five events as MailRoom meta
data. These event records can potentially be used to store
results of the exit processing. The events can be viewed
using standard on-line dialogues.

Destination Exit Gets control during the destination processing of a document,
immediately before further sending or translation. A
Destination Exit can read or update the document and if
necessary FAIL it to stop further processing.

 Copyright IBM Corp. 1992, 2002 29

The exit can also insert up to five events as MailRoom meta
data. These event records can potentially be used to store
results of the exit processing. The events can be viewed
using standard on-line dialogues.

Display Exit Gets control during on-line screen display before a specific
version of a document has been selected for viewing. Such
an exit is selected from a list at display time. The exit can
reformat the document to give a better visual presentation of
the document on the screen. The result is not saved.

A kernel or destination (document) exit is defined on the MailRoom service or
subscription.

Both user written document exits and MailRoom supplied document exits can be
used. The MailRoom supplied document exits can be found in “MailRoom supplied
document exits” on page 60. User written document exits must be coded
according to the instructions in “Document exits” on page 42.

Special purpose exits
Two other exit points are defined:

Routing exits Are an option for MailRoom services defined with Extended
Routing. A Routing Exit is used to dynamically select the
receivers of a document. Based on its own logic and the
contents of the document, it can return a number of To
Trading Partners, which will receive a copy of the document.
The exit must be coded according to the instructions in
“Routing exits” on page 56.

SAP naming exit Is called during MailRoom sending of IDOCs to SAP R/3 (for
destination type SAP and SAP-MQ). The purpose is to build
a SAP control record EDI_DC if one is not already precent in
the document. There is one global exit for sending IDOCs,
see “SAP Naming exits” on page 55.

30 BTB Application Programming Guide

 Source exits
Source exits are called by the MailRoom source layer every time a document is
received and a source exit has been setup for this source scenario on the
MailRoom Source Exits panel.

The intended purpose of using source exits is to have some exit points, where an
exit can get control of data before data is stored in the MailRoom Transport tables.
The exits can be used to unpack data in transmission format into BTB file format,
and by this make it possible to transmit data to BTB that is in another format than
those supported by BTB. The other main function is to enrich the data with routing
information (M-record), if this not already part of data, or to update this routing
information.

Note: The exits has the possibility to change the data, but this is not the intended
purpose of using source exits.

The source layer has two exit points and also two types of exits that can be used
by the source scenarios. The first type of exit unpack exit gets control when data is
in transmission format. The second type source exit gets control when data is in
BTB file format. The unpack exit will always get control before the source exit.
Table 7 shows the dependence between the source scenario and the type of exit
that is available.

The use of source exit is controlled by the MailRoom source exit table, which hold
all user information to be used by the exits. Every source scenario that supports
source exits, will check this table for an exit when data is received. Information from
this table is passed to the exit along with the received document, and can be used
by the exit in building the BTB file format. The source layer will search the table to
find an applicable exit entry. The key to this search is the type of source and the
identity of the sender. See Table 8 on page 32 for an explanation of the relation
between the type of source and the identity of the sender. The search will attempt
to locate an exit in the following order:

Table 7. Source exit availability table

Source scenario type Unpack exit Source exit

APPC N/A Yes

BATCH N/A N/A

DI-EDI N/A Yes

EXP-DOC N/A Yes

EXP-FILE N/A Yes

MQ Yes Yes

PGM N/A Yes

SAP N/A Yes

SAP-MQ Yes Yes

TCPIP N/A Yes

TIE-IMS N/A N/A

TIE-MQ Yes Yes

 Chapter 2. MailRoom exits 31

� Look for entry matching Source Type, Sender Identity part 1 and Sender
Identity part 2. If Sender Identity part 2 is not used for the particulary source
type, this step is omitted.

� Look for entry matching Source Type, Sender Identity part 1 and <*>.

� Look for entry matching Source Type and <*>. This will be a global exit.

� If an entry is found, the values for the entry will be used.

� If no entry is found, then no exit will be called and MailRoom is expecting the
received data to be in BTB file format with an M-record as the first record.

Setting up source exits (refer to the System Administration Guide).

Table 8. Relation between type of source and Sender Identity

Source
scenario type

Sender Identity part1
(Sender_Id1)

Sender Identity part2
(Sender_Id2)

APPC Connection/SysID N/A

DI-EDI DI Internal TP id DI Format

EXP-DOC Msg User Class Account / Userid

EXP-FILE Msg User Class Account / Userid

MQ MQSeries Queue name N/A

PGM CICS Transaction Userid

SAP IP Address N/A

SAP-MQ MQSeries Queue name N/A

TCPIP IP Address N/A

TIE-MQ MQSeries Queue name N/A

 Unpack exits
The unpack exit is used to unpack the transmission data format into BTB file
format. This can be used to send data in an application specific format, and then
have a user written exit called to unpack data into BTB file format before data is
stored in the MailRoom transport tables.

General conditions for unpack exits
Exits are called to enable specific application data formats to be supported before
data is stored in the MailRoom

� Unpack exit splits the data into BTB file format and write document data into a
TS queue or LTSQ.

� The exit must setup the return code to indicate the further action for the
received data.

� The exit must execute in the same CICS region as the MailRoom

32 BTB Application Programming Guide

 Format
exitname is a CICS Main program, which is LINKed to with this LINK syntax:

LINK Syntax (PL/I):

77── EXEC CICS LINK PROGRAM('exitname')
 COMMAREA(KBAXITSU)
 LENGTH(CSTG(KBAXITSU)); ─────────────────────7"

 Parameters
Exits are given access to two types of data using the CICS commarea:

1. MailRoom source exit registration data applicable to this instance.
2. Business application data in transmission format.

Here is the structure of the exit API, which is in KBH.R450.PLINCL(KBAXITSU):

 /* +---+ */
 /* | -------- INTELLIGENT MESSAGE BROKER (IMB) --------- | */
 /* | (C) Copyright IBM Denmark. 2001. All Rights Reserved. | */
 /* | (C) Copyright IBM Corp. 2001. All Rights Reserved. | */
 /* | | */
 /* | | */
 /* +---+ */

/* +---+ */
 /* | IMB | */
 /* | =============================== | */
 /* | | */
/* | STRUCTURE : KBAXITSU | */
 /* | | */
/* | LENGTH : 01600 BYTES | */
 /* | | */
/* | CONTENTS : API TO SOURCE UNPACK EXIT | */
 /* | | */
/* | RELATIONS : NONE. | */
 /* | | */
/* +---+ */
 /* */
 /* OFFSET */
 /* ---- */

3 SKBA_TYPE_SRC CHAR(08), /* SOURCE SCENARIO TYPE 0000 */
3 DOC_DATA, /* DOCUMENT DATA 0008 */
5 DOC_DATA_TYPE CHAR(03), /* HOW DATA IS PARSED 0008 */

 5 DOC_DATA_PTR POINTER, /* POINTER TO DATA 0011 */
5 DOC_DATA_LENGTH FIXED BIN(31),/* LENGTH OF DATA 0015 */
5 DOC_DATA_TSQ CHAR(08), /* TS-QUEUE OR LTSQ 0019 */
5 DOC_DATA_RESERVE CHAR(80), /* FUTURE USE 0027 */
3 CNTL_DATA, /* CONTROL INFORMATION 0107 */
5 CNTL_DATA_TYPE CHAR(03), /* HOW CNTL IS PARSED 0107 */
5 CNTL_DATA_PTR POINTER, /* POINTER TO CNTL INFO 0110 */
5 CNTL_DATA_LENGTH FIXED BIN(31),/* LENGTH OF CNTL INFO 0114 */
5 CNTL_DATA_TSQ CHAR(08), /* TS-QUEUE OR LTSQ 0118 */
5 CNTL_DATA_RESERVE CHAR(80), /* FUTURE USE 0126 */
3 ENVIRONMENT_DATA CHAR(300), /* ENVIRONMENT SPEC.DATA 0206 */
3 SKBA_SENDER_ID1 CHAR(64), /* SENDER IDENTITY 0506 */
3 SKBA_SENDER_ID2 CHAR(64), /* SENDER IDENTITY PART2 0570 */

 Chapter 2. MailRoom exits 33

3 SKBA_UNPACK_PARM CHAR(40), /* PARAMETER DATA 0634 */
3 SKBA_TOTDOC FIXED BIN(31),/* TOTAL NUMBER OF DOCUM 0674 */
3 SKBH_EXIT_RC CHAR(02), /* RETURN CODE 0678 */
3 SKBH_MSGID CHAR(10), /* MESSAGE ID 0680 */
3 SKBH_MSGVAR, /* MSG VARIABLE 0690 */
5 SKBH_MSGVAR_X(3) CHAR(25), /* 1, 2, 3 0690 */

 3 SKBH_LTSQ CHAR(08), /* LTSQ 0765 */
 3 SKBH_TSQUEUE CHAR(08), /* TS-QUEUE 0773 */

3 SKBA_DOCVERSION CHAR(30), /* DOCUMENT VERSION 0781 */
3 RESERVED CHAR(789) /* FUTURE USE 0811 */

 /* */
 /* TOTAL LENGTH 01600 */
/* == END OF STRUCTURE KBAXITSU == */
 /* -- */

SKBA_TYPE_SRC
Specify the source scenario type that calls the exit.

This is an input field.

DOC_DATA_TYPE
Specify how the data is parsed to the exit:

1. PTR - the exit has access to data through a pointer.

2. TSQ - the exit has access to data in a single TSQ.

3. LTS - the exit has access to data in a LTSQ (see “Multiple TS
queues” on page 21).

This is an input field.

DOC_DATA_PTR
Pointer to storage containing data to be unpacked when
DOC_DATA_TYPE is PTR.

This is an input field.

DOC_DATA_LENGTH
Length of data in storage when DOC_DATA_TYPE is PTR.

This is an input field.

DOC_DATA_TSQ
Name of single TS queue or LTSQ holding data to be unpacked when
DOC_DATA_TYPE is TSQ or LTS.

This is an input field.

DOC_DATA_RESERVE
Reserved for future use.

CNTL_DATA_TYPE
Specify how the control data is parsed to the exit:

1. PTR - the exit has access to control data through a pointer.

2. TSQ - the exit has access to control data in a single TSQ.

3. LTS - the exit has access to control data in a LTSQ (see “Multiple
TS queues” on page 21).

This is an input field.

34 BTB Application Programming Guide

CNTL_DATA_PTR
Pointer to storage containing control data when CNTL_DATA_TYPE is
PTR. The control data might be used by the exit to determine how to
unpack the data.

This is an input field.

CNTL_DATA_LENGTH
Length of control data in storage when CNTL_DATA_TYPE is PTR.

This is an input field.

CNTL_DATA_TSQ
Name of single TS queue or LTSQ holding control data when
CNTL_DATA_TYPE is TSQ or LTS.

This is an input field.

CNTL_DATA_RESERVE
Reserved for future use.

ENVIRONMENT_DATA
Specific data for this type of source scenario, that can be used by the
exit. Data is only available in some source scenarios.

This is an input field.

SKBA_SENDER_ID1
Information about the sender depending on the source scenario type.

This is an input field.

SKBA_SENDER_ID2
Information about the sender depending on the source scenario type.
Only available in some source scenarios.

This is an input field.

SKBA_UNPACK_PARM
User parameter data from the source exit table.

This is an input field.

SKBA_TOTDOC
Total number of unpacked documents (number of M-records). This field
must be updated by the exit.

This is an output field.

SKBH_EXIT_RC
Exit return code. The value of the return code, determine the further
process for the document. The following return codes can be used by
the exit:

00 The data has been successfully unpacked into BTB file
format and has been placed in a TS queue or LTSQ.

01 The data has been successfully unpacked, but there is no
data to be processed by the MailRoom.

08 The exit did not succeed to unpack all data. The document
can not be considered as valid, but it has been placed in a
TS queue or LTSQ. BTB should build a dummy M-record
and the document should be stored in the transport tables.
The document will be failed in the MailRoom. The

 Chapter 2. MailRoom exits 35

SKBH_MSGID should be set to indicate why the exit was
unable to unpack the data.

16 Severe error has occured. No data has been unpacked and
there is no valid data to be stored. Appropiate action will be
taken depending on the type of source scenario. The
SKBH_MSGID should be set to indicate the error reason.

This is an output field.

SKBH_MSGID
MailRoom Message ID. MailRoom has a standard multi-language
message facility that is also available for application use. By storing
application messages in the MailRoom message database (DB2), a
server can later refer to the message by providing the message number
and optionally three variables.

The exit can have a message stored by MailRoom in the error log. This
should only be us when SKBH_EXIT_RC is set to '08' or '16'

This is an output field.

SKBH_MSGVAR
Three 25-character variables that can be used to compose
application-specific and occurrence-specific event.

This is an output field.

SKBH_LTSQ
The name of the LTSQ holding the unpacked data in BTB file format.

See “Multiple TS queues” on page 21 for more information about
reading and writing records in an LTSQ.

This is an output field.

Note: All TS queue names beginning with KB are BTB reserved
names.

If SKBH_LTSQ is used SKBH_TSQUEUE should be set to blanks.

SKBH_TSQUEUE
The name of the TS queue holding the unpacked data.

If the document is larger than 32K records, this field is be blank, and the
only way to access the document is through LTSQ (see “Multiple TS
queues” on page 21) and field SKBH_LTSQ.

This is an output field.

Note: All TS queue names beginning with KB are BTB reserved
names.

If SKBH_TSQUEUE is used SKBH_LTSQ should be set to blanks,
otherwise the unpacked data will be processed from the SKBH_LTSQ.

SKBA_DOCVERSION
Version of document. Information is stored along with the document in
the transport tables, and is used as information about where this
document was created.

This is an output field.

RESERVED
For future use.

36 BTB Application Programming Guide

 Source exits
The source exit is used to build routing information (M-record) if this is not present
in the data. The exit can also overwrite existing information. Data to build the
M-record is passed to the exit from the source exit table or data can be any
information from the received document.

General conditions for source exits
Exits are called to enable specific application data formats to be supported before
data is stored in the MailRoom

� Unpack exit splits the data into BTB file format and write document data into a
TS queue or LTSQ.

� The exit must setup the return code to indicate the further action for the
received data.

� The exit must execute in the same CICS region as the MailRoom

 Format
exitname is a CICS Main program, which is LINKed to with this LINK syntax:

LINK Syntax (PL/I):

77── EXEC CICS LINK PROGRAM('exitname')
 COMMAREA(KBAXITSX)
 LENGTH(CSTG(KBAXITSX)); ─────────────────────7"

 Parameters
Exits are given access to two types of data using the CICS commarea:

1. MailRoom source exit registration data applicable to this instance.
2. Business application data in BTB file format.

Here is the structure of the exit API, which is in KBH.R450.PLINCL(KBAXITSX):

 /* +---+ */
 /* | -------- INTELLIGENT MESSAGE BROKER (IMB) --------- | */
 /* | (C) Copyright IBM Denmark. 2001. All Rights Reserved. | */
 /* | (C) Copyright IBM Corp. 2001. All Rights Reserved. | */
 /* | | */
 /* | | */
 /* +---+ */

/* +---+ */
 /* | IMB | */
 /* | =============================== | */
 /* | | */
/* | STRUCTURE : KBAXITSX | */
 /* | | */
/* | LENGTH : 01800 BYTES | */
 /* | | */
/* | CONTENTS : API TO SOURCE EXIT | */
 /* | | */
/* | RELATIONS : NONE. | */
 /* | | */
/* +---+ */

 Chapter 2. MailRoom exits 37

 /* */
 /* OFFSET */
 /* ---- */

3 SKBA_TYPE_SRC CHAR(08), /* SOURCE SCENARIO TYPE 0000 */
3 DOC_DATA_TYPE CHAR(03), /* HOW DATA IS PARSED 0008 */

 3 SKBH_LTSQ CHAR(08), /* LTSQ 0011 */
 3 SKBH_TSQUEUE CHAR(08), /* TS-QUEUE 0019 */

3 ENVIRONMENT_DATA CHAR(300), /* ENVIRONMENT SPEC.DATA 0027 */
3 SKBA_SENDER_ID1 CHAR(64), /* SENDER IDENTITY 0327 */
3 SKBA_SENDER_ID2 CHAR(64), /* SENDER IDENTITY PART2 0391 */
3 SKBA_SOURCE_PARM CHAR(40), /* PARAMETER DATA 0455 */
3 MREC_INFO, /* 0495 */
5 IOPUCTY CHAR(03), /* COUNTRY CODE 0495 */

 5 SKBA_LAYOUT CHAR(16), /* LAYOUT 0498 */
5 SKBA_TPID_FROM CHAR(35), /* TRADING PARTNER FROM 0514 */
5 SKBA_TPID_TO CHAR(35), /* TRADING PARTNER TO 0549 */
5 SKBA_REF_DATA CHAR(40), /* APPL. REFERENCE DATA 0584 */
3 SKBA_TOTDOC FIXED BIN(31),/* TOTAL NUMBER OF DOCUM 0624 */
3 SKBH_EXIT_RC CHAR(02), /* RETURN CODE 0628 */
3 SKBH_MSGID CHAR(10), /* MESSAGE ID 0630 */
3 SKBH_MSGVAR, /* MSG VARIABLE 0640 */
5 SKBH_MSGVAR_X(3) CHAR(25), /* 1, 2, 3 0640 */
3 M_RECORD CHAR(300), /* M-RECORD BUILD BY EXIT0715 */
3 SKBA_DOCVERSION CHAR(30), /* DOCUMENT VERSION 1015 */
3 RESERVED CHAR(755) /* FUTURE USE 1045 */

 /* */
 /* TOTAL LENGTH 01800 */
/* == END OF STRUCTURE KBAXITSX == */
 /* -- */

SKBA_TYPE_SRC
Specify the source scenario type that calls the exit.

This is an input field.

DOC_DATA_TYPE
Specify how the data is parsed to the exit:

1. TSQ - the exit has access to data in a single TSQ.

2. LTS - the exit has access to data in a LTSQ (see “Multiple TS
queues” on page 21).

This is an input field.

SKBH_LTSQ
The name of the LTSQ holding the data in BTB file format.

See “Multiple TS queues” on page 21 for more information about
reading and writing records in an LTSQ. Data can be updated by the
exit or a new LTSQ can be created and returned by the exit.

This is an input/output field.

Note: All TS queue names beginning with KB are BTB reserved
names.

If a new LTSQ is created, the old LTSQ will be deleted on return from
the exit.

If SKBH_LTSQ is used SKBH_TSQUEUE should be set to blanks.

38 BTB Application Programming Guide

SKBH_TSQUEUE
The name of the TS queue holding the data in BTB file format.

If the document is larger than 32K records, this field is be blank, and the
only way to access the document is through LTSQ (see “Multiple TS
queues” on page 21) and field SKBH_LTSQ.

This is an input/output field.

Note: All TS queue names beginning with KB are BTB reserved
names.

If SKBH_TSQUEUE is used SKBH_LTSQ should be set to blanks,
otherwise the data will be processed from the SKBH_LTSQ.

ENVIRONMENT_DATA
Specific data for this type of source scenario, that can be used by the
exit. Data is only available in some source scenarios.

This is an input field.

SKBA_SENDER_ID1
Information about the sender depending on the source scenario type.

This is an input field.

SKBA_SENDER_ID2
Information about the sender depending on the source scenario type.
Only available in some source scenarios.

This is an input field.

SKBA_SOURCE_PARM
User parameter data from the source exit table.

This is an input field.

IOPUCTY Country code from the source exit table.

This is an input field.

SKBA_LAYOUT
Layout from the source exit table.

This is an input field.

SKBA_TPID_FROM
External Trading Partner identification (sender) from the source exit
table.

This is an input field.

SKBA_TPID_TO
External Trading Partner identification (receiver) from the source exit
table.

This is an input field.

SKBA_REF_DATA
Application reference data from the source exit table.

This is an input field.

SKBA_TOTDOC
Total number of documents (number of M-records).

This is an input field.

 Chapter 2. MailRoom exits 39

SKBH_EXIT_RC
Exit return code. The value of the return code, determine the further
process for the document. The following return codes can be used by
the exit:

00 The data has been successfully processed and routing
information has been build and placed in a TS queue or
LTSQ. The M-record must be first record in the data.

04 The data has been successfully processed and routing
information has been build and placed in field M_RECORD.
Document data is in TS queue or LTSQ. There must not be
any M-records in the TS queue or LTSQ.

05 The data has been successfully processed and routing
information has been build and placed in field M_RECORD.
Document data is in TS queue or LTSQ. Data will be prefixed
with 'D' when inserted into MailRoom transport tables. There
must not be any M-records in the TS queue or LTSQ.

08 The exit did not succeed to build routing information. The
document can not be considered as valid. BTB should build
a dummy M-record and the document should be stored in the
transport tables. The document will be failed in the
MailRoom. The SKBH_MSGID should be set to indicate why
the exit was not able to unpack the data.

16 Severe error has occured. No valid data to be stored.
Appropiate action will be taken depending on the type of
source scenario. The SKBH_MSGID should be set to indicate
the error reason.

This is an output field.

SKBH_MSGID
MailRoom Message ID. MailRoom has a standard multi-language
message facility that is also available for application use. By storing
application messages in the MailRoom message database (DB2), a
server can later refer to the message by providing the message number
and optionally three variables.

The exit can have a message stored by MailRoom in the error log. This
should only be us when SKBH_EXIT_RC is set to '08' or '16'

This is an output field.

SKBH_MSGVAR
Three 25-character variables that can be used to compose
application-specific and occurrence-specific event.

This is an output field.

M_RECORD
This field is used field SKBH_EXIT_RC = '04' or '05'. The field contains
the MailRoom M-record to be used when inserting the document into the
MailRoom transport tables. The M-record can be simple or extended,
but we will recommend that the extended is used when ever possible.
For more information about the M-record (see “Understanding the
M-record” on page 8).

This is an output field.

40 BTB Application Programming Guide

SKBA_DOCVERSION
Version of document. Information is stored along with the document in
the transport tables, and is used as information about where this
document was created.

This is an output field.

RESERVED
For future use.

Format of TS queue
Application data is passed to the exit in an LTSQ or in a single TS queue. The
LTSQ is available in the SKBH_LTSQ field, and a single TS queue is available in
the SKBH_TSQUEUE field. The input LTSQ or TS queue will contain the received
document, that is expected to be in BTB file format.

To operate on records in an LTSQ, see the available routines in “Multiple TS
queues” on page 21.

Many updates to the document by the exit will usually require a new TS queue
because CICS has limited change options for TS queues. When creating a new TS
queue, the exit must ensure that the name is unique. See “Generate unique TS
queue names—KBHUQNP” on page 239 for a method to create a unique TS
queue name. Naming of new TS queues is done automatically by the LTSQ
routines.

Both original TS queues and new returned TS queues are deleted by MailRoom
after use. All temporary queues created by the exit must be deleted before
returning to MailRoom.

 Examples
Examples of the exits are in:

PLI Sample Source exit: KBH.R450.PLI(KBGXSXM)

A number of general purpose source exits are delivered with BTB, see “MailRoom
supplied source exits” on page 58.

 Chapter 2. MailRoom exits 41

 Document exits

 Kernel exits
Kernel exits are called immediately after security checking has been performed
successfully (if rejected by the security function, the exit is not called).

The Kernel exit can read or update the received document. It can also stop further
processing of the current document by returning SKBH_EXIT_RC = 08 (current
request will FAIL), or it can request the kernel to stop processing all documents in
the same source envelope by returning SKBH_EXIT_RC = 16 (all requests and
envelope will LOCK).

The LOCK can be used to perform cross-document checking to see if a total
counter in the last document matches the sum of all documents.

 Destination exits
Destination exits are used to reformat the business data in-flight, after it has been
read from the MailRoom tables and is in the process of being sent to the
destination. For example a Destination exit can be used to insert headers and to
handle other formatting items when creating a fax or an e-mail of the business
transaction.

The Destination exit can update or read the received document. It can also stop
further processing of the current document by returning SKBH_EXIT_RC = 08
(current request will FAIL).

The LOCK function from Kernel exits (returning SKBH_EXIT_RC = 16) is not
available in Destination exits.

 Display exits
Display exits can be called from the online MailRoom status panel while displaying
the contents of a document.

A display exit should be used to enhance the viewing readability of a document for
the user. The exit receives the original document from the transport table and
reformats it into an appropriate screen display format.

General conditions for exits
Exits are called to enable specific application-related processing to be performed,
while the data is the responsibility of the MailRoom.

� Exits are always called at the document (request) level.

� The document (application data) is made available in an LTSQ (see “Multiple
TS queues” on page 21), or in a single TS queue if the document is small (less
then 32K records).

� Data can optionally be updated by the exit. The update can either take place
in the original parsed LTSQ or TS queue, or the exit can create a new LTSQ or
TS queue and return it. If a new LTSQ or TS queue is created and returned,
MailRoom deletes it after use. The exit must use the process indicator
SKBA_PROCESS_IND to indicate that the document has been updated.

42 BTB Application Programming Guide

� Exits can, optionally, insert up to five events as MailRoom meta data. These
event records can potentially be used to store results of the exit processing.
The events can be viewed using standard online dialogs and later extracted
using SQL queries.

� Exits can call the Document Browser API (see “CICS MailRoom Document
Browser API—KBAXDBP” on page 87). This lets you retrieve a document
other than the one in progress, provided the exit has access to the key.

 Format
exitname is a CICS Main program, which is LINKed to with this LINK syntax:

LINK Syntax (PL/I):

77── EXEC CICS LINK PROGRAM('exitname')
 COMMAREA(KBAXIT)
 LENGTH(CSTG(KBAXIT)); ─────────────────────7"

Exit implementation summary
Exit type Scenario MR

reg.data
Document Comment

SRC See “Source exits” on
page 31

KERNEL All R/O R/W

DEST DI-EDI R/O R/W Called before DI
translation

DEST All other R/O R/W

DISPLAY All R/O R/W Modified image not saved

 Parameters
Exits are given access to two types of data using the CICS commarea:

1. MailRoom registration data applicable to this instance.
2. Business application data in standard MailRoom format

Here is the structure of the exit API, which is in KBH.R450.PLINCL(KBAXIT):

 /* +---+ */
 /* | -------- INTELLIGENT MESSAGE BROKER (IMB) --------- | */
 /* | (C) Copyright IBM Denmark. 2000. All Rights Reserved. | */
 /* | (C) Copyright IBM Corp. 2000. All Rights Reserved. | */
 /* | | */
 /* | | */
 /* +---+ */

 /* +--+ */
 /* | IMB MAILROOM | */
 /* | =============================== | */
 /* | | */
 /* | STRUCTURE : KBAXIT | */
 /* | | */
 /* | LENGTH : 07000 BYTES | */
 /* | | */

 Chapter 2. MailRoom exits 43

/* | CONTENTS : COMMUNICATION AREA TO MAILROOM EXITS | */
 /* | | */
 /* | RELATIONS : INITIALIZED BY MAILROOM WHEN CALLING | */
 /* | EXITS. | */
 /* | | */
 /* +--+ */
 /* */
 /* OFFSET */
 /* --- */
 5 KBAXIT_REC, /* Exit API structure 000 */

10 SKBH_EXIT_MODE CHAR(008), /* EXIT TYPE 000 */
10 SKBH_TSQUEUE CHAR(008), /* PASSED SINGLE TS QUEUE008 */
10 SKBH_LTSQ CHAR(008), /* PASSED LIST TS QUEUE 008 */
10 KBAXIT_RES1 CHAR(008), /* RESERVED 016 */
10 SKBA_PROCESS_IND CHAR(001), /* PROCESS INDICATOR 032 */
10 SKBH_EVENTS(5), /* 5 OPTIONAL EVENT TEXTS033 */
20 SKBH_MSGID CHAR(010), /* MESSAGE ID */
20 SKBH_MSGVAR, /* MSG VARIABLE */
30 SKBH_MSGVAR_X(3) CHAR(025), /* 1, 2, 3 */

10 SKBH_EXIT_RC CHAR(002), /* EXIT RETURNCODE 458 */
10 SKBA_REQ_KEY, /* REQ KEY (FOR ACK) */
20 SKBA_ENV_DER CHAR(012), /* DERIVED ENV KEY 460 */
20 SKBA_DOCSEQNO_NUM CHAR(010), /* DOC NUMBER 472 */
20 KBAXIT_RES2 CHAR(018), /* RESERVED 482 */
10 ICUSPRM_FROM CHAR(009), /* TP-NO SENDER - INT 500 */
10 ICUSPRM_TO CHAR(009), /* TP-NO RECEIVER - INT 509 */
10 SKBA_TPID_FROM CHAR(035), /* TP-NO SENDER - EXT 518 */
10 SKBA_TPID_TO CHAR(035), /* TP-NO RECEIVER - EXT 553 */
10 SKBA_LAYOUT CHAR(016), /* LAYOUT OF DATA 588 */
10 SKBA_REF_DATA CHAR(040), /* APPLICATION REF.DATA 604 */
10 SKBA_REF_DATA2 CHAR(040), /* APPLICATION REF.DATA2 644 */
10 IOPUCTY CHAR(003), /* COUNTRY/ORG CODE 684 */
10 SKBH_EXIT_PARM CHAR(040), /* EXIT PARMETERS 687 */
10 KBAXIT_RES3 CHAR(073), /* RESERVED 727 */
10 SKBH_ATTR(100) CHAR(016), /* ATTRIBUTE NAME 800 */
10 SKBH_VALUE(100) CHAR(040), /* ATTRIBUTE VALUE 2400 */

 10 KBAXIT_RES4 CHAR(600) /* RESERVED 6400 */
 /* */
 /* TOTAL LENGTH 07000 */
/* == END OF STRUCTURE KBAXIT == */
 /* */

SKBH_EXIT_MODE
Eye-catcher indicating from where the exit is called. Currently the
contents are KERNEL, DEST, or DISPLAY.

SKBH_TSQUEUE
The name of the TS queue holding the document. The exit can update
the document, either by returning a new TS queue name, or by updating
the contents of the original TS queue. The exit must use the process
indicator SKBA_PROCESS_IND to indicate that the document has been
updated. MailRoom will then save a new version of the document in the
transport table.

If the document is larger than 32K records, this field is be blank, and the
only way to access the document is through LTSQ (see “Multiple TS
queues” on page 21) and field SKBH_LTSQ.

44 BTB Application Programming Guide

Note: All TS queue names beginning with KB are BTB reserved
names. Original TS queue and returned TS queue are deleted after
use.

SKBH_LTSQ
The name of the LTSQ holding the data. The exit can update the
document, either by returning a new LTSQ, or by updating the contents
of the document in the original LTSQ. The exit must use the process
indicator SKBA_PROCESS_IND to indicate that the document has been
updated. MailRoom will then save a new version of the document in the
transport table.

See “Multiple TS queues” on page 21 for more information about
reading and writing records in an LTSQ.

Note: All TS queue names beginning with KB are BTB reserved
names. Original TS queue and returned TS queue are deleted after
use.

SKBA_PROCESS_IND
Initialized to blank. Valid return values are R or blank for Read, and U
for Updated. This field must be set with the value U if the exit updated
the document.

SKBH_MSGID
MailRoom Message ID. MailRoom has a standard multi-language
message facility that is also available for application use. By storing
application messages in the MailRoom message database (DB2), a
server can later refer to the message by providing the message number
and optionally three variables.

In this case an exit can have a message stored by MailRoom as an
event in the MailRoom repository if a message number is returned here.
Up to five events can be specified for insertion by MailRoom.

If this field is blank, and SKBH_MSGVAR is also blank, the MailRoom
will insert an event using the generic messages KBAGXA011 and
KBAGXA012, depending on the contents of SKBA_PROCESS_IND.

If SKBH_MSGID is blank and MSGVAR is not blank, KBAGXA010 is
used with the passed message varables:

KBAGXA010 UK I &1&2&3
KBAGXA011 UK I Document browsed by exitname
KBAGXA012 UK I Document updated by exitname

SKBH_MSGVAR
Three 25—character variables that can be used to compose
application-specific and occurrence-specific events.

SKBH_EXIT_RC
Exit return code. Can be used by the exit to request MailRoom to FAIL
the document. Valid values 00 for OK and 08 for FAIL. A kernel exit
can also return 16 to LOCK the full source envelope.

Document a fail request with one or more events (SKBH_MSGID)
explaining the error situation.

SKBA_ENV_DER
MailRoom internal key for the derived envelope (part of
SKBH_REQ_KEY).

 Chapter 2. MailRoom exits 45

SKBA_DOCSEQNO_NUM
MailRoom internal document sequence number within the envelope.
(part of SKBH_REQ_KEY)

ICUSPRM_FROM
MailRoom internal Trading Partner account number (sender).

ICUSPRM_TO
MailRoom internal Trading Partnerr account number (receiver).

SKBA_TPID_FROM
External Trading Partner identification (sender).

SKBA_TPID_TO
External Trading Partner identification (receiver).

SKBA_LAYOUT
MailRoom document layout name.

SKBA_REF_DATA
40 bytes of application (reference) data. Optionally containing reference
data set up by the sender.

SKBA_REF_DATA2
40 bytes of application (reference) data. Optionally containing reference
data returned by the recipient business application server, using the
MailRoom acknowledgement API.

This field can also be updated by the exit, but its use must be
coordinated with the server processing.

If used, MailRoom will insert the field in the MailRoom Request table
that can be browsed on the Request Status online panels or used by
off-line application access.

IOPUCTY Country code.

SKBH_EXIT_PARM
Exit parameters as defined on the service panel. Can be used to start
the same exit with different parameters.

SKBH_ATTR
Array with up to 100 field names of the fields that have been used to
register data for this particular service or subscription. The set differs
depending on the service.

SKBH_VALUE
The corresponding array with up to 100 field contents.

Format of TS queue
Application data is passed to the exit in an LTSQ or in a single TS queue. The
LTSQ is available in the SKBH_LTSQ field, and a single TS queue is available in
the SKBH_TSQUEUE field (which will be blank for documents with more than 32K
rows).

To operate on records in an LTSQ, see the available routines in “Multiple TS
queues” on page 21.

The input LTSQ or TS queue will contain one document (request).

46 BTB Application Programming Guide

The format of the M-record and the selection of rows depends upon the exit type
and the definitions of the service or subscription. A kernel exit sees the unchanged
document, whereas the format of the document given to a destination exit is
controlled by the registrations on the service or subscription.

Many updates to the document by the exit will usually require a new TS queue
because CICS has limited change options for TS queues. When creating a new TS
queue, the exit must ensure that the name is unique. See “Generate unique TS
queue names—KBHUQNP” on page 239 for a method to create a unique TS
queue name. Naming of new TS queues is done automatically by the LTSQ
routines.

Both original TS queues and new returned TS queues are deleted by MailRoom
after use. All temporary queues created by the exit must be deleted before
returning to MailRoom.

 Examples
Examples of the exits are in:

PLI Sample Kernel and Destination exit: KBH.R450.PLI(KBGXITM)

PLI Sample Display exit: KBH.R450.PLI(KBGXIDM)

A number of general purpose document exits are delivered with BTB, see
“MailRoom supplied document exits” on page 60.

Exit and MailRoom in same the CICS region
The exit usually runs in the same CICS as the MailRoom and all resources are
defined as local.

 . .
. MailRoom CICS region .

 . .
 . ┌──────────┐ .
 . │ │ .

. │ MailRoom │ ┌───────┐ .
 . │ Kernel │ │ │ .

. │ │ LINK │ Exit │ .
 . │ │─────7│ │ .
 . │ │ └───────┘ .

. │ │ ^ .

. │ │ │ .
 . │ │ ┌───────┐ .
 . │ │ │ TS │ .
 . │ │ ├───────┤ .

. │ │777777│ KBAxx │ .
 . └──────────┘ └───────┘ .
 . .

 Chapter 2. MailRoom exits 47

Exit and MailRoom in different CICS regions
Using CICS DPL (Distributed Program Link), an exit can run in another region. The
TS Queue with the business data is written locally to a queue (beginning KBA), and
the exit should be set up to read that particular TS Queue prefix KBA remotely.

 . . .
. MailRoom . Other CICS region .

 . CICS region . .
 . . .
 . ┌──────────┐ . .
 . │ │ . .

. │ MailRoom │ . ┌───────┐ .

. │ kernel │ . │ │ .
 . │ │ DPL │ Exit │ .

. │ exit│─────7│ │ .
 . │ │ . └───────┘ .
 . └──────────┘ . .
 .) . ^ .
 .) . │ .
 . ┌───────┐ Function ship.│ .

. │ TSQ │ READQ TS │ .
 . ├───────┤ 777777777777777│ .

. │ KBAxx │ . .

. └───────┘ . .
 . . .

 Processing
All exits will be able to stop further processing for the transaction. By returning a
return code of 08, it instructs the MailRoom to FAIL the transaction according to
standard MailRoom processing.

A kernel exit can also decide to stop the processing of a full source envelope by
returning a return code of 16. This will LOCK all the requests and the envelope and
prohibit later restart.

An exit also has the possibility to update the 40 byte SKBA_REF_DATA2 field that
MailRoom will store together with other control data for this transaction.

If the exit is linked locally and is accessing DB2, the required DBRMs must be
included in the BTB DB2 Plan KBHPLAN.

If the exit is linked through DPL, the necessary DB2 access must be established in
the remote CICS.

MailRoom Service and Subscription attributes
Table 9 shows the potential contents of the SKBA_ATTR(100) and
SKBH_VALUE(100) arrays in the KBAXIT structure. The actual contents differs
depending on the active service and subscriptions.

The resulting arrays are quite dynamic. It is necessary to scan for a particular field
name in the ATTR array and - if found - its current value can be read from the
corresponding entry in the VALUE array.

Table 9 (Page 1 of 6). Service definition table

Field name Length Description

ACKLVL 001 Acknowledgement level: X, 0, 1 or 2

48 BTB Application Programming Guide

Table 9 (Page 2 of 6). Service definition table

Field name Length Description

DST_ACCNT_INFO 040 Accounting info, Receiver

DST_BECAPL 016 Server Application name in BEC

DST_BECLOC 008 Server Location (node name)

DST_CIMTYP 030 SAP Extension type

DST_CPCONV 008 EBCDIC-ASCII translation table name

DST_DIEX_CP 008 DI exit: EBCDIC-ASCII translation table name

DST_DIEX_DILOG 008 DI exit: Log (Application id)

DST_DIEX_DITRAN 040 DI exit: Translate options

DST_DIEX_IH_TSQ 008 DI exit: Name of IHF TS queue

DST_DIEX_TYPE 016 DI exit: Translation mode. Values: EDI-IHF,
IHF-EDI or MAIL-EDI-IHF

DST_DIFORMAT 016 DI override format name

DST_DILOG 008 DI log (Application id)

DST_DISEND 040 DI send options

DST_DITEST 001 DI test indicator

DST_DITRAN 040 DI translate options

DST_EXIT_PARM1 040 Parameters to destination exit

DST_EXIT1 008 Name of destination exit

DST_FAXATT 040 Receiver FAX attention name

DST_FAXNO_L 040 Receiver Fax-number (See comment below for
layout.)

DST_IDOCTYP 030 SAP IDOC type (Version 4)

DST_IEADR_L 040 Receiver IE Account user ID (See comment
below for layout.)

DST_M_REC_FORMAT 008 Format of returned M-record. Values: (' ':
Simple M-record)|('EXTREC00': extended
M-records)

DST_MAIL_CODEPG 008 EBCDIC-ASCII translation table name

DST_MAIL_FILEID 040 Name of file to send

DST_MAIL_SENDER 040 Override address of sender

DST_MAIL_SUBJECT 040 Subject of mail or fax

DST_MAILADR_L 040 Receiver VM Node user ID (See comment
below for layout.)

DST_MAILFNC 008 How should mail be sent. Values: NOTE or
FILE (or default value blank for FILE)

DST_MASK_FNC 008 Read API mask function. What records have
been passed? Values:
('CD': C+D-records)|('MD': M+D records)|
('RAW': Everything including DI Info.records)|
('STRIP-MD': Only D records without the D)|
(Blank: ⇒'MD')

DST_MERC_ADDOPT 040 Mercator exit: Additional Command options

 Chapter 2. MailRoom exits 49

Table 9 (Page 3 of 6). Service definition table

Field name Length Description

DST_MERC_DEBUG 009 Mercator exit: Envelope id to debug

DST_MERC_IORATIO 008 Mercator exit: Input/Outupt ratio

DST_MERC_MAP 007 Mercator exit: Map name

DST_MERC_PAGING 008 Mercator exit: Paging

DST_MERC_PARM1 040 Mercator exit: User parameter

DST_MERC_PROFI 001 Mercator exit: Prof./Fixed lgth(I)

DST_MERC_PROFO 001 Mercator exit: Prof./Fixed lgth(O)

DST_MERC_STATUS 001 Mercator exit: Request status doc

DST_MERC_VALIDAT 004 Mercator exit: Validation type

DST_MERC_VAR 008 Mercator exit: Which variant

DST_MERC_WRKFILE 001 Mercator exit: Workfiles in memory

DST_MESCOD 003 SAP Logical message code

DST_MESTYP 030 SAP Logical message type

DST_MQ_DATA_TYPE 008 Format of data send via MQSeries

DST_MQ_MGR 048 Receiver MQSeries Queue Manager

DST_MQ_QUEUE 048 Receiver MQSeries Queue name

DST_MQ_REPLY 048 Reply MQSeries Queue name

DST_MQEX_MQ_MGR 044 MQSI exit: MQ Queue manager

DST_MQEX_MQ_PUTQ 044 MQSI exit: MQ Queue to PUT on

DST_MQEX_MQ_GETQ 044 MQSI exit: MQ Queue to GET from

DST_MQEX_DELAY 010 MQSI exit: Max wait time for GET

DST_MQEX_MQSI_AP 016 MQSI exit: MQSI Appl. Group

DST_MQEX_MQSI_MS 016 MQSI exit: MQSI Message Type

DST_MQEX_MQSI_RL 003 MQSI exit: MQSI Reload Rule Set

DST_MQEX_PROT_DL 002 MQSI exit: Transport delimitors

DST_MQEX_PROT_IG 003 MQSI exit: Ignore delim. in data

DST_MSGUCLS 008 IE Message User Class

DST_RCVPOR 010 SAP System Id

DST_RCVPRT 002 SAP Receiver partner type

DST_REQID 016 DI Requestor id. Used by DI to select which
mailbox is used to send from.

DST_SAPVERS 008 SAP R/3 Version

DST_SNDPRT 002 SAP Sender partner type

DST_STDMES 006 SAP EDI message type

DST_SUEXIT_PARMn 040 Super exit: Exit 1–5 parameters

DST_SUEXITn 008 Super exit: Exit 1–5 name

DST_SYSID 004 CICS Sysid for remote APPC system

DST_TCPADR_L 040 Destination TCP/IP address (See comment
below for layout.)

50 BTB Application Programming Guide

Table 9 (Page 4 of 6). Service definition table

Field name Length Description

DST_TCPPORT 005 TCP/IP port number to send to.
Recommended value: '01812'

DST_TDQUEUE 004 Name of TDQueue that triggers the PGM-CICS
scenario

DST_TIEAPPL 004 TIE application name (re. IMS server)

DST_TIEBTX 008 TIE BTX name (re. IMS server)

DST_TPPGM 008 Remote APPC TP Program

DST_USERFLD 040 Free format data sent to PGM-CICS

ENABLE 001 Service status 0: Disabled | 1: Enabled

EXT_EXIT1 008 Name of routing exit for exit based routing

IOPUCTY 003 Service sponsor country/organization code

IPRAIDY 008 Service name

ISYSIDY 004 System/Application id. Used to group services
together on administration panels

KNL_CPEX_CP 008 Codepage exit: EBCDIC-ASCII translation table
name

KNL_DIEX_CP 008 DI exit: EBCDIC-ASCII translation table name

KNL_DIEX_DILOG 008 DI exit: Log (Application id)

KNL_DIEX_DITRAN 040 DI exit: Translate options

KNL_DIEX_IH_TSQ 008 DI exit: Name of IHF TS queue

KNL_DIEX_TYPE 016 DI exit: Translation mode. Values: EDI-IHF,
IHF-EDI or MAIL-EDI-IHF

KNL_MERC_ADDOPT 040 Mercator exit: Additional Command options

KNL_MERC_DEBUG 009 Mercator exit: Envelope id to debug

KNL_MERC_IORATIO 008 Mercator exit: Input/Outupt ratio

KNL_MERC_MAP 007 Mercator exit: Map name

KNL_MERC_PAGING 008 Mercator exit: Paging

KNL_MERC_PARM1 040 Mercator exit: User parmameter

KNL_MERC_PROFI 001 Mercator exit: Prof./Fixed lgth(I)

KNL_MERC_PROFO 001 Mercator exit: Prof./Fixed lgth(O)

KNL_MERC_STATUS 001 Mercator exit: Request status doc

KNL_MERC_VALIDAT 004 Mercator exit: Validation type

KNL_MERC_VAR 008 Mercator exit: Which variant

KNL_MERC_WRKFILE 001 Mercator exit: Workfiles in memory

KNL_MQEX_MQ_MGR 044 MQSI exit: MQ Queue manager

KNL_MQEX_MQ_PUTQ 044 MQSI exit: MQ Queue to PUT on

KNL_MQEX_MQ_GETQ 044 MQSI exit: MQ Queue to GET from

KNL_MQEX_DELAY 010 MQSI exit: Max wait time for GET

KNL_MQEX_MQSI_AP 016 MQSI exit: MQSI Appl. Group

KNL_MQEX_MQSI_MS 016 MQSI exit: MQSI Message Type

 Chapter 2. MailRoom exits 51

Table 9 (Page 5 of 6). Service definition table

Field name Length Description

KNL_MQEX_MQSI_RL 003 MQSI exit: MQSI Reload Rule Set

KNL_MQEX_PROT_DL 002 MQSI exit: Transport delimitors

KNL_MQEX_PROT_IG 003 MQSI exit: Ignore delim. in data

KNL_SUEXIT_PARMn 040 Super exit: Exit 1–5 parameters

KNL_SUEXITn 008 Super exit: Exit 1–5 name

KRNL_EXIT_PARM1 040 Parameters to kernel exit

KRNL_EXIT1 008 Name of kernel exit

OVDTIME 010 Overdue time. Number of minutes

POCELADR_L 040 POC electronic address. Used to send alert
messages (See comment below for layout.)

POCLANG 002 POC preferred language (of message)

POCNAME 040 POC name. Text; not folded.

POCTPID 009 POC Account number / Fixed TP service

SKBA_ARCHIVE_PRO 008 Name of archive profile

SKBA_INP_SCHDUL 020 Input schedule

SKBA_LAYOUT 016 Layout name. Layout field from M-rec

SKBA_LOG_LEVEL 008 Extended logging level. Normal logging: '
'|Extended logging: 'VERBOSE'

SKBA_NPRADSC 040 Service description. Text

SKBA_NSUBENA 001 Subscription status. Disabled:'0' | Enabled: '1'

SKBA_PRIORITY 008 Priority level. Normal:' ' | High: 'HIGH'

SKBA_RULESET 016 Name of ruleset for rule based routing

SKBA_TYPE_DST 008 Destination scenario type. E.g. 'DI-EDI'. For
full list see prompt on registration panel.

SKBA_TYPE_SRC 008 Source scenario type. E.g. 'TCPIP' For full list
see prompt on registration panel.

SKBA_TYPE_SUB 001 Subscription type. Values: S|D. "S"ource for
TP-to-Sponsor. "D"est for Sponsor-to-TP.

SKBA_TYPE_SYSACK 008 System Acknowledgement type Values: 'MAIL' |
'MQ' | 'PGM-CICS' | 'TIE-IMS' | 'TIE-MQ' | ' '
(blank, for no SYSACK)

SKBA_TYPE_X_ROUT 008 Type of extended routing Values: 'EXIT' |
'RULE' | 'FANNING'

SKBH_SCHKEY 008 Schedule key. Name of schedule

SRC_ACCNT_INFO 040 Sender account information. Text

SRC_IDOCTYP 030 SAP IDOC type (Version 4)

SRC_IEADR_L 040 Sender IE Account user ID. NB! Only available
if Source coming from IE. (See comment
below for layout.)

SRC_MQ_QUEUE 048 Name of sending MQSeries queue

SRC_MSGUCLS 008 Sender Message User Class

52 BTB Application Programming Guide

Table 9 (Page 6 of 6). Service definition table

Field name Length Description

SRC_SAPDSCP 008 Name of codepage (SAP status flow)

SRC_SAPDSPO 005 TCP/IP port to send to. Recommended value:
'01812'

SRC_TCPADR_L 040 Sender TCP/IP address (See comment below
for layout.)

SUBCOMM 040 Subscription comment. Free text.

SYA_BECAPL 016 Sysack BEC application name

SYA_BECLOC 008 Sysack BEC location (node)

SYA_DATA_TYPE 008 Sysack Format of MQ data

SYA_M_REC_FORMAT 008 Sysack Format M-record

SYA_MAILADR_L 040 Sysack MAIL address

SYA_MQ_MGR 048 Sysack MQ Manager

SYA_MQ_QUEUE 048 Sysack MQ Queue

SYA_SYSA_FNC 008 Sysack What data to send

SYA_TDQUEUE 004 Sysack CICS TD Queue

SYA_TIEAPPL 004 Sysack TIE application name

SYA_TIEBTX 008 Sysack TIE BTX name

SYA_USERFLD 040 Sysack CICS user field

Layout of electronic address fields passed
Some of the MailRoom Service and Subscription attributes contains electronic
addresses. The contents of the VALUE field depends on the electronic address
type. Table 10 shows the attributes and Table 11 on page 54 shows the
type-dependent overlay.

Table 10 (Page 1 of 2). Attributes with electronic addresses

Field name Contents of VALUE

DST_FAXNO_L CHAR 02 MASK: Should be FX
CHAR 38 Layout below

DST_IEADR_L CHAR 02 MASK: Should be IE
CHAR 38 Layout below

DST_MAILADR_L CHAR 02 MASK: Should be HO|VM|ME|TL|LI|IN
CHAR 38 Layout below

DST_TCPADR_L CHAR 02 MASK: Should be TC
CHAR 38 Layout below

POCELADR_L CHAR 02 MASK: Should be TC|VM|ME|TL|LI|IN
CHAR 38 Layout below

SRC_IEADR_L CHAR 02 MASK: Should be IE
CHAR 38 Layout below

SRC_TCPADR_L CHAR 02 MASK: Should be TC
CHAR 38 Layout below

 Chapter 2. MailRoom exits 53

Table 10 (Page 2 of 2). Attributes with electronic addresses

Field name Contents of VALUE

SYA_MAILADR_L CHAR 02 MASK: Should be HO|VM|ME|TL|LI|IN
CHAR 38 Layout below

Table 11. Type dependent overlay for electronic addresses

Type Layout

MASK = FX Remaining 38 char as follows:
CHAR 08 Country telephone code
CHAR 16 Telephone number
CHAR 14 Fill

MASK = IE Remaining 38 char as follows:
CHAR 08 Network
CHAR 08 Account
CHAR 08 user ID
CHAR 01 Record format (0|1|2)
CHAR 13 Fill

MASK =
HO|VM|ME

Remaining 38 char as follows:
CHAR 08 user ID
CHAR 08 Nodeid
CHAR 22 Fill

MASK = TC Remaining 38 char as follows:
CHAR 38 Hostname or IP Address xxx.xxx.xxx.xxx

MASK = TL Remaining 38 char as follows:
CHAR 08 FORUM name
CHAR 08 FORUM type
CHAR 08 Nickname (from WC table)
CHAR 14 Fill

MASK = IN Remaining 38 char as follows:
CHAR 38 Internet e-mail address

MASK = LI Remaining 38 char as follows:
CHAR 08 List name
CHAR 30 Fill

54 BTB Application Programming Guide

SAP Naming exits
When sending IDOCs to SAP R/3, MailRoom optionally creates an EDI_DC record
if it does not already exist in the passed data. This task is performed by the SAP
Destination Scenario Global Naming exit KBADSXP, which is called before any
destination exit.

In previous releases of BTB there were a similar exit used when sending SAP R/3
IDOCs to MailRoom: SAP Source Scenario Global Naming exit KBASSXP.

This exit is no longer available since the logic is now performed in the MailRoom
supplied source exit KBASXSP, see “BTB standard SAP & SAP-MQ Source Exit
KBASXSP” on page 59.

SAP Destination Scenario Global Naming exit KBADSXP
This is a global exit, that can be customized to perform special processing to suit
the needs of an organisation.

The source of KBADSXP is in KBH.R450.PLI(KBADSXM).

Note: Because the exit might be changed by any new release or fix package of
BTB, it is necessary to perform any local modifications again after an upgrade.

The exit gets access to the document through an LTSQ (see “Multiple TS queues”
on page 21) and a structure containing MailRoom registration information from the
service or subscription.

On return from the exit, the document contains a valid IDOC with a complete
EDI_DC record. The IDOC must be MailRoom encapsulated (see “SAP R/3 IDOC
support” on page 12).

 Current logic
In the standard version, the exit scans the document and captures certain records
from DataInterchange, and updates the document with a complete EDI_DC record.
If the EDI_DC was already provided by the sender only certain fields in EDI_DC will
be updated (ARCKEY). Refer to Table 2 on page 14 for information about the
complete priming of the SAP R/3 EDI_DC record.

 Chapter 2. MailRoom exits 55

 Routing exits
When Subscription Type has been specified as X (Extended Routing) on the
service, it is possible to select Exit as the routing mechanism. A Routing exit gets
control during MailRoom Kernel processing, and can dynamically select which
receiver Trading Partners will receive a copy of the document.

The Kernel then checks the subscription and sends a copy of the document to the
destination defined on the receive subscription (through the returned receiver
Trading Partner).

 Format
exitname is a CICS Main program, which is LINKed to using this LINK syntax:

LINK Syntax (PL/1)

77── EXEC CICS LINK PROGRAM('exitname')
 COMMAREA(KBAXROUT)
 LENGTH(CSTG(KBAXROUT)); ───────────────────7"

 Parameters
Here is the structure of the interface, which is in KBH.R450.PLINCL(KBAXROUT):

 /* +---+ */
 /* | -------- INTELLIGENT MESSAGE BROKER (IMB) --------- | */
 /* | (C) COPYRIGHT IBM DENMARK. 1998. ALL RIGHTS RESERVED. | */
 /* | (C) COPYRIGHT IBM CORP. 2000. ALL RIGHTS RESERVED. | */
 /* | | */
 /* | | */
 /* +---+ */

 /* +--+ */
 /* | STRUCTURE FOR ROUTING EXIT/MODULES | */
 /* | ================================== | */
 /* | | */
 /* | STRUCTURE : KBAXROUT | */
 /* | | */
 /* | LENGTH : 1000 BYTES | */
 /* | | */
/* | CONTENTS : COMMUNICATION AREA TO RULE DECISION MODULES | */
 /* | | */
 /* | RELATIONS : | */
 /* | | */
 /* +--+ */
 /* */
 3 KBAXROUT_REC ,/* */
 5 SKBH_FNC CHAR(008) ,/* FUNCTION */

5 SKBH_LTSQ CHAR(008) ,/* LTSQ, INPUT */
5 SKBA_TPID_TO CHAR(035) ,/* TP-NO RECEIVER - EXT */
5 SKBA_REQ_KEY ,/* REQ KEY (FOR ACK) */
7 SKBA_ENV_DER CHAR(012) ,/* DERIVED ENV KEY */
7 SKBA_DOCSEQNO_NUM CHAR(010) ,/* DOC NUMBER */

 7 KBAXROUT_RES1 CHAR(018) ,/* RESERVED */
5 IOPUCTY CHAR(003) ,/* COUNTRY CODE */
5 ISYSIDY CHAR(004) ,/* APPLICATION ID */
5 IPRAIDY CHAR(008) ,/* SERVICE NAME */

56 BTB Application Programming Guide

5 SKBA_LAYOUT CHAR(016) ,/* LAYOUT OF DATA */
5 SKBA_RULESET CHAR(016) ,/* RULESET NAME */
5 SKBH_EVENTS (5) ,/* UP TO 5 EVENTS */
7 SKBH_MSGID CHAR(010) ,/* MESSAGE ID */
7 SKBH_MSGVAR ,/* MESSAGE VARIABLE */
9 SKBH_MSGVAR_X(3) CHAR(025) ,/* MSGVAR 1,2,3 */

5 SKBA_LOG_LEVEL CHAR(008) ,/* LOG LEVEL */
5 SKBA_TSQ_TPLIST CHAR(008) ,/* RETURNED LIST OF TPS */
5 SKBA_TSQ_TRACE CHAR(008) ,/* RETURNED TRACE IF ENABL */
5 SKBA_RC CHAR(002) ,/* RETURN CODE */
5 KBAXROUT_RES2 CHAR(411) /* FUTURE USED */

 /* */
 /* TOTAL LENGTH 1000 */
/* == API == END OF STRUCTURE KBAXROUT == */
 /* -- */
 /* */

SKBH_FNC
Function code, currently not used. Blank value.

SKBH_LTSQ
Name of the LTSQ holding the names of TS queues containing the
document that routing is dependent on. See “Multiple TS queues” on
page 21 for more information about reading records from an LTSQ.

SKBA_TPID_TO
Receiver Trading Partner number as originally specified in the passed
M-record. The exit can choose to respect or ignore this Trading Partner as a
receiver Trading Partner.

SKBA_ENV_DER
MailRoom internal key for the derived envelope (part of SKBH_REQ_KEY).

SKBA_DOCSEQNO_NUM
MailRoom internal document sequence number within the envelope (part of
SKBH_REQ_KEY).

IOPUCTY
Country code.

ISYSIDY
Application ID.

IPRAIDY
Service name.

SKBA_LAYOUT
MailRoom document layout name.

SKBA_RULESET
Name of ruleset. Blank for Routing exits.

SKBH_MSGID
MailRoom Message ID. MailRoom has a standard multi-language message
facility that is also available for application use. By storing application
messages in the MailRoom message database (DB2), a server can later
refer to the message by providing the message number and optionally three
variables.

 Chapter 2. MailRoom exits 57

In this case an exit can have a message stored by MailRoom as an event in
the MailRoom repository if a message number is returned here. Up to five
events can be specified for insertion by MailRoom.

SKBH_MSGVAR
Three 25-character variables that can be used to compose
application-specific and occurrence-specific events.

SKBA_LOG_LEVEL
MailRoom logging level. Can either be blank for normal logging or
VERBOSE for extended logging. If extended logging is active, the Routing
exit can choose to produce an execution trace (free format text about the
processing) in a TS queue (see SKBA_TSQ_TRACE) and up to five event
messages. With normal logging, the exit should not produce an execution
trace and limits the events to a minimum.

SKBA_TSQ_TPLIST
Name of the TS queue that contains a list of receiver Trading Partner IDs on
return from the exit. Each Trading Partner must occupy a separate
35-character record. The Kernel sorts the TS queue and removes
duplicates.

SKBA_TSQ_TRACE
If extended logging is specified (see SKBA_LOG_LEVEL), this field contains
the name of a TS queue that can be used to produce an execution trace.
The trace will be available as event text on the MailRoom status panel.

SKBA_RC
Exit return code. Can be used by the exit to request MailRoom to FAIL the
document. Valid values are 00 for OK and 08 for FAIL.

 Examples
An example of a routing exit is in KBH.R450.PLI(KBGXRTM).

MailRoom supplied source exits
Some standard source exits are supplied with BTB. These exits are described
here.

BTB standard MQ, SAP-MQ & TIE-MQ Unpack Exit KBASUMP
For MQSeries based source scenarios the default is to use this exit to unpack the
received MQ buffer into records in one or more TS queues. The exit can decode
the MQSeries Link for SAP R/3 buffer format and the BTB MailRoom buffer format.

Usage Defined as MailRoom global Unpack Exit for the following source
scenarios: MQ, SAP-MQ, TIE-MQ

Override None, done in Source Exit

Reuse You can reuse this exit as a specific exit via source exit administration
panels.

58 BTB Application Programming Guide

BTB standard DI-EDI Source Exit KBASXDP
For the DI-EDI source scenario the default is to use this exit to build an M-record
based on the received Inhouse format and used response program.

Usage Defined as MailRoom global Source Exit for the DI-EDI source scenario.

Override Individual fields in the M-record can be overridden.

Reuse You can reuse this exit as a specific exit via source exit administration
panels.

BTB standard EXP-FILE Source Exit KBASXFP
For the EXP-FILE source scenario the default is to use this exit to build an
M-record based on the message user class and the sender mailbox. Normally a
simple M-record is built, but by overriding the To TP it is possible to change this to
an extended M-record.

Usage Defined as MailRoom global Source Exit for the EXP-FILE source
scenario.

Override Individual fields in the M-record can be overridden.

Reuse You can reuse this exit as a specific exit via source exit administration
panels.

BTB XML Processor Source Exit KBASXMP
This exit can parse a received XML document and extract elements or attributes to
be used in the M-record. The XML root element must be defined in the MailRoom
XML Document definition table. Documents with M- and D-records are also
accepted transparently.

Usage Not defined as global Source Exit for any source scenario. The exit
must explicitly be activated for a scenario.

Override Individual fields in the M-record can be overridden.

Reuse Can be used as both global or specific source exit via source exit
administration panels. You can thereby enhance e.g. the TCPIP source
scenario to both accept M- and D-records as well as XML documents or
you can enable the XML support for a single MQ queue.

BTB standard SAP & SAP-MQ Source Exit KBASXSP
For the SAP and SAP-MQ source scenarios the default is to use this exit to build
an M-record based on the SAP EDI_DC control record in the received IDOC.

Usage Defined as MailRoom global Source Exit for the SAP and SAP-MQ
source scenarios.

Override Individual fields in the M-record can be overridden.

Reuse You can reuse this exit as a specific exit via source exit administration
panels.

 Chapter 2. MailRoom exits 59

BTB Sample Source Exit KBGXSXP
This exit is a sample program that can be used as a starting point when writing a
new source exit.

Usage Normally not used.

Override Individual fields in the M-record can be overridden.

Reuse You can use this exit to simply hardcode an M-record via source exit
administration panels.

MailRoom supplied document exits
Some standard exits are supplied with BTB. These exits are described here.

SAP to DI standard exit KBADXDP
Destination exit used to convert SAP IDOCs to DI in-house format when destination
is DI-EDI.

The exit removes underscores from the record name and expands the key from 10
to 16 characters. The exit also maps the external Trading Partner id to the
C-record, which is used by DataInterchange to match the Trading Partner.

DI to SAP standard exit KBADXSP
Destination exit used to convert DI inhouse format to SAP IDOC when destination
is SAP or SAP-MQ.

The exit inserts underscores in the record name where needed and decreases the
key from 16 to 10 characters. The exit also populates all records with the SAP
client number. The exit will not modify the EDI_DC record.

Codepage conversion exit KBAGXCP
Kernel or destination exit used to perform codepage conversion of a document.
The conversion will normally be from one EBCDIC codepage to another EBCDIC
codepage. This can be necessary if a document is sent to MailRoom in one
EBCDIC codepage and the receiver needs it in another EBCDIC codepage. The
example shown here uses the kernel exit. Use the Insert New MailRoom Service
panel to set up the codepage conversion exit parameters. Figure 8 on page 61
shows the relevant section of the panel.

60 BTB Application Programming Guide

� �
KBEICM1I Insert new MailRoom Service IMB

Press Enter to insert new MailRoom Service

Kernel processing
Extended Logging ________ +
Priority level ________ +
Kernel Exit KBAGXCP_ +
Exit parameters. __

Codepage conv exit parm
Codepage conversion. . . CP500297 +

Command ===>
F1=Help F3=Exit F4=Prompt F8=Forward F12=Cancel

� �

Figure 8. Setting up the codepage conversion exit parameters

You must specify the following value. You can get help the field by pressing F1.

Codepage conversion
The name of a codepage conversion table. The name CPee1ee2
identifies the origin codepage (ee1) and the target codepage (ee2).
Both codepages will normally be EBCDIC codepages.

DataInterchange translation exit KBAGXDP
Kernel or destination exit used to let DataInterchange perform translation of a
document. The example shown here uses the kernel exit. Use the Insert New
MailRoom Service panel to set up the DataInterchange exit parameters. Figure 9
shows the relevant section of the panel.

� �
KBEICM1I Insert new MailRoom Service IMB

Press Enter to insert new MailRoom Service

Kernel processing
Extended Logging ________ +
Priority level ________ +
Kernel Exit KBAGXDP_ +
Exit parameters. __

DI Exit parameters
Conversion mode. IHF-EDI_________ +
TS Queue for IHF ________
DI Application Id. . . . ________
DI TRANSLATE parms . . . __
Codepage conversion. . . ________ +

Command ===>
F1=Help F3=Exit F4=Prompt F8=Forward F12=Cancel

� �

Figure 9. Setting up the DataInterchange exit parameters

You should consider specifying the following values. You can get help for each
field by pressing F1.

 Chapter 2. MailRoom exits 61

Conversion mode
The Conversion mode defines how the Exit will translate the input file.
Three modes are defined:

IHF-EDI In-house Format to EDI format.

EDI-IHF EDI data to in-house format.

MAIL-EDI-IHF EDI data (in an e-mail) to in-house format.

The translated document is kept as an updated version of the original
document.

TS Queue for IHF
This queue name must be the same name as described under usage
in DataInterchange. The queue is where the in-house format data is
placed by DataInterchange after translation.

DI Application Id
The DI Application Id is used by DataInterchange to select which log
file to use.

DI TRANSLATE parms
The DI TRANSLATE parms are used to append commands to the
"PERFORM TRANSLATE" command issued when the documents are
translated by DataInterchange.

Codepage conversion
If the destination document must be delivered in a different codepage,
it can be entered here. The codepage file in CICS must be loaded.
The format is CPfffttt where fff is the from and ttt is the to codepage.
A more detailed explantion is available under online help.

 Usage notes

It is very important to specify the IHF TS queue name when translating to
in-house format, as BTB otherwise can not find the translated data.

MQSI V1 exit KBAGXQP
Kernel or destination exit used to let an MQSI perform remapping of a document.
MQSI should normally run in the same physical machine as BTB. The exit will
format a document to a stream format (records separated with character delimitors),
put it on a queue, wait for MQSI to reformat it, get the reformatted stream and
finally return it to MailRoom as an updated version of the document.

The example shown here uses the kernel exit. Use the Insert New MailRoom
Service panel to set up the MQSI exit parameters. Figure 10 on page 63 shows
the relevant section of the panel.

62 BTB Application Programming Guide

� �
KBEICM1I Insert new MailRoom Service IMB

Press Enter to insert new MailRoom Service

Kernel processing
Extended Logging ________ +
Priority level ________ +
Kernel Exit KBAGXQP_ +
Exit parameters. __

MQSI V1 Exit parameters
MQ Manager __ +
MQ Queue MY.MQSI.INPUT.QUEUE_________________________
MQ Reply Queue MY.REPLY.QUEUE______________________________
Max wait for reply . . . 45________
MQSI Appl. Group IMBTESTAP_______
MQSI Message Type. . . . IMBTESTDOC1_____
MQSI Reload Rule Set . . ___ +
Transport delimitors . . :;
Ignore delim. in data. . YES +

Command ===>
F1=Help F3=Exit F4=Prompt F8=Forward F12=Cancel

� �

Figure 10. Setting up the MQSI exit parameters

You should consider specifying the following values. You can get help for each
field by pressing F1.

MQ Manager
Name of the MQ manager, normally blank for the local one

MQ Queue Name of the MQSI input queue. MQSI should automatically read the
document from this queue.

MQ Reply Queue
Name of the queue that BTB should get the reply from. MQSI must
be defined to put the reply to this queue. No triggering should be
defined, this queue must not trigger the normal MQ source scenario.

Max wait for reply
The maximum time in seconds that the exit will wait for a reply from
MQSI. If this amount of time has passed and the remapped reply has
not arrived, the exit will assume that remapping failed and the
MailRoom request will also be failed. In this case error determination
must be performed in the MQSI environment.

MQSI Application Group
Name of the MQSI Application Group for this message.

MQSI Message Type
Name of the MQSI Message Type for this message.

MQSI Reload Rule Set
Should the exit ask MQSI to reload the ruleset. This setting will not
reload the format.

Transport delimitors
Two characters used by the exit to build the buffer sent to MQSI and
to decode the reply. First character (default :) will be placed between
records in the sent buffer and is expected in the reply between

 Chapter 2. MailRoom exits 63

records. Second character (default ;) will be placed at the end of the
buffer being sent, it is not expected in the reply.

Ignore delimitors in data
What should the exit do if the defined delimitors also occur in the
input document. The exit can either ignore them (blank out) or fail the
document.

Super exit KBAGXSP
Kernel or destination exit used to call a number of exits in sequence. The example
shown here uses the kernel exit. Use the Insert New MailRoom Service panel to
set up the Super exit parameters. Figure 11 shows the relevant section of the
panel.

When using the Super exit up to five other exits can be specified. All exits have
their own exit parameters. The exits can each return up to five event messages, but
only the last five events returned to the super exit will be stored in MailRoom.

� �
KBEICM1I Insert new MailRoom Service IMB

Press Enter to insert new MailRoom Service

Kernel processing
Extended Logging ________ +
Priority level ________ +
Kernel Exit KBAGXSP_ +
Exit parameters. __

Super Exit parameters
Kernel Exit ________ +
Exit parameters. __
Kernel Exit ________ +
Exit parameters. __
Kernel Exit ________ +
Exit parameters. __
Kernel Exit ________ +
Exit parameters. __

Command ===>
F1=Help F3=Exit F4=Prompt F8=Forward F12=Cancel

� �

Figure 11. Setting up the Super exit parameters

XML Parsing to flat file exit KBAGXXP
Kernel or destination exit used to convert XML documents to a simple flat record
oriented file. The exit is also defined as a display exit, where it will write semilar
information to the panel in a more compact format.

The exit parses the XML document and write a D-record for every XML element
(both beginning and end), XML attribute as well as character data. There is one
record written for every event generated by the XML parser.

The following records/events are written:

64 BTB Application Programming Guide

Event Record Type Record layout
===
Start of Document DOCSTART 0
PI Element PIELEM 1
PI Attribute PIATTR 3
Start of Element ELEMSTART 1
Atribute ATTRDATA 3
Characters DATA 2
End of Element ELEMEND 1
End of Document DOCEND 0
 ┌──┐
│D Record Typ Elem Attr/Info Length Buffer Path │

 ├─┼──────────┼───────────┴─────────────────┴───────┴──────────────┴────────────┤
0 │D│Rec Ch(16)│ reserved │
 ├─┼──────────┼───────────┬──────────┬─────────────────────────────┬────────────┤
1 │D│Rec Ch(16)│Elem Ch(20)│Info Ch(4)│ reserved │Path Ch(200)│
 ├─┼──────────┼───────────┼──────────┴──────┬───────┬──────────────┼────────────┤
2 │D│Rec Ch(16)│Elem Ch(20)│ reserved │L Ch(5)│Buffer Ch(200)│Path Ch(200)│
 ├─┼──────────┼───────────┼─────────────────┼───────┼──────────────┼────────────┤
3 │D│Rec Ch(16)│Elem Ch(20)│Attr Ch(20) │L Ch(5)│Buffer Ch(200)│Path Ch(200)│
 └─┴──────────┴───────────┴─────────────────┴───────┴──────────────┴────────────┘

Description of fields:

Record Id Character(1) Always D

Record Type Character(16) Type of this record/event, record layout is
dependent of this value.

Element name Character(20) Name of current XML element

Info Character(4) Contains value ROOT if current element is the root
element

Attribute Character(20) Name of attribute for current XML element

Length Character(5) NNNN� 4 numbers (and a blank) to indicate length of
data in buffer

Buffer Character(200) Variable length buffer containing element data or
attribute value. Longer values gets truncated.

Path Character(200) The full path to current XML element showing the
nesting levels.

Mercator exit KBAMRCP
Kernel or destination exit used to reformat data. The example shown here uses the
kernel exit. Use the Insert New MailRoom Service panel to set up the Mercator exit
parameters. Figure 12 on page 66 shows the relevant section of the panel.

 Chapter 2. MailRoom exits 65

� �
KBEICM1I Insert new MailRoom Service IMB

Press Enter to insert new MailRoom Service

Kernel processing
Extended Logging ________ +
Priority level ________ +
Kernel Exit KBAMRCP_ +
Exit parameters. . . . : __

Mercator parameters
Mapname : _______
Exit variant : VAR1___+
Input-Output ratio . . : _______+
Paging size : _______+
Perform validation . . : ____+
Expect status file . . : _+
Workfiles in storage . . Y +
Prof./Fixed lgth(I). . : _+
Prof./Fixed lgth(O). . : _+
Mapping parameter1 . . : __
Debugging Envelopeid . : _______
Add. Command options . : __

Command ===>
F1=Help F3=Exit F4=Prompt F8=Forward F12=Cancel

� �

Figure 12. Setting up the Mercator exit parameters

You should consider specifying the following values. You can get help for each
field by pressing F1.

Extended Logging
The VERBOSE option inserts the Mercator Execution Log as event
text in the MailRoom.

Exit variant The Exit variant defines how the Exit will set up the call to Mercator
and how input files and output files will be processed. Four variants
are defined:

Exit variant Description

VAR1 I1:Input O1:Mapped doc.

VAR2 I1:Input O1:Mapped doc. O2:New document

VAR3 I1:Input O1:Mapped doc. O2:Error

VAR4 I1:Input O1:Mapped doc. O2:New doc. O3:Error

All variants have the MailRoom document as primary input and the
mapped document as output. There can be two additional types of
output defined and created by the Mercator map, Error and New
Document.

Requesting the Mercator Exit to expect status file or using the
mapping parameter will add an additional output card or input card.

The map variants must be set up in Mercator correspondingly.

Input-Output ratio
Used by the exit to calculate the expected size of the output. If the
output is calculated to be larger than 32K records, the exit must use a
VSAM data set for output.

66 BTB Application Programming Guide

Paging size
This parameter relates to performance.

Perform validation
Validation is performed on input data only. Validation of input data
can be set on or off using this field.

Expect status file
Is a way for the Mercator exit to pass return codes and messages to
the exit and to the MailRoom. The Status output card must be the
last card. The Status file must consist of only two records:

1st record CHAR(3)
Mercator map return code.

2nd record CHAR(VAR)
Return message.

If the return code is not 000 the mapping is considered FAILed in the
MailRoom. The return message is always shown as an event in the
MailRoom.

Workfiles in storage
Is a way to ask Mercator to keep all workfiles in storage. The default
is for work files to not be kept in storage. For small documents,
keeping work files in storage will improve performance.

Prof./Fixed lgth(I)
This field is used to control how Mercator handles variable-length
records on input. There are two possible values:

 � P

 � W

The value P causes the exit to add the extension ':P' to the input card.
P is the default if the field is not filled. This extension means that the
data will be 'profiled', ie a table will be built in memory which
cross-references record identifiers to corresponding file offsets.

The value W indicates that the extension ':W' will be used, and
Mercator will then copy the input to a fixed format workspace before
mapping it. This may give better performance in some cases.

Prof./Fixed lgth(O)
This field is used to control how Mercator handles variable-length
records on output. There are two possible values:

 � P

 � W

The value P causes the exit to add the extension ':P' to the output
card. P is the default if the field is not filled. This extension means
that the data will be 'profiled', ie a table will be built in memory which
cross-references record identifiers to corresponding file offsets.

The value W indicates that the extension ':W' will be used, and
Mercator will then map the data to a fixed format workspace. After
mapping completes, variable length records are separated out and
written to the TS queue. This may give better performance in some
cases.

 Chapter 2. MailRoom exits 67

Mapping parameter1
This is a way to pass user-determined values to the Mercator map.

If this field is not blank, this field and all the attributes on the
MailRoom service are passed to the map as a TS Queue on a second
input card. The record layout of the TS Queue passed in the second
input card is:

Name CHAR(16)
Contains field name of MailRoom Service.

Value CHAR(VAR)
Contains value of field.

This field can be filled for two reasons:

1. In order to make available to the Mercator map, all the attributes
on the service and their values in the format described above. In
this case the field can contain any non-blank character.

2. In order to pass a certain string or value to the Mercator map. In
this case the map should read the service attribute called
'Mapping Parameter1' and process the contents. All the other
service attributes will also be passed even if they are not required.

The map can then be set up to read, from the second input card, any
value on the service, and/or the string entered by the user.

Debugging EnvelopeID
For Mercator debugging (execution, audit log, input trace, and output
trace), you must restart the Envelope with the EnvelopeID in this field.
The debugging output will be generated and sent to the Electronic
Addresses defined as the MailRoom Service Point of Contact.

Add. Command options
This field allows the experienced Mercator user to enter a string which
will be added to the Mercator call. The content of this field is a the
user's risk and must be in the correct format including punctuation and
spaces in order for Mercator to use it. In other words, no checking is
performed on the string, but if filled it is appended to the Mercator call
built up by the exit.

68 BTB Application Programming Guide

 Usage notes

� All input and output records must be defined in the Mercator Type trees with
terminator LF/CR=‘0D 0A’ Hex. Input and output records must be set to
Hex in both View as and Keep.

� Error output will be typically be generated by the Mercator RELEASE setting
and the REJECT function. Error output is supported in Mercator Exit variant
VAR3 and VAR4. If the Error output is none empty, the output will be sent
to the Electronic Addresses defined as the MailRoom Service Point of
Contact.

� A new document can be created by the Mercator map (not the mapped
data) and will be processed by BTB in Mercator Exit variant VAR2 and
VAR4.

Such a new document will be inserted into the MailRoom and sent to the
destination defined in the leading M-record. The document must always
start with an M-record and all following records must contain a D in the first
position.

� Mercator MVS/CICS Version 1.4.2 or higher is needed for support of input
larger than 32K records as well as for support of workfiles in storage.

Refer to the Installation Guide for information about which version of
Mercator to use.

Destination exit for OTMA support KBGXOTP
Destination exit used to send document to IMS using MQSeries and OTMA. The
exit can only be used when destination is MQSeries.

The exit is used to build the MQIIH and IMS data header as the first part of the
message data. The exit is using control information from the Dest Accounting Info
field. This field must contain information about the IMS transaction, IMS user ID
and RACF password.

Specification of control information in the Dest Accounting field is shown in
Figure 13. The information is specified as part of the receive subscription.

 Dest Accounting Info . : ttttttttuuuuuuuupppppppp
where tttttttt is IMS transaction

uuuuuuuu is IMS user ID
pppppppp is RACF password

Figure 13. MailRoom control information for OTMA exit.

Sample Display exit KBGXIDP
Exit used from MailRoom Document Versions panel to reformat contents of the
document before display.

The exit will reformat some records in document such as the M-record (simple and
extended), the SAP EDI_DC record and a number of DI records. For each of these
records the exit will display the fields in the record one by one.

 Chapter 2. MailRoom exits 69

Record length Display exit KBGXIRP
Exit used from MailRoom Document Versions panel to show record length and total
length of the document.

The exit will show the length of every record in the document and a total length of
the whole document at the end.

70 BTB Application Programming Guide

Chapter 3. MailRoom CICS APIs

The BTB MailRoom can be accessed directly from a CICS program, by using the
following CICS APIs. The APIs are CICS programs that can be called from any
program running in CICS, which can EXEC CICS LINK to another program. All
parameters are passed in the CICS communication area and the data is placed in
CICS TS queues. For the Read API a CICS TD queue is also involved. This
means that the APIs can be called from a remote CICS using DPL and remote
definitions of CICS TS and TD queues.

The system acknowledgment scenario in CICS is handled by the read API.

Write API
Used to put documents into MailRoom

Read API
Used to read documents from MailRoom

Acknowledgment API
Used to give Business Acknowledgment to MailRoom

Document Browser API
Used to read documents in the MailRoom without performing any of the
MailRoom processes.

 Copyright IBM Corp. 1992, 2002 71

CICS MailRoom write API—KBAXWRP
The write API can be used by business applications to have documents passed to
the MailRoom without going through DataInterchange or Expedite/CICS.

The API can process single or multiple documents from an input TS queue, which
can either be a single TS queue or an LTSQ.

It will trigger logging on the VSAM data set that can later be used for ASCA
reconciliation.

 Format
KBAXWRP is a CICS Main program, with the following LINK syntax:

LINK Syntax (PL/I):

77── EXEC CICS LINK PROGRAM('KBAXWRP')
 COMMAREA(KBAXWRIT)
 LENGTH(CSTG(KBAXWRIT)); ────────────────────7"

 Parameters
Passed structure for the CICS MailRoom write API. It can be found in
KBH.R450.PLINCL(KBAXWRIT)

 /* +---+ */
 /* | -------- INTELLIGENT MESSAGE BROKER (IMB) --------- | */
 /* | (C) COPYRIGHT IBM DENMARK. 1998. ALL RIGHTS RESERVED. | */
 /* | (C) COPYRIGHT IBM CORP. 1998. ALL RIGHTS RESERVED. | */
 /* | | */
 /* | | */
 /* +---+ */

 /* +--+ */
 /* | API STRUCTURE | */
 /* | ============= | */
 /* | | */
 /* | STRUCTURE : KBAXWRIT | */
 /* | | */
 /* | LENGTH : 100 BYTES | */
 /* | | */
/* | CONTENTS : COMMUNICATION AREA TO CICS WRITE API KBAXWRP| */
 /* | | */
 /* | RELATIONS : BUILT BY BUSINESS APPLICATIONS CALLING | */
 /* | KBAXWRP | */
 /* | | */
 /* +--+ */
 /* */

5 SKBH_MSGID CHAR(10), /* MESSAGE NUMBER */
5 SKBH_TSQUEUE CHAR(08), /* TS QUEUE NAME */
5 SKBA_ENV_SRC CHAR(12), /* MR ENVELOPE KEY - SOURCE */
5 SKBA_MULTI_TSQ CHAR(03), /* LTSQ INDICATOR */

/* IF 'YES' THE TSQ CONTAINS A LIST */
/* OF TSQ NAMES INSTEAD OF DOCUMENTS*/
/* EACH TSQ RECORD SHOULD THEN */
/* CONTAIN ONE NAME OF MAX 8 BYTES. */

5 SKBH_COMMIT CHAR(03), /* IF 'YES' THE WRITE API AUTOMATIC-*/

72 BTB Application Programming Guide

/* LY, COMMIT/ROLLBACK AFTER INSERT */
/* IN DB2 TABLES. */

5 RESERVED CHAR(64) /* FOR FUTURE USE, BLANKS */
 /* */
 /* TOTAL LENGTH 100 */
/* == API == END OF STRUCTURE KBAXWRIT == */
 /* -- */

SKBH_MSGID
Message ID pointing to error message. If the message ID is blank, then the
MailRoom write was successful and the application must commit the new
data with a CICS SYNCPOINT. If the message ID is non blank, then the
write was unsuccessful and the data must be rolled back with a CICS
SYNCPOINT ROLLBACK.

SKBH_TSQUEUE
Name of TS-queue containing input documents to API. It can either be a
LTSQ or a single TS queue. See also field: SKBA_MULTI_TSQ.

SKBA_ENV_SRC
Source envelope ID, returned by write API

SKBA_MULTI_TSQ
If this indicator is YES, the passed TS queue will be treated as a LTSQ (see:
“Multiple TS queues” on page 21). Otherwise the TS queue will be treated
as a single TS queue.

SKBH_COMMIT
If this indicator is YES, the API will commit the new data for every 1000
inserts with a CICS SYNCPOINT. This is only for inserts in the MailRoom
TRANSPORT DOCUMENT DATA table. The final commit that makes data
available for further processing must be done by the application as described
in SKBH_MSGID.

RESERVED
Future use. Must be initialised to blanks by the calling application.

 Old structure—KBAXWRW
This API can still be used without changing the application, and the API will not
commit any new data. The previous API should not be used by any new
application.

Format of input TS queue
� The data is passed to the API in a CICS TS queue.

� The queue can either be a LTSQ or a single TS queue. (See also: “Multiple
TS queues” on page 21.)

� The input TS queue or LTSQ can contain multiple MailRoom documents that
will be grouped together in an envelope.

� A MailRoom M-record, (either simple or extended) is used to indicate the
beginning of each document. Other records must not have M in column 1, as
the record then would be misinterpreted as an M-record.

� The very first record in the document must be an M-record.

It is the responsibility of the calling business application to use unique TS queue
names that do not collide with other programs, and delete the input TS queue after

 Chapter 3. MailRoom CICS APIs 73

the call to the API. When the LTSQ routines are used, the naming of TS queues is
done automatically. For methods to manually generate unique TS-queue names,
see “Generate unique TS queue names—KBHUQNP” on page 239.

 Examples
Examples of how to use the MailRoom write API are available in:

PLI Sample using LTSQ: KBH.R450.PLI(KBGXW3M)

PLI Sample using a single TS queue: KBH.R450.PLI(KBGXW4M)

Business application and MailRoom in same CICS region
Usually the business application runs in the same CICS as the MailRoom and all
resources are defined locally.

 . MailRoom CICS region .
 . .
 . ┌──────────┐ .
 . │ │ .
 . │ BUSINESS │ ┌───────┐ .
 . │ PROGRAM │ │ │ .
 . │ │ LINK │ Write │ ──────7┐ .
 . │ │ │ API │ │ .
 . │ │ └───────┘ │ .
 . │ │) .
 . │ │ .
 . │ │ MailRoom .
 . │ │ .
 . │ │ │ .
 . │ │ │ .
 . └──────────┘ │ .
 .) .
 . .
 . ┌───────┐ ┌─────────┐ .
. │ TSQ │ READQ TS │Transp.DB│ .
 . ├───────┤ 77777777777777777 ├──┬───┬──┤ .
 . │ ZZZxx │ │ │ │ │ .
 . └───────┘ └──┴───┴──┘ .

Business application and MailRoom in different CICS regions
Using CICS DPL (Distributed Program Link), a business application can run in
another region and invoke the write API from there. In that case the TS-Queue
should be written locally to a queue starting with ZZZ, and the MailRoom should be
setup to read that particular TS Queue prefix ZZZ remotely (this is defined in the
CICS Temporary Storage Table TST).

74 BTB Application Programming Guide

 . Other CICS region . MailRoom CICS region .
 . . .
 . . .
 . ┌──────────┐ . .
. │ │ . .
 . │ BUSINESS │ . ┌───────┐ .
. │ PROGRAM │ . │ │ .
. │ │ DPL │ Write │ ──────7┐ .
. │ │ . │ API │ │ .
. │ │ . └───────┘ │ .
. │ │ .) .
. │ │ . .
. │ │ . MailRoom .
. │ │ . Kernel .
. │ │ . .
. │ │ . │ .
 . └──────────┘ . │ .
 . .) .
 . . .
. ┌───────┐ Function ship. ┌─────────┐ .
. │ TSQ │ READQ TS │Transp.DB│ .
 . ├───────┤ 77777777777777777 ├──┬───┬──┤ .
 . │ ZZZxx │ . │ │ │ │ .
 . └───────┘ . └──┴───┴──┘ .
 . . .

 Messages
When system errors occur, for example, bind errors, or missing or disabled
resources, the API will send a note to ISERROR.

 Processing
The API will only perform a technical validation check (non-blank) of the M-record.
A complete validation of the M-record data contents against MR registrations will be
done later by the MailRoom Kernel and can then potentially result in a FAILED
request with the document stored in the Transport Table.

� The M-record for every document is checked to see that mandatory parameters
are filled in. That is, country code, trading partner number and MR layout. If
there is a blank value in any of these 3 parameters, the document (all
documents) will be rejected and an error code is returned to calling program.

� Having passed the non-blank check, the documents are inserted into the
Transport Tables. They are related by the source envelope ID.

� A source envelope is inserted into the event tables, number of documents are
registered.

� API now inserts log-records into VSAM file KBAASCA, telling how many
documents were passed to the MailRoom in this particular Source envelope.

� The API returns Message ID and the Source envelope ID to caller.

In case of errors caused by any resource problem in the CICS system, then all
documents in the source envelope must be removed from DB2 with a rollback, see
below. ASCA logging is done, and a note is sent to ISERROR. It is up to the
calling program to handle the error, and call the API later.

 Chapter 3. MailRoom CICS APIs 75

 Syncpointing
The API will issue COMMIT for every 1000 inserts in MailRoom transport data
table, if it is specified by the calling application. This is done by performing a EXEC
CICS SYNCPOINT or a EXEC CICS SYNCPOINT ROLLBACK in the API. It is the
responsibility of the calling application to perform the final syncpointing in all cases.
This must be done according to the returned message code. If the returned
message code is blank (successful call), then the application must perform a EXEC
CICS SYNCPOINT to commit the updates done in DB2. If the returned message code
on non-blank, then the application must perform a EXEC CICS SYNCPOINT ROLLBACK
to ensure that BTB MailRoom DB2 tables are not left in an incomplete state.

If the CICS MailRoom write API is linked locally, the following DBRMs must be
included in the DB2 Plan used by the application transaction:

 � KBASTTM
 � KBHUIDM
 � KBHWCBM

Note: This is also the case if the API is called from a BPI. In that case the
common BPI DB2 Plan KBIA2AP must also contain these DBRMs.

76 BTB Application Programming Guide

CICS MailRoom read API—KBAXREP
When the MailRoom decides that an envelope is to be processed by a business
application (based on scheduling parameters for example), it triggers the business
application by writing a record with the envelope key to a TD queue. (The TD
queue has to be defined with trigger level = 1, in to let the document be processed
immediately.)

The API is then used by the business application to read documents from the
MailRoom.

The business application can optionally return one or more business
acknowledgments to MailRoom during the processing of the document (see: “CICS
MailRoom acknowledgment API—KBAXACP” on page 84).

CICS MailRoom read API is also providing the API support for the System
Acknowledgment scenario in CICS (see the System Administration Guide). Used in
this way, a CICS program can receive control after certain MailRoom conditions
(Finished, Failed or Overdue status) and receive a special control document.

 Format
KBAXREP is a CICS Main program, with the following LINK syntax:

LINK Syntax (PL/I):

77── EXEC CICS LINK PROGRAM('KBAXREP')
 COMMAREA(KBAXDST)
 LENGTH(CSTG(KBAXDST)); ─────────────────────7"

 Parameters
Passed structure for the CICS MailRoom read API. It can be found in
KBH.R450.PLINCL(KBAXDST)

 /* +---+ */
 /* | -------- INTELLIGENT MESSAGE BROKER (IMB) --------- | */
 /* | (C) COPYRIGHT IBM DENMARK. 1998. ALL RIGHTS RESERVED. | */
 /* | (C) COPYRIGHT IBM CORP. 1998. ALL RIGHTS RESERVED. | */
 /* | | */
 /* | | */
 /* +---+ */

 /* +--+ */
 /* | IMB MAILROOM | */
 /* | =============================== | */
 /* | | */
 /* | STRUCTURE : KBAXDST | */
 /* | | */
 /* | LENGTH : 00500 BYTES | */
 /* | | */
/* | CONTENTS : MAILROOM READ API STRUCTURE | */
 /* | | */
 /* | RELATIONS : READ API AND DESTINATION TD QUEUES | */
 /* | | */
 /* +--+ */
 /* */

 Chapter 3. MailRoom CICS APIs 77

 /* OFFSET */
 /* --- */
 5 KBAXDST_REC, /* */

10 KBAXDST_RES1 CHAR(004), /* RESERVED 000 */
10 SKBH_FNC CHAR(008), /* FUNCTION 004 */
10 SKBH_MSGID CHAR(010), /* RETURN MESSAGE 012 */
10 SKBH_TSQUEUE CHAR(008), /* TS QUEUE 022 */
10 SKBA_MASK_FNC CHAR(008), /* DATA MASK FUNCTION 030 */
10 SKBA_REQ_KEY, /* REQ KEY (FOR ACK) */
20 SKBA_ENV_DER CHAR(012), /* DERIVED ENV KEY 038 */
20 SKBA_DOCSEQNO_NUM CHAR(010), /* DOC NUMBER 050 */
20 KBAXDST_RES2 CHAR(018), /* RESERVED 060 */
10 SKBA_ENV_SRC CHAR(012), /* SOURCE ENV KEY 078 */
10 SKBA_ENV_DST CHAR(012), /* DEST ENVELOPE 090 */
10 IOPUCTY CHAR(003), /* OCUNTRY CODE 102 */
10 ISYSIDY CHAR(004), /* APPLICATION ID 105 */
10 IPRAIDY CHAR(008), /* SERVICE NAME 109 */
10 ICUSPRM_FROM CHAR(009), /* FROM TP NUMBER 117 */
10 SKBA_LAYOUT CHAR(016), /* LAYOUT OF DATA 126 */
10 SKBA_TYPE_SRC CHAR(008), /* SOURCE SCEN. TYPE 142 */
10 SKBA_TYPE_DST CHAR(008), /* DESTINATION SCEN. TYP 150 */
10 SKBA_TOTLIN_NUM CHAR(010), /* TOTAL NO OF LINES 158 */
10 SKBA_MAXLNG_NUM CHAR(010), /* MAX WIDTH OF RECORDS 168 */
10 SKBA_ACKLVL CHAR(001), /* ACKNOWLEDGMENT LVL 178 */
10 SKBA_DST_DATA CHAR(040), /* DESTINATION DATA 179 */
10 ICUSPRM_TO CHAR(009), /* TO TP NUMBER 219 */
10 SKBA_M_REC_FORMAT CHAR(008), /* FORMAT OF M-RECORD 228 */
10 SKBA_MULTI_TSQ CHAR(003), /* LTSQ INDICATOR 236 */

/* USE 'YES' TO WORK WITH */
/* LARGE DOCUMENTS */

 10 KBAXDST_RES3 CHAR(261) /* RESERVED 239 */
 /* */
 /* TOTAL LENGTH 00500 */
/* == END OF STRUCTURE KBAXDST == */
 /* -- */

KBAXDST_RES1
Reserved, should be initialized to blanks.

SKBH_FNC
The name of the function to be executed. Valid input values are:

� INIT - Initialization. Use this for the first invocation to read the structure.
(Or read it directly from the TD queue.)

� READ - Read document into TS queue(s). MailRoom will write it into
either a LTSQ or a single TS queue (depending on field
SKBA_MULTI_TSQ).

SKBH_MSGID
A status field with the following mask XXXXXXYYY where XXXXXX is the
program name, and YYY is the message number. (If OK - then blank)

SKBH_TSQUEUE
This is the name of the TS queue for the document used on the READ call
to the API. Depending on the field SKBA_MULTI_TSQ it is used in the
following way:

78 BTB Application Programming Guide

LTSQ - On input SKBH_TSQUEUE must contain a 4 character prefix, which
will be used for all TS queues created. On return it contains the name of the
LTSQ.

Single TS queue - On input SKBH_TSQUEUE must contain the name of a
unique TS queue, where the document should be written. The same name
is returned. The call will fail, if the size of the document exceeds one TS
queue.

All TS-queue names beginning with 'KB' are BTB reserved names.

SKBA_MASK_FNC
In the READ-call, the calling business application can specify what types of
data records are to be extracted from the transport tables. Valid types are:

MD Only the MailRoom M-record and D-records will be returned. All
other records (like C, E, I, Q records from DI) will be removed.
This is default if SKBA_MASK_FNC is left blank.

RAW All records saved with the document will be returned.

CD A DI C-record and D-records will be returned.
(If this option is used on transactions where a DI C-record is
not available, then a DI compatible C-record will be created out
of MailRoom control information.)

STRIP-MD Only D-records will be returned and the D is stripped off.
(This option can be used to retrieve a SAP IDOC, that always
is stored with an M record and D in front of every line.)

SKBA_REQ_KEY
The complete transport table key for the document. It consists of the derived
envelope key + the sequence number of the document within the envelope
as described below.
Returned from TD queue or after INIT call.

SKBA_ENV_DER
The derived envelope key - part of Transport Table Key.
Returned from TD queue or after INIT call.

SKBA_DOCSEQNO_NUM
The document sequence number - part of Transport Table Key.
Returned from TD queue or after INIT call.

SKBA_ENV_SRC
The source envelope key.
Returned from TD queue or after INIT call.

SKBA_ENV_DST
The destination envelope key.
Returned from TD queue or after INIT call.

IOPUCTY
Country code.
Returned from TD queue or after INIT call.

ISYSIDY
Application system identifier.
Returned from TD queue or after INIT call.

 Chapter 3. MailRoom CICS APIs 79

IPRAIDY
MailRoom service identifier.
Returned from TD queue or after INIT call.

ICUSPRM_FROM
TP Account number (sender).
Returned from TD queue or after INIT call.

SKBA_LAYOUT
MailRoom document layout.
Returned from TD queue or after INIT call.

SKBA_TYPE_SRC
The source type of this envelope.
Returned from TD queue or after INIT call.

SKBA_TYPE_DST
The destination type.
Returned from TD queue or after INIT call.

SKBA_TOTLIN_NUM
This is the total number of records in the document. (This number can be
larger than the actually number of records in the returned TS Queue
depending on SKBA_MASK_FNC).
Returned from TD queue or after INIT call.

SKBA_MAXLNG_NUM
This is the largest length of any data record in the document.
Returned from TD queue or after INIT call.

SKBA_ACKLVL
The acknowledgment level specified on the service.
Returned from TD queue or after INIT call.

SKBA_DST_DATA
This is a 40 byte user field as specified on the service/subscription.
Returned from TD queue or after INIT call.

ICUSPRM_TO
TP Account number (receiver).
Returned from TD queue or after INIT call.

SKBA_M_REC_FORMAT
Format of the returned M-record must be specified on the READ-call.
Valid types are:

(blank) The simple M-record is returned in the TS-queue.

EXTREC00 The extended M-record with both sender and receiver
information is returned in the TS-queue.

SKBA_MULTI_TSQ
Format of the returned TS queue(s) must be specified on the READ-call.
Valid types are:

YES User wants a LTSQ. Prefix is passed, full name is returned.

(other) User wants single TS queue. Full name is passed and
returned.

KBAXDST_RES3
Reserved for future use.

80 BTB Application Programming Guide

Read API usage by an BTB (local) application
The API is called twice:

� First with function = INIT, and the document-key is returned. An alternative
method is to read the TD Queue directly.

� Next with function = READ. The document is returned in a TS queue. The
calling program must select which type of TS queue to receive: LTSQ or single
TS queue, and either pass prefix or a full unique TS queue name in field
SKBH_TSQUEUE.
More information about LTSQs can be found in “Multiple TS queues” on
page 21.
For methods to generate unique TS-queue names, see “Generate unique TS
queue names—KBHUQNP” on page 239. The generation of queue names for
a LTSQ are done automatically based on the prefix.

When the business application is through initialization and setup, it calls the read
API using function INIT. The API reads the TD queue and then returns the
KBAXDST structure updated with the full document key.

The business application should then

� Change the function verb to READ
� Specify TS queue type and name (prefix or full name)
� Specify the MASK function
� Specify the format of the M-record, and
� Call the API again
� Optionally return one or more business acknowledgments

The MailRoom will write the records pertaining to this document in the named TS
queue or LTSQ and return control.

The business application then processes the data in the single TS queue or LTSQ.

 Chapter 3. MailRoom CICS APIs 81

MailRoom CICS region
 . Kernel .
 . .
 . │ .
 .) .
 . .
 . Destination .
 . Scenario .
 . .
 . │ .
 .) WRITEQ TD .
 . └───────────────────────┐ .
 . │ .
 .) .
 . ┌─────────┐ ───┐ ┌─── .
 . │Transp.DB│ │ │ ┌──────────┐ .
 . ├──┬───┬──┤ │ │ ──────7│ │ .
. │ │ │ │ └───┘ │ BUSINESS │ .

 . └──┴───┴──┘ Business Appl │ PROGRAM │ .
 .) TD Queue │ │ .
.) │ READQ TD │ .

 .) │ │ .
 .) ┌───────┐ LINK │ │ .
.) │ │"──────────────────────────── │ MR-READ │ .

 . └777777777777│ Read │ │ │ .
 . │ API │ │ │ .
. ┌───────┐ └───────┘ ┌───── │ MR-ACK │ .

 . │ │) LINK │ │ │ .
 . │ Ack │"─)──────────────────────────────┘ └──────────┘ .
 . │ API │) .
 . └───────┘) ┌───────┐ .
 .) │ TSQ │ .
. └77 WRITEQ TS 7777777777777777777777 ├───────┤ .
. │ ZZZxx │ .

 . └───────┘ .

Read API usage by an BTB (remote) application
The business application that is to receive the MailRoom documents can also
execute in an other (remote) region. In this case the triggering TD Queue
(specified during Service registration) is defined in the MailRoom CICS as remote.
When the business application in the remote region is triggered, it should not use
the INIT-verb.

Instead it will read the TD Queue itself, using standard CICS READQ TD, into the
(same) KBAXDST structure, initialize the parameters for the read API, and finally
DPL Link to the KBAXREP (the read API itself has to execute in the MailRoom
region.) The TS queues should physically be located in the remote CICS.

The API is only called once, with function = READ

82 BTB Application Programming Guide

. MailRoom CICS region Other CICS region
 . Kernel . .
 . . .
 . │ . .
 .) . .
 . . .
 . Destination . .
 . Scenario . .
 . . .
 . │ Func.Ship .
 .) WRITEQ TD .
. └───────────────────────┐ .

 . . │ .
 . .) .
 . ┌─────────┐ . ───┐ ┌─── .
 . │Transp.DB│ . │ │ ┌──────────┐ .
 . ├──┬───┬──┤ . │ │ ──────7│ │ .
. │ │ │ │ . └───┘ │ BUSINESS │ .

 . └──┴───┴──┘ . Business Appl │ PROGRAM │ .
 .) . TD Queue │ │ .
.) . │ READQ TD │ .

 .) . │ │ .
 .) ┌───────┐ DPL │ │ .
.) │ │"──────────────────────────── │ MR-READ │ .

 . └777777777777│ Read │ . │ │ .
 . │ API │ . │ │ .
. ┌───────┐ └───────┘ . ┌───── │ MR-ACK │ .

 . │ │) DPL │ │ │ .
 . │ Ack │"─)──────────────────────────────┘ └──────────┘ .
 . │ API │) . .
 . └───────┘) . ┌───────┐ .
 .) Func.Ship. │ TSQ │ .
. └77 WRITEQ TS 7777777777777777777777 ├───────┤ .
. . │ ZZZxx │ .

 . . └───────┘ .
 . . .

CICS System Acknowledgment Scenario
When using the read API in a CICS System Acknowledgment Scenario, the
received document will only contain one record, which is described in the System
Administration Guide, and can be found in KBH.R450.PLINCL(KBAXSYSA). All the
same rules apply in this case, except that only single TS queues are supported and
business acknowledgments can not be made.

 Examples
Examples of how to use the MailRoom read API are available in:

PLI Sample read program using LTSQ and Ack API (Ack lvl 2):
KBH.R450.PLI(KBGXR5M)

PLI Sample read program using single TS queue (Ack lvl 0 or 1):
KBH.R450.PLI(KBGXR7M)

PLI Sample Sysack program using single TS queue and LTSQ:
KBH.R450.PLI(KBGXSYM)

If the CICS MailRoom read API is Linked locally, the following DBRMs must be
included in the DB2 Plan used by the application transaction:

 � KBADTTM
 � KBADSSM

 Chapter 3. MailRoom CICS APIs 83

CICS MailRoom acknowledgment API—KBAXACP
The API can be used by a server application to send back an acknowledgment to
the MailRoom if the service/subscription was using acknowledgment level 2.

The application can send one or many acknowledgments back per MailRoom
transaction, to record the progress of the particular transaction through the
business process. Every acknowledgment will be stored as an event in the
MailRoom Status tables. Sending many events back might introduce unnecessary
processing overheads.

The API described here can either be used directly from CICS, or the specified
structure can be sent from remote systems (MQSeries, TCP/IP, TIE and APPC).
See:

� “Sending a Business Acknowledgment to MailRoom using MQSeries” on
page 107

� “Sending a Business Acknowledgment to MailRoom using TCP/IP” on
page 130

� “Sending a Business Acknowledgment to MailRoom using APPC” on page 138
� “Sending a Business Acknowledgment to MailRoom using TIE” on page 118

The data passed back to the MailRoom consists of:

 � Process Indicator
� Optional Message data
� Optional Application Reference data

 Process Indicator
The process indicator can have three values: I, F, or X.

I results in the MailRoom status for this transaction being changed from Pending to
In-Process.

The last (or one-and-only) acknowledgment must provide a process indicator of F
to indicate Finished, or X to indicate a severe problem and fail the document.

 Message data
The application can optionally specify a Message number (on the MailRoom
Message DB) and up to three variables to be put into the message. The resulting
message will be used as the event text on the MailRoom status table, and (in case
of failed) as text on the alert note.

Application Reference Data
The application can optionally return some key data in a 40 character field. This
could be for example, a resulting invoice number, a computed delivery date or an
amount. This field is stored by MailRoom in the request table and can later be
viewed using the request status panels in the MailRoom administration panel
hierarchy.

84 BTB Application Programming Guide

MailRoom service registration dependency.
The issuance of acknowledgments to the MailRoom has to be a planned activity,
coordinated between the MailRoom administrator and the application developer.

When the MailRoom administrator registers an acknowledgment level of 2 against a
particular MailRoom service; the MailRoom is waiting for an acknowledgment, and
will take the overdue action if an acknowledgment doesn't arrive in time.
On the other hand - if an acknowledgment is received by the MailRoom on a
service where the administrator has chosen an acknowledgment level of 0 or 1; the
MailRoom will likewise object and store an Acknowledgment out of sequence event
in the Status table.

The only exception to this is the TIE scenarios, where the acknowledgement can be
returned from TIE to satisfy an acknowledgment level of 1.

 Format
KBAXACP is a CICS Main program, with the following LINK syntax:

LINK Syntax (PL/I):

77── EXEC CICS LINK PROGRAM('KBAXACP')
 COMMAREA(KBAXACK)
 LENGTH(CSTG(KBAXACK)); ─────────────────────7"

 Parameters
Here is the passed structure for the CICS MailRoom Acknowledgment API. It can
be found in KBH.R450.PLINCL(KBAXACK)

 /* +---+ */
 /* | -------- INTELLIGENT MESSAGE BROKER (IMB) --------- | */
 /* | (C) Copyright IBM Denmark. 1998. All Rights Reserved. | */
 /* | (C) Copyright IBM Corp. 1998. All Rights Reserved. | */
 /* | | */
 /* | | */
 /* +---+ */

 /* +--+ */
 /* | IMB MAILROOM | */
 /* | =============================== | */
 /* | | */
 /* | STRUCTURE : KBAXACK | */
 /* | | */
 /* | LENGTH : 00400 BYTES | */
 /* | | */
/* | CONTENTS : MAILROOM ACKNOWLEDGMENT API STRUCTURE | */
 /* | | */
 /* | RELATIONS : ACK API (AND ACK TD QUEUE KBA0) | */
 /* | | */
 /* +--+ */
 /* */
 /* OFFSET */
 /* --- */
 5 KBAXACK_REC, /* */

10 KBAXACK_RES1 CHAR(004), /* RESERVED 000 */
10 SKBA_REQ_KEY, /* REQ KEY (FOR ACK) */

 Chapter 3. MailRoom CICS APIs 85

20 SKBA_ENV_DER CHAR(012), /* DERIVED ENV KEY 004 */
20 SKBA_DOCSEQNO_NUM CHAR(010), /* DOC NUMBER 016 */
20 KBAXACK_RES2 CHAR(018), /* RESERVED 026 */
10 SKBA_PROCESS_IND CHAR(001), /* PROCESS INDICATOR 044 */
10 SKBH_MSGID CHAR(010), /* INPUT MESSAGE ID 045 */
10 SKBH_MSGVAR, /* MSG VARIABLE */
20 SKBH_MSGVAR_X(3) CHAR(025), /* 1, 2, 3 055 */
10 SKBA_REF_DATA2 CHAR(040), /* REFERENCE DATA (UPD) 130 */
10 SKBA_ACK_TMSTAMP CHAR(026), /* RESERVED (API TMSTAMP)170 */

 10 KBAXACK_RES3 CHAR(204) /* RESERVED 196 */
 /* */
 /* TOTAL LENGTH 00400 */
/* == END OF STRUCTURE KBAXACK == */
 /* -- */

KBAXDST_RES1
Reserved, should be initialized to blanks.

SKBA_REQ_KEY
Complete MailRoom key as returned by the MailRoom Read API.

SKBA_PROCESS_IND
 Process indicator: I, X or F. If none of the above, then the status is changed
to 'IN PROC', but an error note is sent to ISERROR.

SKBH_MSGID
Message ID. If blank, and SKBH_MSGVAR is blank, then the MailRoom will
use KBAACA011, -012 and -013 respectively, depending on the process
indicator.

If SKBH_MSGID is blank but MSGVAR is not, then KBAACA010 is used
together with the passed message varable (-s).

KBAACA010 UK I &1&2&3
KBAACA011 UK I Document in process by application
KBAACA012 UK I Document finished by application
KBAACA013 UK A Document failed by application

SKBH_MSGVAR
Three variables, each 25 character, that can be used to compose an
application and occurrence specific message.

SKBA_REF_DATA2
Application Reference data. If non-blank value is used, MailRoom will store
the contents in the request table. (There also exists an SKBA_REF_DATA
field, optionally containing application data passed on from the client
environment, originally invoking the MailRoom.

SKBA_ACK_TMSTAMP
Reserved, must be initialized to blank. The timestamp is initialized by the API
and will contain the current time. The inserted event in BTB MailRoom status
tables will display this time.

h5.KBAXACK_RES3
Reserved, must be initialized to blank.

86 BTB Application Programming Guide

CICS MailRoom Document Browser API—KBAXDBP
This API can be used by a business application that needs to read an envelope, of
which it knows the key, without triggering any of the automatic MailRoom processes
associated with the CICS read API. Additionally, it provides the ability to read a
document which is already in FINISH status.

The API is called by the business application from a MailRoom exit or batch
destination program, to read documents from the MailRoom.

CICS MailRoom Document Browser API can also be used in the System
Acknowledgment scenario in CICS (see the System Administration Guide). Used in
this way, a CICS program can receive control after certain MailRoom conditions
(Finished, Failed or Overdue status) and use the Document Browser API to retrieve
all or part of the document.

The document browser API only supports the use of LTSQs.

 Format
KBAXDBP is a CICS Main program, with the following LINK syntax:

LINK Syntax (PL/I):

77── EXEC CICS LINK PROGRAM('KBAXDBP')
 COMMAREA(KBAXDBT)
 LENGTH(CSTG(KBAXDBT)); ─────────────────────7"

 Parameters
Passed structure for the CICS MailRoom Document Browser API. It can be found
in KBH.R450.PLINCL(KBAXDBT)

 /* +---+ */
 /* | -------- INTELLIGENT MESSAGE BROKER (IMB) --------- | */
 /* | (C) COPYRIGHT IBM DENMARK. 1999. ALL RIGHTS RESERVED. | */
 /* | (C) COPYRIGHT IBM CORP. 1999. ALL RIGHTS RESERVED. | */
 /* | | */
 /* | | */
 /* +---+ */

 /* +--+ */
 /* | IMB MAILROOM | */
 /* | =============================== | */
 /* | | */
 /* | STRUCTURE : KBAXDBT | */
 /* | | */
 /* | LENGTH : 00300 BYTES | */
 /* | | */
/* | CONTENTS : MAILROOM DOCUMENT BROWSER API STRUCTURE | */
 /* | | */
 /* | RELATIONS : | */
 /* | | */
 /* +--+ */
 /* */
 /* OFFSET */
 /* --- */

 Chapter 3. MailRoom CICS APIs 87

 5 KBAXDBT_REC, /* */
10 KBAXDBT_RES1 CHAR(004), /* RESERVED 000 */
10 SKBH_FNC CHAR(008), /* FUNCTION 004 */
10 SKBH_MSGID CHAR(010), /* RETURN MESSAGE 012 */
10 SKBH_LTSQ CHAR(008), /* TS QUEUE 022 */
10 SKBA_MASK_FNC CHAR(008), /* DATA MASK FUNCTION 030 */
10 SKBA_REQ_KEY, /* REQ KEY (FOR ACK) */
20 SKBA_ENV_DER CHAR(012), /* DERIVED ENV KEY 038 */
20 SKBA_DOCSEQNO_NUM CHAR(010), /* DOC NUMBER 050 */
20 KBAXDBT_RES2 CHAR(018), /* RESERVED 060 */
10 SKBA_M_REC_FORMAT CHAR(008), /* FORMAT OF M-RECORD 078 */

 10 KBAXDBT_RES3 CHAR(214) /* RESERVED 086 */
 /* */
 /* TOTAL LENGTH 00300 */
/* == END OF STRUCTURE KBAXDBT == */
 /* -- */

KBAXDBT_RES1 Reserved, should be initialized to blanks.

SKBH_FNC Currently not used, should be initialized to blanks.

SKBH_MSGID A status field with the following mask XXXXXXYYY where XXXXXX
is the program name, and YYY is the message number.
(If OK - then blank)

SKBH_LTSQ This is the name of the TS queue for the document. On input
SKBH_LTSQ must contain a 4 character prefix, which will be used for all TS
queues created. On return it contains the name of the LTSQ.

All TS-queue names beginning with KB are BTB reserved names.

SKBA_MASK_FNC Here the calling business application can specify what types of
data records are to be extracted from the transport tables.
Valid types are:

MD Only the MailRoom M-record and D-records will be returned. All
other records (like C, E, I, Q records from DI) will be removed.
This is default if SKBA_MASK_FNC is left blank.

RAW All records saved with the document will be returned.

CD A DI C-record and D-records will be returned.
(If this option is used on transactions where a DI C-record is not
available, then a DI compatible C-record will be created out of
MailRoom control information.)

STRIP-MD
Only D-records will be returned and the D is stripped off.
(This option can be used to retrieve a SAP IDOC, that is always
stored with an M-record and D in front of every line.)

SKBA_REQ_KEY The complete transport table key for the document. It consists of
the derived envelope key + the sequence number of the document within the
envelope.

The business application must fill this key in order to retrieve the document.

SKBA_ENV_DER The derived envelope key - part of Transport Table Key.

SKBA_DOCSEQNO_NUM The document sequence number - part of Transport
Table Key.

88 BTB Application Programming Guide

SKBA_M_REC_FORMAT Format of the returned M-record must be specified.

Valid types are:

(blank) The simple M-record is returned in the TS-queue.

EXTREC00
The extended M-record with both sender and receiver information
is returned in the TS-queue.

KBAXDBT_RES3 Reserved for future use, should be initialized to blanks.

Document Browser API usage by an BTB (local) appl
The calling program calls the API once, passing the key of the document required,
the format of the M-record, the records required and the prefix of the LTSQ.

More information about LTSQs can be found in “Multiple TS queues” on page 21.

The generation of queue names for an LTSQ is done automatically based on the
prefix.

CICS System Acknowledgment Scenario
If the business application uses the CICS Read API in the CICS System
Acknowledgment Scenario, the received document will only contain one record,
which is described in the System Administration Guide, and can be found in
KBH.R450.PLINCL(KBAXSYSA). If the business application requires more of the
document, it can then call the Document Browser API, using the key retrieved for
the Read API call.

 Examples
Examples of how to use the MailRoom read API are available in:

PLI Sample Sysack program using single TS queue and LTSQ:
KBH.R450.PLI(KBGXSYM)

If the CICS MailRoom read API is Linked locally, the following DBRM must be
included in the DB2 Plan used by the application transaction:

 � KBADTTM

 Chapter 3. MailRoom CICS APIs 89

90 BTB Application Programming Guide

Chapter 4. MailRoom Batch utility programs

The BTB MailRoom can be accessed from a batch job using these utility programs.

Write Utility
Used to put documents from a flat file into MailRoom.

Read Utility
Used to read documents from MailRoom and put them into a flat file.

Write Utility using MQSeries.
Used to format documents from a flat file in BTB MQSeries format and put
them to an MQSeries queue which can be set up to trigger the MailRoom.
This utility allows for simpler transmission of documents from a remote
MVS system.

Read Utility using MQSeries.
Used to read messages in BTB MQSeries format from a MQSeries queue
and split the message into into records and write them into a flat file. This
utility allows application on a remote MVS system to receive documents
from BTB in a simple way using MQSeries.

 Copyright IBM Corp. 1992, 2002 91

Sample JCL for batch write utility—KBASBWX
The job is a Batch job, that can run under OPC control, and is therefore not under
the control of the MailRoom. The job reads a flat file and inserts the documents into
the MailRoom Transport Tables.

 Format
KBASBWX is a JCL sample on how to use the utility. The job is in the RUN-library:

 KBH.R450.RUN(KBASBWX)

The following DB2 plan is used by the Batch Write Utility:

 � KBASBWP

 Parameters
In the RUN member there is a short guidance on what to customise before running
the job. Here is a description of the input to the utility:

Input variables to the Utility: The INFILE contains a debug parameter to the
program followed by an originator field.

//INFILE DD *
NO JOB=KBASBWX,CLASS=X,MSGCLASS=X,PROGRAM=KBASBWP,PLAN=KBASBWP
¬ ¬
| |ORIGINATOR
|
|DEBUG

Debug The debug parameter is a 3 character long field, and is used to control
whether you want to debug the Utility or not. If the debug parameter has
the value 'YES', the Utility will write all log information to the SYSPRINT
file.

Originator
The originator is a 80 character long field, and contains information
about where the documents come from. The information is logged on
the Source Envelope in the Originator field.

The sample job passes information about the original job, the program,
the DB2 plan and the classes.

Any text can be passed as originator, as it is free format text.

 Input
The KBASBI DD name contains the documents to the MailRoom. Here are some
sample documents with simple M-records:

Sample 1—Same Trading Partner
M678000800000KBAZBABA
DKBAZBGM0 384TestInvoice 1 0000323
DKBAZNAD1 SU John
DKBAZNAD1 AnyCityAnyWhere Travolta
DKBAZLIN7 000001
DKBAZLIN7 000002
DKBAZLIN7 000003
DKBAZLIN7 000004

92 BTB Application Programming Guide

DKBAZLIN7 000005
DKBAZTMA0 207002
M678000800000KBAZBABA
DKBAZBGM0 384TestInvoice 2 0000323
DKBAZNAD1 SU John
DKBAZNAD1 AnyCityAnyWhere Travolta
DKBAZLIN7 000001
DKBAZLIN7 000002
DKBAZLIN7 000003
DKBAZLIN7 000004
DKBAZLIN7 000005
DKBAZTMA0 207002

The sample shows 2 documents to the same Country and Trading Partner using
the same Service. The Utility will then tie the 2 documents together in the same
Source Envelope, and same Derived Envelope.

Sample 2—Different Trading Partners
M123009999999KBAZBABA
DKBAZBGM0 384TestInvoice 1 0000323
DKBAZNAD1 SU John
DKBAZNAD1 AnyCityAnyWhere Travolta
DKBAZLIN7 000001
DKBAZLIN7 000002
DKBAZLIN7 000003
DKBAZLIN7 000004
DKBAZLIN7 000005
DKBAZTMA0 207002
M678000800000KBAZBABA
DKBAZBGM0 384TestInvoice 2 0000323
DKBAZNAD1 SU John
DKBAZNAD1 AnyCityAnyWhere Travolta
DKBAZLIN7 000001
DKBAZLIN7 000002
DKBAZLIN7 000003
DKBAZLIN7 000004
DKBAZLIN7 000005
DKBAZTMA0 207002

This samples shows 2 documents with different Countries and Trading Partners,
but with same layouts. The Utility will then split the 2 documents into 2 Source
Envelopes containing one Derived Envelope each.

The Utility checks that Country code, Trading Partner and Layout from M-record are
non-blank. If there is a syntax error or errors occur while executing, the program
terminates and writes the error message to SYSPRINT file.

 Chapter 4. MailRoom Batch utility programs 93

Sample JCL for batch read utility—KBADBRX
The job is an OPC job running during the night, and is therefore not under control
of the MailRoom. The job reads an Envelope with a given search criteria from the
MailRoom Transport Tables and writes it into a flat file.

 Format
KBADBRX is a JCL sample on how to use the utility. The job is in the RUN-library:

 KBH.R450.RUN(KBADBRX)

The following DB2 plan is used by the Batch Read Utility:

 � KBADBRP

 Parameters
In the RUN member there is a short guidance on what to customize before running
the job. Here is a detailed description of the input to the utility:

Input to program
Input variables to the Utility: The KBASYSIN contains a debug parameter to the
program followed by an originator field.

//KBASYSIN DD *
NO MD EXTREC00REFDATA TO INPUT
¬ ¬ ¬ ¬
| | | |
| | | |-DESTINATION REFERENCE DATA TO BE PASSED
| | | IN THE M-RECORD
| | |
| | |-EXTREC00 = EXTENDED M-REC, BLANK = SIMPLE M-REC
| |
| |-THE MASK TO THE READ API "RAW "/"MD "/"CD "
| RAW - YOU WANT THE DATA AS IT IS IN THE TRANSPORT TABLE
| MD - YOU WANT THE M-RECORD AND THE DATA RECORDS
| IT IS THE DEFAUL VALUE
| CD - YOU WANT THE READ API TO GENERATE THE C-RECORD
| AND SEND IT TOGETHER WITH THE DATA RECORD
|
|-DO YOU WANT TO DEBUG THE PROGRAM "YES" OR "NO "

Debug The debug parameter is a 3 characters long field, and is used to control
whether you want to debug the Utility or not. If the debug parameter
contains the value YES, the Utility will write all log information in the
SYSPRINT

Mask The Mask indicate how you prefer the data:

� RAW - All records saved with the document will be returned.

� MD - Only the MailRoom M-record and D-records will be returned.
All other records (like C, E, I, Q records from DI) will be removed.
This is default if MASK is left blank.

� CD - A DI C-record and D-records will be returned.

94 BTB Application Programming Guide

(If this option is used on transactions where a DI C-record is not
available, then a DI compatible C-record will be created out of
MailRoom control information.)

� STRIP-MD - Only D-records will be returned and the D is stripped
off.
(This option can be used to retrieve a raw SAP IDOC, that is always
stored with an M-record and D in front of every line.)

Destination reference data
The destination reference data is written in the M-record and passed to
the flat file.

 Search criteria
The "KBADBI" file contains the search criteria to the Utility. The criteria is used to
select which documents that are retrieved and written in the flat file.

APPLICATION='KBAZ',
COUNTRY='* ',
TO_TRADING_PARTNER='* ',
LAYOUT='* ';

Application
The Application code field is mandatory and is not a generic search.

Country The Country code can be filled or it can be used with a generic search.
When using generic search a "*" (asterisk sign) should be used.

TO_Trading_Partner
The Trading Partner code can be filled or it can be used with a generic
search. When using generic search a "*" (asterisk sign) should be used.

Layout. The Layout code can be filled up or it can be used with a generic
search. When using generic search a "*" (asterisk sign) should be used.

 Output
The "KBADBO" will contain the documents written from the transport tables.

The Utility will make a crude check of the search criteria. If there is a syntax error
or an error occurs during the execution, the program will stop executing and write
the error message in the SYSPRINT.

 Chapter 4. MailRoom Batch utility programs 95

Sample JCL for batch write via MQSeries utility—KBASMPX
This a Batch job, that can run under OPC control, and is therefore not under the
control of the MailRoom. The job reads a flat file and builds a buffer in the standard
MailRoom format. The buffer is put on an MQSeries queue and can from there be
sent to the MailRoom. This job is can be used as an alternative to the Batch Write
utility if the data to be sent to the MailRoom is on a different MVS system from the
MailRoom.

 Format
KBASMPX is a JCL sample on how to use the utility. The job is in the RUN-library:

 KBH.R450.RUN(KBASMPX)

 Parameters
In the RUN member there are instructions on what to customize before running the
job. Here is a description of the input to the utility:

Input variables to the Utility: File MQINFO contains the parameters to the program.

//MQINFO DD *
MQMANAGER=XXXX
MQQUEUE=QL.XXXXXX.XXXX.XX
DELIMITER=+++
RECFM=V
DEBUG=Y
SPLIT=Y
MATCH-REPLY=N
MRECORDS=Y

MQMANAGER
The name of the MQSeries queue manager on which the queue resides.
This field is four characters as this is the maximum length of a queue
manager name on MVS. The job must be run on the same MVS system
as the MQSeries queue manager resides. This field is mandatory.

MQQUEUE
The name of the MQSeries queue on which the data is to be written.
This field is 48 characters long. The queue must exist when the job
runs. This field is mandatory.

DELIMITER
This field is three characters long and is used if the input file is F or FB.
The string specified here is used to denote the end of a record. It is
intended for use with input files created in an editor (for example ISPF)
to ensure that the correct record length is passed to the program. The
reasons for this are:

� Some recipients of documents from the MailRoom require records to
keep to predefined lengths (for example ECMVS TIE)

� Excess space is trimmed away from the fixed length records before
they are copied to the MQSeries message

Any value can be used, but you should use a string which never
appears in your data. If the field is blank (or the delimiter string has not
been added to the file) the records will all have the record length of the
input file.

96 BTB Application Programming Guide

For file format V or VB this field is ignored.

This field is optional and defaults to blank if omitted.

RECFM This field is one character and must contain the character V to take
advantage of the record length information if the input is V or VB. The
field is optional but defaults to F if omitted.

DEBUG The debug parameter is a 1 character field, and is used to control
whether debug information is printed. If the debug parameter has the
value Y, the Utility will write all log information to the SYSPRINT file.
Otherwise, only the summary report will be written to the SYSPRINT file.
This field is optional, default N.

SPLIT The split parameter is used to control how documents for the same
country are handled. If two documents in sequence belong to the same
country number they will be placed in the same envelope unless this
parameter is specified and set to Y. Y forces a new envelope each time
a new M record is found. The field is optional and defaults to N.

MATCH-REPLY
The Match reply parameter is for use in situations where the message
being put to MQSeries is a reply to another message, and there is a
requirement to match the reply to the original message.

If this parameter is set to Y, the input file in DDname MQMDIN must
contain the MQMD of the original message. The program will then use
the Message Id of the original message to fill the Correlation Id of the
new message, and the new message will be of type REPLY. As only
one document can be used to reply to another, this option assumes that
the input file contains only one document and any included M Records
are not treated as the start of a new document. The SPLIT parameter is
ignored if specified. M Records are not mandatory if this option is set to
Y.

The field is optional and defaults to N. If Y is selected and DDname
MQMDIN is missing or invalid, the program terminates without writing to
MQSeries.

MRECORDS
This parameter allows the user to specify whether M Records are
included in the data or not. If MRECORDS=N, no M Record checking is
performed and the file is assumed to contain only one document. The
SPLIT parameter will then be ignored if specified.

The field is optional and defaults to Y.

 Input
The MQINPUT DD name contains the documents to write the MailRoom. The
documents must have M-records and the data records must be prefixed by the
MailRoom D prefix. The exception to the above is where the document is a reply
to a previous MQSeries message and MATCH-REPLY is set to Y, or if
MRECORDS=N. The maximum record length is 2000.

If the record format of the file is F or FB for ease of editing, a delimiter string as
previously described is recommended. The string should be added after the last
byte of each input record.

 Chapter 4. MailRoom Batch utility programs 97

The MQMDIN DD name contains the MQMD of a previous MQSeries message to
which this is the reply. This DDname is only required if parameter
MATCH-REPLY=Y.

Here are some sample documents with simple M-records:

Sample 1—Same Trading Partner
M678000800000KBAZBABA
DKBAZBGM0 384TestInvoice 1 0000323
DKBAZNAD1 SU John
DKBAZNAD1 AnyCityAnyWhere Travolta
DKBAZLIN7 000001
DKBAZLIN7 000002
DKBAZLIN7 000003
DKBAZLIN7 000004
DKBAZLIN7 000005
DKBAZTMA0 207002
M678000800000KBAZBABA
DKBAZBGM0 384TestInvoice 2 0000323
DKBAZNAD1 SU John
DKBAZNAD1 AnyCityAnyWhere Travolta
DKBAZLIN7 000001
DKBAZLIN7 000002
DKBAZLIN7 000003
DKBAZLIN7 000004
DKBAZLIN7 000005
DKBAZTMA0 207002

The sample shows two documents to the same Country and Trading Partner using
the same Service. The Utility will tie the two documents together in the same
Source Envelope, and same Derived Envelope, unless the SPLIT parameter has
been set to Y.

Sample 2—Different Trading Partners
M123009999999KBAZBABA
DKBAZBGM0 384TestInvoice 1 0000323
DKBAZNAD1 SU John
DKBAZNAD1 AnyCityAnyWhere Travolta
DKBAZLIN7 000001
DKBAZLIN7 000002
DKBAZLIN7 000003
DKBAZLIN7 000004
DKBAZLIN7 000005
DKBAZTMA0 207002
M678000800000KBAZBABA
DKBAZBGM0 384TestInvoice 2 0000323
DKBAZNAD1 SU John
DKBAZNAD1 AnyCityAnyWhere Travolta
DKBAZLIN7 000001
DKBAZLIN7 000002
DKBAZLIN7 000003
DKBAZLIN7 000004
DKBAZLIN7 000005
DKBAZTMA0 207002

98 BTB Application Programming Guide

This sample shows two documents with different Countries and Trading Partners,
but with same layouts. The Utility will split the two documents into two Source
Envelopes containing one Derived Envelope each.

Sample 3—Fixed length input.
M123009999999KBAZBABA
DKBAZBGM0 384TestInvoice 1 0000323
DKBAZNAD1 SU John
DKBAZNAD1 AnyCityAnyWhere Travolta
DKBAZLIN7 000001
DKBAZLIN7 000002
DKBAZLIN7 THIS RECORD, SHORTER THAN THE REST, ENDS WITH A DASH-+++
DKBAZLIN7 000004
DKBAZLIN7 000005
DKBAZTMA0 207002

This sample shows how the delimiter +++ was used to indicate the end of a record
which is shorter than the length of the file, where the file is fixed length. In this case
the parameter DELIMITER=+++ is required.

If parameter MRECORDS is not N, and MATCH-REPLY is not Y, the Utility checks
that Country code, Trading Partner and Layout from the M-record are non-blank.
Errors in the M record result in return code 0004 and processing is stopped. Errors
in the parameters or input files, or MQSeries errors, result in return code 0008. The
job then terminates after writing the error message to SYSPRINT file. If no errors
were found the job terminates with code 0000.

 Large documents
The utility has been tested with buffer sizes of up to 100MB. This value is the
current maximum message size that MQSeries can handle. Note that the actual
number of bytes of application data is less than this as space must be allowed for
the MQMD and the MailRooms own MQSeries header. When the program finds
that it has to extend the buffer beyond 100MB, warning messages are issued to
SYSPRINT. Note also that some installations of MQSeries can only handle max
4MB per message.

If large documents are processed regularly, the region size of the job must reflect
this. In order to send the maximum buffer size, the largest region size available
must be specified on the jobcard.

Note that if M-records are included, the SPLIT parameter allows for the file to be
split into smaller documents, which may give better performance than one very
large file. Alternatively, ensure that the input file is never larger than MQSeries can
handle.

 Chapter 4. MailRoom Batch utility programs 99

Sample JCL for batch MQSeries read utility—KBADMGX
The job is an OPC job running in batch, and is therefore not under control of the
MailRoom. The job reads a message in MailRoom MQSeries format from a given
queue and writes it into a flat file.

 Format
KBADMGX is a JCL sample of how to use the utility. The job is in the RUN library:

 KBH.R450.RUN(KBADMGX)

 Parameters
In the RUN member there is a short guidance on what to customize before running
the job. Here is a detailed description of the input to the utility:

Input variables to the Utility:
File MQINFO contains the parameters to the program.

//MQINFO DD *
MQMANAGER=XXXX
MQQUEUE=XXXXXX.XXXX.XX
BUSACK=NO
MQQUEUE-ACK=XXXXXX.XXXX.XX.X
MASK-FNC=RAW
MATCH-REPLY=N
DEBUG=N

MQMANAGER
The name of the MQSeries queue manager on which the queue resides.
This field is four characters as this is the maximum length of a queue
manager name on MVS. The MQSeries queue manager must be on the
same MSV system as the job runs. This field is mandatory.

MQQUEUE
The name of the MQSeries queue from which the data is to be read.
This field is 48 characters long. The queue must exist when the job
runs. This field is mandatory.

BUSACK This field is used to define whether the utility must issue a business
acknowledgment upon reading the message successfully. The field is
optional but defaults to N if omitted. If the field is present the parameter
MQQUEUE-ACK is mandatory.

MQQUEUE-ACK
The name of the MQSeries queue to which the business
acknowledgment is to be written. This field is 48 characters long. The
queue must be defined. The field is only mandatory if the BUSACK
parameter is set to YES.

MASK-FNC
This parameter governs which records will be written to the output file.
An message read by this utility may contain various types of MailRoom
record. The following list shows the possibilities for this field:

RAW All records will be written to the output file. This is the default
value.

100 BTB Application Programming Guide

MD Only the M-record and all records beginning with D will be
written.

CD Only the MailRoom C record and records beginning with D
will be written.

STRIP-MD All records except the M-record will be written to the output
file, and the 'D' will be stripped off data records.

CD-ALL All records except the M-record will be written to the output
file.

Use of this parameter presupposes that the data arrives in MailRoom
format. If the data to be processed does not contain normal MailRoom
M and D records, it is important to set this parameter to RAW to avoid
data records being interpreted incorrectly.

MATCH-REPLY
The Match reply parameter is for use in situations where the message
being read from MQSeries requires a reply in the form of another
MQSeries message, and there is a requirement to match the reply to the
original message.

If this parameter is set to Y, the output DDname MQMDOUT must point
to a dataset with format FB and record length 324. The program will
then write the MQMD of the retrieved message to this file. To perform
this function, the program can only handle one message (and therefore
one MQMD) at a time and so, when this parameter is set to Y, only the
first record will be read from the queue.

The field is optional and defaults to N. If Y is selected and DDname
MQMDOUT is missing or invalid, the program terminates without reading
from MQSeries.

DEBUG The debug parameter is a one character field, and is used to control
whether debug information is printed. If the debug parameter has the
value Y, the Utility will write all log information to the SYSPRINT file.
Otherwise, only the summary report will be written to the SYSPRINT file.
This field is optional, default N.

 Output
The message(s) will be written to the DDname DOCOUT. This file must have
record length 2000 and format V.

The Utility will make a crude check of the search criteria. If there is a syntax error
or an error occurs during the execution (eg an &mqs. error) the program will stop
executing and write the error message in the SYSPRINT.

0000 Data read from MQSeries queue and written to file.

0004 No messages on MQSeries queue.

0008 Error has occured. This can be syntax errors or errors during execution.

 Chapter 4. MailRoom Batch utility programs 101

102 BTB Application Programming Guide

Chapter 5. MailRoom MQSeries support

The BTB MailRoom can be accessed using MQSeries. This chapter describes the
BTB MailRoom support of MQSeries and also the required definition in MQSeries to
access BTB MailRoom.

Send documents to MailRoom.
How to use MQSeries to send documents to MailRoom.

Receive documents from MailRoom.
How to use MQSeries to receive documents from MailRoom.

Send Business Acknowledgment to MailRoom
How to use MQSeries to send Business Acknowledgment to MailRoom.

Data conversion
MQSeries and data conversion in MailRoom.

MQSeries requirements
Definitions in MQSeries to access the MailRoom.

MQSeries requirements for acknowledgment level 1 and 2
Definitions in MQSeries to receive technical acknowledgement (delivery
confirmation).

MQSeries sample code
A sample program included in the BTB package showing examples of how
to map application data to a buffer in the BTB MQSeries format.

 Copyright IBM Corp. 1992, 2002 103

Using MQSeries MQPUT to send documents to MailRoom
Using a standard MQPUT API call, an application on any supported MQSeries
platform can send documents to MailRoom for further processing and transmission
to other systems.

As MQSeries is operating on a buffer/structure concept of data and BTB is working
with documents, it is necessary to represent the document in a large buffer with an
agreed way to delimit each record in the document.

Using this method, single or multiple documents can be sent to the MailRoom.

 Format
Before calling the MQPUT API, the business application must format the document
into the MailRoom buffer format.

 1 MQ_REC UNALIGNED,
 3 HEADER,
 5 HDRTYPE CHAR(01),
 5 DATATYPE CHAR(01),
 5 CODEPAGE CHAR(08),
 5 NBR_RECS PIC'99999999',
 5 RESERVED CHAR(82),
 3 DATA,

5 variable length depending on contents

 Parameters
The fields in the structure are:

HDRTYPE
Format of the header part. Currently only one header is defined. Other
headers might be added in the future to allow other representations of
documents. Valid types are:

A Format as defined.

other Reserved for future use.

DATATYPE
Format of the detail data part. Valid types are:

L Each data-record is preceded by a two—byte binary length field. This
representation is only usable if no ASCII to EBCDIC conversion is
taking place (see also “Codepage translation services” on page 213).

<ll><data><ll><data> ... <ll><data>
each <ll><data> to be interpreted as

 5 LL BIN FIXED(15),
 5 DATA CHAR(LL-2),

P Each data-record is preceded by a 4 byte character length field. This
representation is good for transmissions between platforms with
different codepages, where codepage conversion takes place.

<pppp><data><pppp><data> ... <pppp><data>
each <pppp><data> to be interpreted as

 5 PPPP PIC'9999',
 5 DATA CHAR(PPPP-4),

104 BTB Application Programming Guide

other Reserved for future use.

CODEPAGE
Code page info for data (unimplemented at present)

ASIS Data sent 'as is'. Base is EBCDIC.

blank Data sent 'as is'. Base is EBCDIC.

other Future use.

NBR_RECS
Number of (decoded) records. The data structure defined above is repeated
NBR_RECS times.

RESERVED
Future use. Has to be initiated to blanks by calling application.

Format of input
� The data is passed to the MailRoom in the above buffer format.

� Notice that the length field preceding each data record is the length of the data
record including the length of the length field depending on the value of
DATATYPE.

� The input can contain multiple documents.

� An BTB MailRoom M-record, (either simple or extended) is used to indicate the
beginning of each document. Other records must not have an "M" in column 1,
as the record then would be misinterpreted as an M-record.

� The very first record must be an M-record.

 Examples
Examples of how to format the buffer can be seen in Figure 14.

Input document :

 MEXTREC00cccTO_TP FROM_TP
 DKBAZBGM0 XXXXXXXXYYYYYYYYZZZZZZZZ
 DKBAZNAD1 AA
 DKBAZLIN7 BB0123

The first record must be a MailRoom M-record, the other records can
be any type/format not starting with 'M'.

buffer sent to MQ : <header><data1><data2><data3><data4>

Where name bytes Contents
 <header> 100 = AP 00000004

<data1> 304 = 0304MEXTREC00cccTO_TP . . .
<data2> 38 = 0038DKBAZBGM0 XXXXXXXXYYYYYYYYZZZZZZZZ
<data3> 54 = 0054DKBAZNAD1 AA
<data4> 20 = 0020DKBAZLIN7 BB0123

Figure 14. BTB MQSeries message format(s).

 Chapter 5. MailRoom MQSeries support 105

Using MQSeries MQGET to receive documents from MailRoom
Using a standard MQGET API call, an application on any supported MQSeries
platform can receive documents from the MailRoom for further processing.

The structure of the received data is the same as described in “Using MQSeries
MQPUT to send documents to MailRoom” on page 104, and it is the responsibility
of the receiving application to split the MQSeries buffer into records depending on
the specification in the header record.

106 BTB Application Programming Guide

Sending a Business Acknowledgment to MailRoom using MQSeries
Using a standard MQSeries PUT API call, an application on any supported
MQSeries platform can send Business Acknowledgments to MailRoom to record
the progress of a particular transaction through the business process.

The method used to send Business Acknowledgments to MailRoom is the same as
sending a single or multiple documents to the MailRoom described in “Using
MQSeries MQPUT to send documents to MailRoom” on page 104. As with
documents a single or multiple Business Acknowledgment can be sent to the
MailRoom.

 Format
The format of Business Acknowledgment is described in “CICS MailRoom
acknowledgment API—KBAXACP” on page 84 except that the KBAXACK record
must be prefixed with a eight-byte field containing the value BUSACK.

 Examples
Examples of the format of the buffer can be seen in Figure 15.

Input document :

 BUSACK 400Q476100000000000001 IKBBXX90001Process started
 BUSACK 400Q476100000000000001 FKBBXX90002Process finished

buffer sent to MQ : <header><data1><data2>

Where name bytes Contents
 <header> 100 = AP 00000002
 <data1> 408 = 0408BUSACK 400Q476100000000000001 IKBBXX90001 Process started
 <data2> 408 = 0408BUSACK 400Q476100000000000001 FKBBXX90002 Process finished

Figure 15. BTB MQSeries message format of Business Acknowledgment.

 Chapter 5. MailRoom MQSeries support 107

Data conversion and MQSeries
When using MQSeries to transmit data between different platforms, there is a need
for data conversion. BTB has been designed to use the standard function in
MQSeries for data conversion. The use of MQSeries data conversion works
differently in the MQ and SAP-MQ scenarios. The following describes the flow
when sending and receiving data in the MailRoom.

 SAP-MQ
Flow when using BTB to send data to SAP or receiving data from SAP. All data
conversion takes place on the SAP side.

 SAP region BTB region
┌───┐ ┌─────────────────────────────────────┐
│ │ │ │
│ Sender CHANNEL has CONVERT YES i.e. │ │ IMB issues MQGET with │
│ translates to CSSID of QM2 before message │ │ MQGMO─CONVERT NO │
│ is sent. Done by SAP-Link exit. │ │ │
│ │ │ │
│ ┌─────────────┐ │ │ ┌─────────────┐ │
│ │ MQ QM1 │ │ │ │ MQ QM2 │ │
│ │ │ │ │ │ │ │
│ ┌─────────┐ ┌─────────┐ │ ┌─────────┐ │ │ │ │ ┌─────────┐ │ ┌─────────┐ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ │ ├────7│ ├────7│ CH1S ├──────────7│ CH2R ├─────7│ │ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ │ │ │ │ │ └─────────┘ │ │ │ │ └─────────┘ │ │ │ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │
│ │ SAP │ │SAP-Link │ │ │ │ │ │ │ │ IMB │ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │
│ │ │ │ │ │ ┌─────────┐ │ │ │ │ ┌─────────┐ │ │ │ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ │ │"────┤ │"────┤ CH1R │"──────────┤ CH2S │"─────┤ │ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ └─────────┘ └─────────┘ │ └─────────┘ │ │ │ │ └─────────┘ │ └─────────┘ │
│ │ │ │ │ │ │ │
│ └─────────────┘ │ │ └─────────────┘ │
│ │ │ │
│ SAP-Link issues MQGET with MQGMO─CONVERT │ │ IMB issues MQPUT with MQMD │
│ set, and translates to CSSID of QM1 befo- │ │ Format field set to MQFMT─SAP │
│ re appl. gets the message. Done by SAP- │ │ (value MQHSAP) . │
│ Link exit activated by MQ. │ │ Sender CHANNEL has CONVERT NO. │
│ │ │ │
└───┘ └─────────────────────────────────────┘

Figure 16. SAP-MQ

108 BTB Application Programming Guide

 MQ
Flow when using BTB and MQSeries to transmit data to applications on another
platform.

┌───────────────────────────────────┐ ┌─────────────────────────────────────┐
│ Remote region │ │ IMB region │
│ │ │ │
│ Appl. issues MQPUT with │ │ IMB issues MQGET with │
│ MQMD Format field set to │ │ MQGMO─CONVERT YES. Data is con- │
│ MQFMT─STRING (value MQSTR). │ │ verted from CSSID of QM1 to CSSID │
│ Sender CHANNEL has CONVERT NO. │ │ of QM2 by MQ (if CSSID of QM1 is │
│ │ │ known by QM2). │
│ │ │ │
│ ┌─────────────┐ │ │ ┌─────────────┐ │
│ │ MQ QM1 │ │ │ │ MQ QM2 │ │
│ │ │ │ │ │ │ │
│ ┌─────────┐ │ ┌─────────┐ │ │ │ │ ┌─────────┐ │ ┌─────────┐ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ │ ├────7│ CH1S ├─────────────7│ CH2R ├─────7│ │ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ │ │ │ └─────────┘ │ │ │ │ └─────────┘ │ │ │ │
│ │ │ │ │ │ │ │ │ │ │ │
│ │ Appl. │ │ │ │ │ │ │ │ IMB │ │
│ │ │ │ │ │ │ │ │ │ │ │
│ │ │ │ ┌─────────┐ │ │ │ │ ┌─────────┐ │ │ │ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ │ │"────┤ CH1R │"─────────────┤ CH2S │"─────┤ │ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ └─────────┘ │ └─────────┘ │ │ │ │ └─────────┘ │ └─────────┘ │
│ │ │ │ │ │ │ │
│ └─────────────┘ │ │ └─────────────┘ │
│ │ │ │
│ Appl. issues MQGET with │ │ IMB issues MQPUT with MQMD │
│ MQGMO─CONVERT YES. Data is con- │ │ Format field set to MQFMT─STRING │
│ verted form CSSID of QM2 to CSSID │ │ (value MQSTR). │
│ of QM1 by MQ. │ │ Sender CHANNEL has CONVERT NO. │
│ │ │ │
└───────────────────────────────────┘ └─────────────────────────────────────┘

 Chapter 5. MailRoom MQSeries support 109

MQSeries definitions to access the MailRoom
To access the MailRoom using MQSeries some definitions are required to get data
into the MailRoom.

The BTB MailRoom is running under control of CICS. To access the MailRoom
using MQSeries the local MQSeries queue manager must be connected to the
CICS system where the BTB MailRoom is installed.

 MQSeries Queues
Passing data to MailRoom requires that one or more local queue(s) has been
defined. There is no restriction to the name of the queue, but a few options have
to be defined with special values to access the MailRoom. The definition of a local
queue can be seen in the example below.

Notice the TRIGDATA option that must contain 'MQ' in position 1 to 6. If data is
received from SAP-MQ Link the TRIGDATA option must contain SAP-MQ in
position 1 to 6.

If the MailRoom has to handle data length fields in respect to DBCS shift-in and
shift-out characters, the TRIGDATA option must contain DBCS-CNV in position 7 to
14.

In the example shown, an MQSeries queue “IMB.CICSID.MQ.INPUT” is defined:

DEFINE QLOCAL('IMB.CICSID.MQ.INPUT') +
DESCR('Mailroom MQ source input Queue') +
PUT(ENABLED) +
GET(ENABLED) +
DEFPRTY(5) +
DEFPSIST(YES) +

 TRIGGER +
 TRIGTYPE(FIRST) +
 TRIGDATA('MQ ') +
 INITQ('IMB.CICSID.INIT') +
 PROCESS('IMB.PROCESS')

 MQSeries Process
The process specified on the MQSeries Queue definition is used by MQSeries to
decide which program that has to be started. The process has to point to
transaction KBAG.

DEFINE PROCESS('IMB.PROCESS') +
DESCR('Process for Triggers from MQ source Queue') +
APPLTYPE (CICS) +

 APPLICID (KBAG)

MQSeries Initiation queue
MQSeries uses the initiation queue when the parameter TRIGGER is specified for
the queue. The initiation queue must be activated by the CICS system using
MQSeries CKTI (see the MQSeries for MVS/ESA System Management Guide for
further information).

110 BTB Application Programming Guide

DEFINE QLOCAL('IMB.CICSID.INIT') +
DESCR('Init Queue for IMB CICS') +
PUT(ENABLED) +
GET(ENABLED) +
DEFPRTY(5) +

 MSGDLVSQ(PRIORITY) +
 TRIGTYPE(FIRST) +
 NOTRIGGER +
 NOSHARE

 Chapter 5. MailRoom MQSeries support 111

MQSeries definitions to receive technical acknowledgement
To receive technical acknowledgement from MQSeries, a set of specifications is
required to get it into the MailRoom.

These specifications are only needed for destination MQ, when ack.level 1 or 2 is
specified, or destination SAP-MQ when ack.level 1 is specified. The definitions
should only be used to receive technical acknowledgements. To receive Business
Acknowledgements see “Sending a Business Acknowledgment to MailRoom using
MQSeries” on page 107.

For further explanation of MQSeries specification and handling of reply queues see
the MQSeries Intercommunication Guide.

MQSeries Reply Queues
Receiving technical acknowledgement from MQSeries requires that one or more
local queue(s) has been defined. There is no restriction to the name of the queue,
but a few options have to be defined with special values to access the MailRoom.
The definition of a local queue can be seen in the example below.

In the sample below, an MQSeries queue IMB.CICSID.MQ.ACK.REPLY is defined:

DEFINE QLOCAL('IMB.CICSID.MQ.ACK.REPLY') +
DESCR('Mailroom MQ reply Queue to receive technical ack') +
PUT(ENABLED) +
GET(ENABLED) +
DEFPRTY(5) +
DEFPSIST(YES) +

 TRIGGER +
 TRIGTYPE(FIRST) +
 INITQ('IMB.CICSID.INIT') +
 PROCESS('IMB.ACK.REPLY.PROCESS')

MQSeries Reply Queue Alias
The queue specified on the receive subscription is defined as an alias to the local
reply queue. The reason for this is the way that MQSeries replaces Queue
Manager Name in its header information. The definition of a queue alias can be
seen in the example below.

In the sample below, a MQSeries alias queue IMB.CICSID.MQ.ACK.REPLY is
defined:

DEFINE QREMOTE('IMB.CICSID.MQ.ACK.REPLY.ALIAS') +
DESCR('Mailroom MQ Reply Queue alias') +
PUT(ENABLED) +
GET(ENABLED) +
DEFPRTY(5) +
DEFPSIST(YES) +

 RNAME('IMB.CICSID.MQ.ACK.REPLY') +
 RQMNAME('TRANSMITQ.MQ2.TO.MQIMB')

112 BTB Application Programming Guide

MQSeries Queue Manager Alias
The queue manager specified on the Reply Queue alias also has to be defined.
The definition of a Queue Manager alias can be seen in the example below.

In the sample below, a MQSeries Queue Manager alias
TRANSMITQ.MQ2.TO.MQ1.IMB is defined:

DEFINE QREMOTE('TRANSMITQ.MQ2.TO.MQIMB') +
DESCR('Queue Manager alias for Mailroom MQ Reply Queue') +
PUT(ENABLED) +
GET(ENABLED) +
DEFPRTY(5) +
DEFPSIST(YES) +
RNAME(' ') +

 RQMNAME('MQIBM')

MQSeries Reply Process
The process specified on the MQSeries queue definition is used by MQSeries to
decide which program that has to be started. The process has to point to
transaction KBAB.

DEFINE PROCESS('IMB.ACK.REPLY.PROCESS') +
DESCR('Process for Triggers from MQ Reply Queue') +
APPLTYPE (CICS) +

 APPLICID (KBAB)

 Chapter 5. MailRoom MQSeries support 113

114 BTB Application Programming Guide

Chapter 6. MailRoom TIE/IMS support

The BTB MailRoom can be accessed from IMS platforms using TIE or TIE and
MQSeries. This chapter describes the BTB MailRoom support for IMS platforms
and the TIE definitions needed to access BTB MailRoom. It also provides guidance
for selecting the appropriate method for the IMS installation (TIE alone or TIE with
MQSeries).

Send documents to MailRoom
How to use TIE to send documents to MailRoom.

Receive documents from MailRoom
How to use TIE to receive documents from MailRoom.

Send Business Acknowledgment to MailRoom
How to use TIE to send Business Acknowledgments to MailRoom.

TIE with MQSeries
Overview of the standard TIE solution using ISClink.

TIE with MQSeries
Overview of the TIE with MQSeries solution.

TIE or TIE-MQ?
Considerations that apply when choosing between TIE and TIE with
MQSeries, and how to convert your existing TIE transmissions to use
MQSeries.

Handling error situations.
What to do to retrieve data that has been read from TIE but could not be
processed due to errors.

 Copyright IBM Corp. 1992, 2002 115

Using TIE-Write to send documents to MailRoom
Using a standard TIE-Write call (RWYWRIP) any business application can send
documents to the MailRoom.

The structure of the data is agreed in each individual case. The business
application should wrap the data in MailRoom format, adding a RIF with the
M-Record format at the start of the data and a D prefix on all other records.

It is the responsibility of the business application to create the TIE Application and
BTX, and define the RIFs which will be sent.

The owner of the business application must also ensure that mapping takes place
to a TIE Recipient according to the TIE documentation, or that automatic re-route to
another TIE is performed.

Once mapping is performed, TIE should re-route to IMS transaction KBAXTR0 for
the TIE scenario or KBAXMR0 for the TIE-MQ scenario.

116 BTB Application Programming Guide

Using TIE-Read to receive documents from MailRoom
Using a standard TIE-Read call (RWYREAP) any business application can receive
documents from the MailRoom for further processing.

The structure of the received data is agreed in each individual case. A MailRoom
envelope consists of several records wrapped in MailRoom format (with an
M-record as header and a D prefix on all other records). On transmission to TIE
each record is assigned a RIF name based on the first 10 letters of the record after
the MailRoom prefix D. The MailRoom TIE-Write program attempts to insert the
RIFs it has built up to the TIE Application and BTX specified on the MailRoom
service or subscription.

It is the responsibility of the business application to create the TIE Application and
BTX, and define the RIFs expected. Any RIF created by the MailRoom TIE-Write
program which is not defined in TIE will not be inserted.

Note: TIE has certain restrictions on the naming of RIFs. If the first 10 bytes of the
record data (from which the RIF name is derived) contain characters that are not
allowed in TIE RIFs, such as underscore or hex 00, the entire document will be
rejected by TIE.

The owner of the business application must also ensure that a mapping takes place
to a TIE Recipient according to the TIE documentation, or that automatic re-route to
another TIE is performed.

Once mapping is performed, the business application can carry out the standard
RWYREAP call to retrieve the data.

 Chapter 6. MailRoom TIE/IMS support 117

Sending a Business Acknowledgment to MailRoom using TIE
TIE can be set up to send Business Acknowledgments to MailRoom in the same
way as original interfaces. The purpose is to record the progress of a particular
transaction through the business process.

 Format
A Business Acknowledgement consists of a single record containing the structure
described in “CICS MailRoom acknowledgment API—KBAXACP” on page 84 and
no M record is required. This record can be created in two ways:

� By mapping in TIE, for example to indicate that the document has reached TIE
successfully and been passed on to the Business Application.

In this case the values will either be taken from the KBAXDST RIF or supplied
by constants.

� By the Business Application, either on receiving the document, on completing
processing the document, or both.

For both of these methods the acknowledgment should be mapped to a recipient
whose name begins with the string KBAACK. This step is essential as it identifies
the transmission as an acknowledgment thus rendering the check for an M-record
unnecessary.

The field SKBA_PROCESS_IND should be set to the relevant stage of processing
depending on the required acknowledgment level specified in the ACKLVL field.
The exception to this is where the Business Acknowledgment has been created by
TIE mapping alone, in which case the field should be set to Q. When the TIE-Read
API processes an acknowledgment with process indicator Q, it automatically
converts this as follows:

� If the required acknowledgment level is 1, the document is considered finished
upon receipt of this acknowledgment.

� If the required acknowledgment level is 2, MailRoom will wait for another
Business Acknowledgment to be supplied by the Business Application.

This second Acknowledgment may of course also be sent via TIE but the
Business Application will fill the process indicator with the correct value and for
this reason a second BTX will be required in TIE to provide this input.

Acknowledgment processing - TIE-IMS via ISCLink
On arrival in BTB, the Business Acknowledgment is processed by a different
module from the one handling new documents. Although both types of transaction
can use the same ISC link, it is necessary to set up a new entry in the WC table to
specify the Business Acknowledgment program name.

Use the fastpath command WCEDIT to insert a KBBEDAM WC-table entry.

118 BTB Application Programming Guide

� �
KBHWDMIM Modify Working Criteria Entry

Country code : 123

Key. : KBBEDAM KBAAIRP
 KBBEDAM xxxxxxxx

Value. FKEIM04_________________________
 llllllll

Comment.
LTERM of ISC-Link (IMS-CICS)__

Country code
The Trading Partner country

Key
The key the BEC module will use. KBBEDAM is the name of the BEC module
reading this entry. KBAAIRP is the name of the MailRoom receiver module that
BEC will invoke.

Value

Enter the LTERM name for the ISClink port between IMS and MailRoom region.

 Chapter 6. MailRoom TIE/IMS support 119

TIE-IMS Scenario using ISClink
This section describes the extra activities required when the link between TIE and
the MailRoom is an ISClink.

 BTB processing
On arrival in BTB, the document is processed by program KBASIRP.

Use the fastpath command WCEDIT to insert a KBBEDAM WC-table entry, to link
this program to its ISClink.

� �
KBHWDMIM Modify Working Criteria Entry

Country code : 123

Key. : KBBEDAM KBASIRP
 KBBEDAM xxxxxxxx

Value. FKEIM04_________________________
 llllllll

Comment.
LTERM of ISC-Link (IMS-CICS)__

Country code
The Trading Partner country

Key
The key the BEC module will use. KBBEDAM is the name of the BEC module
reading this entry. KBASIRP is the name of the MailRoom receiver module that
BEC will invoke.

Value

Enter the LTERM name for the ISClink port between IMS and MailRoom region.

Acknowledgments in the TIE-IMS scenario
Since BTB is responsible for the data until it has been written to TIE, an event will
not be written until the TIE Write has been performed.

For acknowledgment level 1 and 2, please see “Sending a Business
Acknowledgment to MailRoom using TIE” on page 118.

120 BTB Application Programming Guide

 TIE-MQ Scenario
This section describes the extra activities required when using MQSeries with TIE
to communicate with the MailRoom.

Sending documents to the MailRoom
There are two further requirements once the TIE and MailRoom definitions have
been carried out.

� The DB2 table used to specify the MQSeries information
� The MQSeries definitions

The DB2 table KBDTMT must be created on the system where TIE is installed. For
more details, refer to the Installation Guide.

At least one entry is required—the default entry with a key consisting of asterisks.
The key is made up of the first three fields. It is also possible to use different
queues according to which TIE application, recipient and country data arrives from.
This gives the business application the possibility to send data to different BTB
systems. It is recommended to use different queues for errors and data respectively
in order to allow differentiation of the transactions in CICS.

This is an example of how the first five fields of the table might look (fields
shortened for space reasons).

 IOPUCTY ISYSIDY ITRNRCP SKBA_MQQNAME SKBA_MQQERR
 ------- ------- ---------- -------------------- --------------------
 *** **** ********** QUEUE.FOR.DATA QUEUE.FOR.ERRORS
 123 SYST DATA QUEUE.FOR.123.DATA QUEUE.FOR.123.ERRORS

These table entries would result in the following:

� If an error is detected when reading data from the MailRoom, error messages
will be sent to queue QUEUE.FOR.ERRORS.

� If data is sent to application SYST, BTX DATA in TIE, for country 123, it will be
placed on queue QUEUE.FOR.123.DATA.

� If data is sent to application SYST, BTX DATA in TIE, for country 123, but
errors are detected, the error message will be sent to queue
QUEUE.FOR.123.ERRORS.

� Data sent to TIE for any other country, application or BTX will be sent to
QUEUE.FOR.DATA, and any errors will be sent to QUEUE.FOR.ERRORS.

The MQSeries definitions are similar to the “MQSeries definitions to access the
MailRoom” on page 110. However the TRIGDATA should be set to TIE-MQ.

If you are using a separate queue for errors then this queue should trigger CICS
transaction KBAE.

If you are using TIE to transmit business acknowledgements please see “Sending a
Business Acknowledgment to MailRoom using MQSeries” on page 107. In this
case you should make a separate entry in the KBDTMT table pointing to this
queue. The CICS transaction to trigger for business acknowledgments is KBAB.

 Chapter 6. MailRoom TIE/IMS support 121

Receiving documents from the MailRoom
The DB2 table described is used only for error messages. The only entry that will
be used is the default entry with a key of asterisks. The Error queue must trigger
transaction KBAE in MQSeries on the CICS side of the connection.

The MQSeries definitions on the IMS system where TIE is installed require that the
queue uses IMS triggering. The IMS trigger function is a long-running BMP which
checks the initiation queue regularly for input and inserts a transaction to IMS when
data arrives. Set up the queue which is named on the MailRoom service or
subscription and enable triggering using trigger type FIRST. The process specified
on the MQSeries queue definition will be used to define the IMS transaction which
is to be started. In the field APPLICID on the process you must therefore specify
KBAXMW0 which is the BTB TIE-Write for MQSeries module.

In the example, queue IMB.CICSID.TIEMQ.OUTPUT is defined with trigger type
FIRST and the related process shows that IMS transaciton KBAXMW0 will be
started.

DEFINE QLOCAL('IMB.CICSID.TIEMQ.OUTPUT') +
DESCR('TIE-MQ Output from IMB') +
PUT(ENABLED) +
DEFPRTY(5) +
DEFPSIST(YES) +
GET(ENABLED) +

 TRIGGER +
 TRIGTYPE(FIRST) +

TRIGDATA('MQ') +
PROCESS('IMB.IMS.PROCESS') +

 INITQ('IMB.CICSID.IMS.INIT')
DEFINE PROCESS('IMB.IMS.PROCESS') +

DESCR('Process for TIE-MQ from IMB') +
APPLTYPE ('IMS') +
APPLICID ('KBAXMW0') +

Acknowledgments in the TIE-MQ scenario
Since BTB is responsible for the data until it has been written to TIE, and there are
two checkpoints underway, there are two acknowledgments returned to satisfy
acknowledgment level 0.

Two events will be inserted for each document; one to say the data was written to
MQ and the second to record the TIE Write.

For acknowledgment level 1 and 2, please see “Sending a Business
Acknowledgment to MailRoom using TIE” on page 118.

122 BTB Application Programming Guide

TIE or TIE-MQ?
The TIE-MQ solution is the recommended way to transmit data from IMS platforms
to MailRoom. The method has two advantages over the TIE-IMS method:

� It runs independently of the MailRoom.

� It is not required to use remote DB2 if the IMS and CICS installations are on
different MVS systems.

Using TIE-MQ removes the need for ISC links and spares the IMS queue for
undeliverable messages if the ISC link is unavailable.

If you have an existing TIE transmission to MailRoom and you wish to convert to
MQSeries then you must perform the following actions:

� Change the TIE Recipient Operational Control to point to KBAXMR0 instead of
KBAXTR0.

� Ensure the KBDTMT table has been created in the DB2 accessible to your IMS
environment and set up an entry for the TIE Application, Recipient and country
your data is sent from.

� Set up the MQSeries queues for data and error transmission. See “TIE-MQ
Scenario” on page 121.

� Change the service or subscription from TIE-IMS to TIE-MQ source.

If you have an existing TIE transmission from MailRoom and you wish to convert to
MQSeries then you must perform the following actions:

� Change the service or subscription from TIE-IMS to TIE-MQ destination; enter
the MQSeries details.

� Set up the MQSeries queues for data and error transmission. See “TIE-MQ
Scenario” on page 121.

� Set up an MQSeries report queue.

� Ensure the KBDTMT table has been created in the DB2 accessible to your IMS
environment and set up a default entry in which the key fields are set to
asterisks and the MQSeries queue for error messages is filled in.

 Chapter 6. MailRoom TIE/IMS support 123

Understanding error situations
This section describes how to retrieve input interfaces that could not be processed
due to errors arising after the data had been read from TIE.

Likely error situations
The TIE source scenario differs from the other source scenarios in that a
successful delivery from TIE to the BTB TIE-IMS or TIE-MQ transaction does not
necessarily mean that data has been processed correctly. If, having read the TIE
data in, the program is unable to process it, the data will not be saved automatically
because the TIE-Read performs an IMS commit point. Typical situations preventing
processing of the data could be DB2 errors or invalid MQSeries queue names.

In this situation, the TIE-Read and TIE-Read for MQSeries programs will perform a
TIE-Write of the data to a special Error BTX in TIE.

Awareness of error situations
You might notice that source data is not present in BTB via a number of routes:

� The sender or recipient may notice data is not being processed.

� Alerts will be received due to errors in the ERRLOG.

� IMS Operational personnel may inform you that the BTB IMS transactions are
abending repeatedly.

How errors are handled in the TIE scenarios.
If an error is encountered in the TIE-IMS scenario, and data has not yet been read
from the IMS queue, the transaction abends and an error message is sent to
transaction KBHELI0 for handling. If this transaction completes successfully the
error message will be available in the ERRLOG transaction, otherwise it will be
printed to SYSPRINT.

If an error is encountered in the TIE-MQ scenario, and data has not yet been read
from the IMS queue, the transaction abends and an error message is sent to
KBHELM0. This transaction loads the error message to the MQSeries queue
named in the DB2 table and if this is successful it can be seen in ERRLOG.
Otherwise the error message is written to SYSPRINT in the IMS region.

In both the above situations, which could be caused by a general DB2 error, the
input data will remain in the IMS queue.

If data has already been read when the error is encountered, it is not possible to
leave it on the IMS queue, so the data is written to the error BTX in TIE, and error
reporting continues as above. If writing to the error BTX fails because the
application or BTX have not been set up correctly, the data is lost.

 Trouble-shooting
If you encounter a situation in which data is not reaching the MailRoom, and you
are certain that it was processed correctly in TIE, you should perform the following
steps:

 1. Gather information.

124 BTB Application Programming Guide

� Look in the ERRLOG on BTB to see if any error messages have been
logged regarding transmissions from TIE.

� If not, look in SYSPRINT for the IMS Region(s) in which the TIE-Read
transactions run, to see if an error message has been issued. Check also
whether the IMS Error handler transactions KBHELI0 and KBHELM0 are
started. If not, start them and check the ERRLOG again.

� If no errors are found, display the IMS transaction that you expected to
handle your data (specified in the BTX Operation Control in the TIE
sending the data) and note whether it is stopped, and whether the queue
count is greater than 0.

� If using standard TIE-Read, check whether the ISC Link between CICS and
IMS is up.

� If using TIE-Read for MQSeries, check whether the MQSeries connection is
operational, and whether the queues used for passing the data have a
depth greater than 0.

� Look in the TIE Repository Monitor - Message Repository. If there is data
to reprocess, messages will usually have been logged here.

2. Correct the error.

� If a message was found in ERRLOG or SYSPRINT, take the appropriate
action to correct the error, eg correct the plan, grant access, create the
correct MQSeries queue or update the MQSeries details in the MQSeries
information table. Continue at "Retrieve unprocessed data" below.

� If the IMS transaction you were running is stopped, ensure any errors are
corrected as above and restart the transaction. Continue at "Retrieve
unprocessed data" below.

� If using standard TIE-Read, and the ISC Link between CICS and IMS was
down, restart the link. No further action is required.

� If the message in TIE indicates that data was written to application STOP
and that this BTX is stopped, continue at "Retrieve unprocessed data"
below.

3. Retrieve unprocessed data.

� If message KBAXTR005 or KBAXMR006 was found in the ERRLOG or
SYSPRINT, the data could not be written back to TIE, and is lost. In this
situation it is necessary to recover the data from the IMS log using the IMS
message requeuer.

� If message KBAXTR002 or KBAXMR005 was found in the ERRLOG or
SYSPRINT, the data was written to TIE, and will be found in the Queued
Input Repository (Table T016) in TIE. When you are sure that the error has
been solved, list the BTX's belonging to TIE application STOP. Select the
BTX which has the name BTXxxxxxxx, where xxxxxxx is the name of the
transaction which failed. Display the BTX operational control for this BTX
and locate the country number for which you have queued data. Change
the S (stopped) to blank and press enter. Run the TIE Monitor Control
Processor (this should be a BMP running constantly) to process the data.
You may have to unstop other country entries for this and other BTX's if
data from several sources has been written back to TIE. Using another
session, ensure that further error messages are not being registered in
ERRLOG or SYSPRINT. If this is the case you must change the STOP flag

 Chapter 6. MailRoom TIE/IMS support 125

back to S immediately and solve the problem before you can reprocess the
data. When all the data is processed, change the stop flag back to S.
This last step is essential to prevent later loops occurring.

� If message KBAXTR006 or KBAXMR002 was found in the ERRLOG or
SYSPRINT, an error could have been detected before the data was read
from TIE. In this situation, the IMS transaction will be stopped and the
queue count greater than 0. It is normally sufficient to solve the error (eg
DB2 connection failed, Plan access etc) and then restart the transaction. It
is recommended that the Queued Input Repository (Table T016) in TIE is
queried in this situation too, however, as one situation could mask the other
in certain cases.

126 BTB Application Programming Guide

Chapter 7. MailRoom TCP/IP programs

The BTB MailRoom can be accessed from different platforms using TCP/IP. Two
generic programs - T2F and F2T - are available on OS/2, AIX, Windows 95 and
Windows NT. They can be used to send documents to, and receive documents
from BTB MailRoom.

F2T - Send Program
Used to transmit documents to MailRoom.

T2F - Receive Program
Used to receive documents from MailRoom and put them into a file (and
optionally invoke a program).

Sending Business Acknowledgments
Used to send one or more events to MailRoom about the progress of a
received document.

AIX Scanner Program
Used to scan a directory for new files and then invoke a program (AIX
only).

For the OS/2 platform two programs are available. They perform the same function
as T2F and F2T, but they are more stand-alone with Presentation Manager
windows and integrated directory scanning support.

OS/2 MailRoom Relay File2Tcp
Used to scan a directory for new files and transmit them to MailRoom

OS/2 MailRoom Relay Tcp2File
Used to receive documents from MailRoom and put then into a file.

 Copyright IBM Corp. 1992, 2002 127

TCP/IP MailRoom write/send program—F2T
The TCP/IP MailRoom Write/Send Program is a TCP/IP program to transmit
documents to BTB.

 Format
F2T is executable program available in versions for AIX, OS/2, Windows 95/98 and
Windows NT.

The common call syntax is:

 Call Syntax:

F2T, version: 1.00 TCP/IP connectivity with IMB, (C) Copyright IBM Corp. 2000

Usage: F2T FileName [ParameterFile]
FileName: Name of file to upload

 ParmeterFile: Name of optional parameter file, default is F2T.dat

Format of parameter file: Example values:
HOSTNAME = <HostName> Name of host mvsx.yy.ibm.com
PORTNAME = <PortName> Name of port on host 1812

 DELIMITOR = <Delimiter> Record delimiter when send ##
 TRANSTAB = <TransTab> Codepage Translationtable CP819500
 [CICSTRX] = <CICSTrx> Transaction in CICS KBAJ or KBAL
 [ACTCODE] = <ActCode> Logon mode 1, 2 or 3
 [ENCRYPT] = <Encrypt> Encryption of data N or Y

[COMPRESS] = <Compress> Compression mode N
[USERID] = <Userid> Userid, used for 2 and 3 XXUSER
[PASSWORD] = <Password> Password, used for 3 YYPASSWD

 [LOGFILE] = <LogFile> Name of optional log file my.log
[LOGLEVEL] = <LogLevel> Level of logging INFO or ERROR

if not specified, ERROR is used.

Sample parameter file
The following is a sample parameter file F2T.DAT

F2T.DAT

HOSTNAME = xxmvs.yy.ibm.com
PORTNAME = 01812
DELIMITOR = ¤¤
TRANSTAB = CP819500
CICSTRX = KBAJ
ACTCODE = 1
LOGFILE = upload.log
LOGLEVEL = ERROR

More information can be found in the READ ME delivered with the code.

Usage of transaction codes in BTB:

� KBAJ - Used when sending business documents with M-record
� KBAL - Used when SAP R/3 IDOCs without M-record

128 BTB Application Programming Guide

TCP/IP MailRoom read/receive program—T2F
TCP/IP MailRoom Read/Receive Program is a TCP/IP daemon program listening to
a port and waiting for incoming documents.

 Format
T2F is an executable program available in versions for AIX, OS/2, Windows 95/98
and Windows NT.

The common call syntax is:

 Call Syntax:

T2F, version: 1.00 TCP/IP connectivity with IMB, (C) Copyright IBM Corp. 2000

Usage: T2F [ParameterFile]
 ParmeterFile: Name of optional parameter file, default is T2F.dat

Format of parameter file: Example values:
PORTNAME = <PortName> Name of port 1812
SAVEPATH = <SavePath> Where to store files \IN
[EXTENSION] = <Extension> File extension for files DAT
[FIRSTFILE] = <FirstFile> Filename to start with 1000
[SAVEFILENAMES] = <YES/NO> Save next free file name NO or YES
[PROCESSPGM] = <ProcessPgm> Name of program to process a

 downloaded file. myprog.exe
[USERETCODE] = <YES/NO> Use return codes in program NO or YES
[LOGFILE] = <LogFile> Name of optional log file my.log
[LOGLEVEL] = <LogLevel> Level of logging INFO or ERROR

if not specified, ERROR is used.

Sample parameter file
The following is a sample parameter file T2F.DAT

T2F.DAT

PORTNAME = 01812
SAVEPATH = somewhere/download
EXTENSION = idoc
SAVEFILENAMES = NO
PROCESSPGM = somewhere/bin/my_prog
USERETCODE = NO
LOGFILE = download.log
LOGLEVEL = ERROR

More information can be found in the READ ME delivered with the code.

 Chapter 7. MailRoom TCP/IP programs 129

Sending a Business Acknowledgment to MailRoom using TCP/IP
Using the MailRoom TCP/IP send programs, it is possible for a program to send
Business Acknowledgments to MailRoom to record the progress of a particular
transaction through the business process.

The method used to send Business Acknowledgment to MailRoom is the same as
sending a single or multiple documents to the MailRoom described in “TCP/IP
MailRoom write/send program—F2T” on page 128. As with documents a single or
multiple Business Acknowledgment can be sent to the MailRoom.

 Format
The format of Business Acknowledgment is described in “CICS MailRoom
acknowledgment API—KBAXACP” on page 84 except that the KBAXACK record
must be prefixed with a 8 bytes field containing the value BUSACK.

 Examples
Examples of the format the buffer can be seen in Figure 17.

 Input file:

 BUSACK 400Q476100000000000001 IKBBXX90001Process started
 BUSACK 400Q476100000000000001 FKBBXX90002Process finished

Figure 17. MailRoom TCP/IP document format of Business Acknowledgment.

130 BTB Application Programming Guide

AIX MailRoom scanner program—KBAUSCAN
The AIX Scanner Program looks for new files in a directory, and when anything is
found invokes another program.

 Format
KBAUSCAN is an AIX program, with the following syntax:

Call Syntax (AIX):

KBAUSCAN, version: V1R01M01

Usage: KBAUSCAN SleepTime ScanDir ReadyTime ProcessPgm [LogFile]

SleepTime: Sleep time in seconds between each scan

ScanDir: Directory that should be scanned
(Don't specify trailing slash)

ReadyTime: Ready time in seconds (the time a file has been
been ready for processing has not been touched)

ProcessPgm: Program that should be started with found file as argument

[LogFile]: Name of optional log file

 Chapter 7. MailRoom TCP/IP programs 131

OS/2 MailRoom write/send program—FILE2TCP
FILE2TCP is used to send files from the local TCP/IP host to a remote TCP/IP host
(for example, BTB). When the program starts up, it will look in the directory
<outbound_dir> immediately. If no file is found there, it waits for five seconds. Then
it tries again. And again....

When a file fulfilling the search mask is found, it is read. All newline characters in
the file are substituted by the <separator> string for example, ¢¢. Then the file is
sent to the TCP/IP host stated in the parameter list (as a hostname). When the file
has been sent successfully, FILE2TCP immediately checks if a new file is found in
the <outbound_dir>. If this is so, this file is send also. If not, it waits for five
seconds and tries again, and so on.

The program is closed by double clicking on the upper left corner (or other usual
ways of closing Presentation Manager programs).

 Format
FILE2TCP is an executable program only available for OS/2.

The call syntax is:

Call Syntax: (OS/2)

FILE2TCP <hostname> <portname> <outbound_dir> <finished_dir> <delimiter>
<codepagetranslation> [<loglevel_information>] [<tracefilename>]

 eg:

FILE2TCP MVSB 1719 D:\TCPRELAY\OUTBOUND*.FOS D:\TCPRELAY\FINISHED\ ¢¢
CP850277 /LOGLEVEL ERROR TRACEFIL

More information can be found in the READ ME delivered with the code.

132 BTB Application Programming Guide

OS/2 MailRoom read/receive program—TCP2FILE
TCP2FILE is used to receive files from a remote TCP/IP host (for example, BTB).
When the program starts up, it will immediately begin to listen on the TCP/IP port
stated in the parameter list. When something is received, a check is performed that
the format is reasonable. If so, all strings in the received text that are similar to the
separator will be changed to new-line characters.

When the file transfer ends, the file is stored in the <inbound_dir>.

 Format
TCP2FILE is an executable program only available for OS/2.

The call syntax is:

Call Syntax: (OS/2)

TCP2FILE <portname> <inbound_dir> [<file extension>]
 [<loglevel_information>]

 eg:

TCP2FILE 1812 D:\TCPRELAY\INBOUND\ SAP

More information can be found in the READ ME delivered with the code.

 Chapter 7. MailRoom TCP/IP programs 133

134 BTB Application Programming Guide

Chapter 8. MailRoom APPC programs

The BTB MailRoom can be accessed from different platforms using APPC. Two
generic programs, A2F and F2A, are available on OS/2, AIX, Windows 95 and
Windows NT. They can be used to send documents to, and receive documents
from BTB MailRoom.

F2A - Send Program
Used to transmit documents to MailRoom.

A2F - Receive Program
Used to receive documents from MailRoom and put them into a file (and
optionally invoke a program).

Sending Business Acknowledgments
Used to send one or more events to MailRoom about the progress of a
received document.

 Copyright IBM Corp. 1992, 2002 135

APPC MailRoom write/send program—F2A
The APPC MailRoom Write/Send Program is a APPC program to transmit
documents to BTB.

 Format
F2A is an executable program available in versions for AIX, OS/2, Windows 95/98
and Windows NT.

The common call syntax is:

 Call Syntax:

F2A, version: 1.00 APPC connectivity with IMB, (C) Copyright IBM Corp. 2000

Usage: F2A FileName [ParameterFile]
FileName: Name of file to upload

 ParmeterFile: Name of optional parameter file, default is F2A.dat

Format of parameter file: Example values:
SYMDESTNAME = <SymDestName> Symbolic Destination Name IMBCICS
PARTNERTPNAME = <PartnerTP> Name of the Partner TP KBAC
PARTNERLUNAME = <PartnerLU> Name of the Partner LU MPXXIMB
MODENAME = <ModeName> Mode name for the session CICSLU62
DELIMITOR = <Delimiter> Record delimiter when send ##

 TRANSTAB = <TransTab> Codepage Translationtable CP819500
[ACTCODE] = <ActCode> Logon mode 1, 2 or 3
[ENCRYPT] = <Encrypt> Encryption of data N or Y

 [COMPRESS] = <Compress> Compression mode N
[USERID] = <Userid> Userid, used for 2 and 3 XXUSER
[PASSWORD] = <Password> Password, used for 3 YYPASSWD
[LOGFILE] = <LogFile> Name of optional log file my.log
[LOGLEVEL] = <LogLevel> Level of logging INFO or ERROR

Note: If SYMDESTNAME is used, the TP, LU and Mode name parameters are ignored.

Sample parameter file
The following is a sample parameter file F2A.DAT

F2A.DAT

PARTNERTPNAME = KBAC
PARTNERLUNAME = MPXXIMB
MODENAME = CICSLU62
DELIMITOR = ¤¤
TRANSTAB = CP819500
ACTCODE = 3
USERID = XXUSER
PASSWORD = YYPASSWD
LOGFILE = upload.log
LOGLEVEL = ERROR

More information can be found in the READ ME delivered with the code.

136 BTB Application Programming Guide

APPC MailRoom read/receive program—A2F
The APPC MailRoom Read/Receive Program is a APPC Transaction Program
activated by the communication software to receive incoming documents.

 Format
A2F is an executable program available in versions for AIX, OS/2, Windows 95/98
and Windows NT.

The common call syntax is:

 Call Syntax:

A2F, version: 1.00 APPC connectivity with IMB, (C) Copyright IBM Corp. 2000

Usage: A2F must be configured to be started by the Communication Systems
Attach Manager when inbound APPC requests arrives. It should be defined
as a Transaction Program with a parameter file:

 ParmeterFile: Name of optional parameter file, default is A2F.dat

Format of parameter file: Example values:
SAVEPATH = <SavePath> Where to store files \IN
[EXTENSION] = <Extension> File extension for files DAT
[FIRSTFILE] = <FirstFile> Filename to start with 1000
[SAVEFILENAMES] = <YES/NO> Save next free file name NO or YES
[PROCESSPGM] = <ProcessPgm> Name of program to process a

 downloaded file. myprog.exe
[USERETCODE] = <YES/NO> Use return codes in program NO or YES
[LOGFILE] = <LogFile> Name of optional log file my.log
[LOGLEVEL] = <LogLevel> Level of logging INFO or ERROR

if not specified, ERROR is used.

Sample parameter file
The following is a sample parameter file A2F.DAT

A2F.DAT

SAVEPATH = somewhere/download
EXTENSION = idoc
SAVEFILENAMES = NO
PROCESSPGM = somewhere/bin/my_prog
USERETCODE = NO
LOGFILE = download.log
LOGLEVEL = ERROR

More information can be found in the READ ME delivered with the code.

 Chapter 8. MailRoom APPC programs 137

Sending a Business Acknowledgment to MailRoom using APPC
Using the MailRoom APPC send program, it is possible for a program to send
Business Acknowledgments to MailRoom to record the progress of a particular
transaction through the business process.

The method used to send Business Acknowledgment to MailRoom is the same as
sending a single or multiple documents to the MailRoom described in “APPC
MailRoom write/send program—F2A” on page 136. As with documents a single or
multiple Business Acknowledgment can be sent to the MailRoom.

 Format
The format of Business Acknowledgment is described in “CICS MailRoom
acknowledgment API—KBAXACP” on page 84 except that the KBAXACK record
must be prefixed with a 8 bytes field containing the value BUSACK.

 Examples
Examples of the format the buffer can be seen in Figure 18.

 Input file:

 BUSACK 400Q476100000000000001 IKBBXX90001Process started
 BUSACK 400Q476100000000000001 FKBBXX90002Process finished

Figure 18. MailRoom APPC document format of Business Acknowledgment.

138 BTB Application Programming Guide

Part 2. Gateway client/server support

BTB can act as a client/server gateway, where requests from clients are passed to
the appropriate server after the necessary user authentication and authorization
checks have been made.

The definition of such an external programming interface is called a Business
Programming Interface (BPI). The required parameters of a BPI are:

 � Name
 � Type
� Program to run

 � Program parameters
 � Access type

Optional parameters are:

� ASCA logging to a file
� Limited opening time via a schedule

The access check can be one of these:

� Public, everyone with user ID on BTB can run the BPI
� Restricted, the access is controlled via BTB agreement sets

The BPI call is processed synchronously—the client will be in session with BTB
while the request is security checked, passed to the appropriate local or remote
server until the final reply is received.

 Copyright IBM Corp. 1992, 2002 139

140 BTB Application Programming Guide

 Chapter 9. Client/server infrastructure

Overview of Gateway support
The infrastructure has been designed to be generic and extendable. Requests can
be received in three ways:

� From a workstation or LAN server, using CIS-CSCS software

� From any platform using native LU6.2 (BEC protocol header)

� From CICS platforms using CICS Distributed Program Link (DPL)

� From platforms supported via BTB TCP/IP client API (this API is currently not
generally available, but it is implemented in certain programs).

 BTB CICS
 ┌─────────────────────────────────────┐ ┌─────
 │ BPI-pgm │ │

┌───┐ ├───┐ ┌────┐ ┌──────┐ ┌───┐ │ │
│ C │ 32K │ C │ │CSCS│ │ │ │ │ ┌───┤ DPL │
│ S │ limit │ S │ │door│ │ │ │ │ │ │ │

OS/2 │ C │777777777│ C │─7│ ─│───7│ │ └───┘ │ │ LU61 │ B
│ S │ │ S │ │ │ │ B │ ┌───────┘ │ │ A

 └───┘ ├───┘ └────┘ │ P │ │Super B │ LU62 │ C
│ │ I │ │BEC BPI E │ │ K

┌───┐ ├───┐ ┌────┐ │ │ └───────┐ C │7777777│
│ L │ 32K │ L │ │LU62│ │ N │ ┌───┐ │ │ │ E

ANY │ U │ limit │ U │ │door│ │ a │ │PLI│ │ │ │ N
│ 6 │777777777│ 6 │─7│ ─│───7│ v │ │ │ │ │ │ D
│ 2 │ │ 2 │ │ │ │ i │ └───┘ │ │ │

 └───┘ ├───┘ └────┘ │ g │ ┌───┐ └───┤ │
│ │ a │ │CSP│ │ │

┌───┐ ├───┐ ┌────┐ │ t │ │ │ │ │
│ C │ 32K │ C │ │DPL │ │ o │ └───┘ │ └─────

CICS │ I │ limit │ I │ │door│ │ r │ ┌───┐ │
│ C │777777777│ C │─7│ ─│───7│ │ │ │ │
│ S │ │ S │ │ │ │ │ │ │ │

 └───┘ ├───┘ └────┘ │ │ └───┘ │
 │ ┌7│ │ │

┌───┐ ├───┐ ┌────┐ │ │ │ │
OS/2 │ T │ (32K) │ T │ │TCP │ │ └──────┘ │
AIX │ C │ (limit) │ C │ │door│ │ .────. │

 Win/NT │ P │777777777│ P │─7│ ─│──┘ ├────┤ │
 Win/95 │ I │ │ I │ │ │ │accs│ │

│ P │ │ P │ └────┘ │list│ │
 └───┘ ├───┘ ──── │
 │ │
 └─────────────────────────────────────┘

Figure 19. Client support

Requests received in three ways are mapped to the same internal structures and
passed on to the BPI Navigator. Access authorizations are checked and the
request is passed to the specified BPI module or to the generic BEC Super BPI.

 Copyright IBM Corp. 1992, 2002 141

Access to DB2
As the local BPI programs are executing under common infrastructure transaction
codes, they also share the common DB2 Plan KBIA2AP. If the local BPI program
needs to access DB2, the required DBRMs must be included in this plan.

The application DBRMs can either be included directly in the plan, or they can be
bound into a DB2 Package, the latter method having the advantage that the
common plan does not have to be rebound if the application package needs to be
bound again.

The KBIA2AP plan includes only the DBRMs needed for use the BTB client/server
infrastructure. If a locally developed BPI is using other parts of BTB, such as the
MailRoom, the required DBRMs must be added.

 Security
BTB uses the highest possible MVS and CICS security for the LU6.2 link between
the client system and BTB, requiring a user to be signed on to the RACF system
used by BTB for the link to be operational.

Additionally, the BPI Navigator has a facility to (optionally) log every message
received and sent.

It is recommended to use this logging facility in case the application is sensitive
(ASCA applicable).

Standard BTB Profiling query support
BTB has two public BPIs that can provide profile information about a user as well
as passing the user's access list.

Both BPIs can be used to personalize the user interface for the currently logged-on
user:

User Profile
Information about the user-preferred language, Trading Partner number,
country code (see “User profile BPI” on page 144).

Access List
A list that can be used to disable or remove actions or options on menus,
so that a user who is not authorized to use certain function will not be
presented with those options when accessing the servers. See “Access
list BPI” on page 145.

LAN Security administration philosophy
This BPI can be used to implement a centralized administration
philosophy.

The resources defined in BTB do not necessarily have to define host
based servers.

By also defining LAN server resources using the BTB registration
dialogues, a total server access control function can be implemented
centrally for a project, and initialized for every user, individually during
logon processing. This philosophy can drastically reduce application

142 BTB Application Programming Guide

development and maintenance costs, as well as Service Delivery costs
related to LAN server access administration.

Standard send structure
The standard send structure, as sent from the client, has this layout:

ISYSIDY CHAR (04), /* APPLICATION-SYSTEM ID 000 */
IBPIGRP CHAR (08), /* BPI GROUP NAME 004 */
IBPIFNC CHAR (08), /* BPI FUNCTION NAME 012 */

 RESERV_16 CHAR (16), /* RESERVED 020 */
 FUT_USE CHAR (32), /* RESERVED 036 */
APPL_LNG PIC'9999999', /* LENGTH OF APPL_DATA 068 */

 APPL_DATA CHAR (var) /* APPLICATION DATA 075 */

Send structure requirement
All strings must have the exact length specified and be padded with blanks at the
end. You cannot use zero-terminated strings.

Standard receive structure
Data is returned to the client from BTB in this structure:

ISYSIDY CHAR (04), /* APPLICATION-SYSTEM ID 000 */
IBPIGRP CHAR (08), /* BPI GROUP NAME 004 */
IBPIFNC CHAR (08), /* BPI FUNCTION NAME 012 */
ENV_MSG CHAR (10), /* MESSAGE ID 020 */
APPL_LNG PIC'9999999', /* LENGTH OF APPL_DATA 030 */
MSG_LNG PIC'99999', /* LENGTH OF MESSAGE TEXT 037 */
APPL_DATA CHAR (var) /* APPLICATION DATA 042 */
MSG_TXT CHAR (var) /* POTENTIAL MESSAGE DATA */

BPI Navigator error messages
Apart from routing to the correct server, the BPI Navigator also has a security
function. It checks whether the signed-on user ID is registered correctly in the BTB
repository and is authorised to perform the requested function. If the request is
rejected, an error message is returned by BTB to the calling client in its standard
receive structure. Error messages from this module are prefixed with KBI.

There are three types of error messages:

� A technical message that gives information to developers (code AA)
� A Danish user version in Danish
� An English user version in code UK

The technical version (see Figure 20 on page 144). is not intended to be
displayed to users. The version that the user receives depends upon the preferred
language code for that user's BTB user ID profile.

An organization can support other languages by translating and inserting new rows
in the error message (DB2) table.

 Chapter 9. Client/server infrastructure 143

� �
KBIXXX -- - ---
KBIXXX AA I BPI infrastructure messages (AA - technical version)
KBIXXX -- - ---
KBI100 AA A User is not authorised to this BPI
KBI101 AA A Userid is not defined on BTB
KBI102 AA A The BPI is disabled
KBI105 AA A Unable to link to server or exit program.
KBI201 AA A Wrong rectype in call to BPI: KBH USER ACCESS
KBI202 AA A Wrong conversion mode passed to exit.
KBI203 AA A Wrong rectype in call to BPI: KBH USER PROFILE
KBI210 AA I Update/Refresh of KBDVBN was successful
KBI211 AA W No hits in KBIIBAP
KBI212 AA A Invalid function call to KBIIBAP
KBI996 AA A Internal program error. Error information = variable
KBI997 AA A Internal program error. Error information = variable
KBI998 AA A Not room for return message in receive area.
KBI999 AA A Wrong call-mode passed to query module.

� �

Figure 20. Technical messages

If a message is returned, a message structure (KBIOMSG) is placed after any
potential APPL_DATA. To extract such a structure: Start at the first byte of
APPL_DATA, move to the right APPL_LNG bytes, and extract the next MSG_LNG
bytes.

The MSG_TXT will contain a formatted message in the user' preferred language as
defined in BTB. This is implemented using a Multi language Message Server in
BTB see “Standard error message server” on page 154.

There can be an error message with or without application message data:

 Example:
 APPL_LNG = 327, MSG_LNG = 0 ====> no errors
 APPL_LNG = 0, MSG_LNG = 100 ====> no appl data, but one msg
 APPL_LNG = 123, MSG_LNG = 100 ====> some appl data, and one msg

User profile BPI
BTB has implemented a standard, public server that can return the logged on
user's profile, as registered in BTB.

The only application data input that the client must provide is a response type
indicator, to tell the server in which layout the reply should be returned. The type
has to be initialized to 01.

(The standard header should specify the full, three level name of the BPI:
KBH.USER.PROFILE)

The user ID need not be specified. It is the logged-on user ID, on behalf of which
the client is executing.

144 BTB Application Programming Guide

Standard send structure data requirements for the Profile BPI
 ISYSIDY = 'KBH '
 IBPIGRP = 'USER '
 IBPIFNC = 'PROFILE '
 RESERV_16 = ' '
 FUT_USE = ' '
 APPL_LNG = '0000002' (length of input APPL_DATA)
 APPL_DATA:

UP_REC_TYPE CHAR(02); = '01' (requested profile type)

Response structure from the Profile BPI
The response returned to the client provides the data that is registered on the
user's profile in BTB.

 ISYSIDY = 'KBH '
 IBPIGRP = 'USER '
 IBPIFNC = 'PROFILE '
 ENV_MSG = ' '
 APPL_LNG = '0000084'
 MSG_LNG = '00000'
 APPL_DATA:

UP_REC_TYPE CHAR(02) = '01' (format of user profile reply)
 ZUSERID CHAR(08) = userid

ZCUSRLAN CHAR(02) = preferred language code
ZIOPUCTY CHAR(03) = user country code
ZICUSPRM CHAR(09) = user's organization account number
ZCUSTNAM CHAR(60) = name of user's organization

Access list BPI
BTB provides an application server that can return to the invoking client a list of the
BPIs that the current user is authorized to use according to the BTB registrations.
The name of the BPI server is KBH.USER.ACCESS

This server can be used to:

� Personalize the user's user interface in the client environment. For example,
indicating in a pull-down menu an option that the user is not authorized to
perform.

� Check whether a specific BPI (or group of BPIs) is available for processing or
not (enabled or disabled), either during initialization of the user's environment,
or immediately before sending a request to the server in question.

The length of the BPI input data is 22 characters: a BPI name and a response type
indicator. The response can be provided in a short or long format, that is, with or
without a 50 character description of the BPI.

 Chapter 9. Client/server infrastructure 145

Standard Send Structure data requirements for the Access list BPI
ISYSIDY = 'KBH '
IBPIGRP = 'USER '
IBPIFNC = 'ACCESS '
RESERV_16 = ' '
FUT_USE = ' '
APPL_LNG = '0000022' (length of input APPL_DATA)
APPL_DATA:
ISYSIDY_SRCH CHAR(04) generic search on BPI system
IBPIGRP_SRCH CHAR(08) generic search on BPI group
IBPIFNC_SRCH CHAR(08) generic search on BPI function
AL_REC_TYPE CHAR(02) '01' (requested profile type, 01 or 02)

 Generic search
is implemented using blanks. To get a list of all authorizations for this user for
project SWY, the search criteria should consist of SWY followed by 17 blanks:

ISYSIDY_SRCH = 'SWY '
IBPIGRP_SRCH = ' '
IBPIFNC_SRCH = ' '

To get a list of ALL authorizations for this user, the search criteria should consist of
20 blanks:

ISYSIDY_SRCH = ' '
IBPIGRP_SRCH = ' '
IBPIFNC_SRCH = ' '

The requested response can be in a short (01) or a long (02) version as follows:

Response structure (short format) from the Profile BPI
ISYSIDY = 'KBH '
IBPIGRP = 'USER '
IBPIFNC = 'ACCESS '
ENV_MSG = ''
APPL_LNG = '0000nnn' nnn=5+AL_CNT*22
MSG_LNG = '00000'
APPL_DATA:
2 AL_REC_TYPE CHAR(02) = '01' (short or long format)
2 AL_CNT PIC'999' = number of hits (max 100)
2 AL_ROW(100) = repeated structure
3 ISYSIDY CHAR(04) = BPI System
3 IBPIGRP CHAR(08) = BPI Group
3 IBPIFNC CHAR(08) = BPI Function
3 CBPISCE CHAR(01) = BPI Security (1=Restricted,0=Public)
3 CBPIENA CHAR(01) = BPI Enabled (1=Yes,0=No)

146 BTB Application Programming Guide

Response structure (long format) from the Profile BPI
There is also a long version of the reply, where 50 char free text (description) and
BPI-Type is also returned.

ISYSIDY = 'KBH '
IBPIGRP = 'USER '
IBPIFNC = 'ACCESS '
ENV_MSG = ''
APPL_LNG = '0000nnn' nnn=5+AL_CNT*76
MSG_LNG = '00000'
APPL_DATA:
2 AL_REC_TYPE CHAR(02) = '02' (format of access list reply)
2 AL_CNT PIC'999' = number of hits (max 100)
2 AL_ROW(100) = repeated structure
3 ISYSIDY CHAR(04) = BPI System
3 IBPIGRP CHAR(08) = BPI Group
3 IBPIFNC CHAR(08) = BPI Function
3 NBPITXT CHAR(50) = BPI Description
3 CBPITYP CHAR(04) = BPI Type
3 CBPISCE CHAR(01) = BPI Security (1=Restricted,0=Public)
3 CBPIENA CHAR(01) = BPI Enabled (1=Yes,0=No)

Optional BPI Navigator logging facility
The BPI Navigator has a facility to (optionally) log every message received and
sent.

The log function stores the following information on a sequential file in the BTB
start-up JCL.

BPI Navigator Log record

Format of archive record optionally written by BTB.

When enabled, it logs certain information regarding every invocation of the BPI
infrastructure, both on every incoming call as well as every outgoing reply.

Field name Type Description

TIMESTAMP Char(19) CICS date and time

TASKNO Char(8) CICS tasknumber

TRANCODE Char(4) CICS transaction code

LUNAME Char(17) Fully qual.LUName (8+1+8)

USERID Char(8) RACF signed on userid

Ctrycode Char(3) Country code from userid profile

TPno Char(8) Trading Partner (Account) number from userid
profile

reserved Char(6) Reserved for future use

Direction Char(1) I or O depending on direction

reserved Char(5) reserved for future use

Data Char(var) Application data. (complete standard send
structure, including the BPI header)

 Chapter 9. Client/server infrastructure 147

Logging function transparently performed by the infrastructure, The logging (on or
off) is decided during the BTB BPI registration dialogue.

Limit the availability of a BPI
A BPI is normally open all the time, unless it is disabled directly. If a BPI is
accessing (or is running on) a back-end that has a more limited availability than
BTB, then a schedule can be defined on the BPI. For information on how to define
a schedule, refer to System Administration Guide.

A schedule can then be used on one or more BPIs, and the defined availability will
then block the execution of the BPI program outside of the opening hours. The
user will receive a generic message saying that the function is unavailable at
present, or if the schedule has a specific user message defined, that one will be
returned to the user.

148 BTB Application Programming Guide

Chapter 10. Client programming guidelines

 Introduction
The BTB synchronous client/server Gateway can be accessed from three different
types of clients:

� CICS systems (any CICS platform) using CICS DPL
� OS/2 systems using the CIS-CSCS software
� Any APPC-capable system using LU6.2

Access using CICS DPL
If the client environment is CICS, CICS DPL (Distributed Program Link) can be
used. You can DPL to the BTB infrastructure (the DPL door) and BTB will then
invoke the correct BPI, according to registrations.

To DPL to BTB from another CICS platform, this must occur:

� APPC connection to the BTB CICS
� Attach Security Verify (or Identify)

The normal BTB send and receive record interfaces are used.

The send structure is placed in 32K CICS communication area.

LINK to BPI interface on BTB:

EXEC CICS LINK
 PROGRAM('KBIDPLP')
 COMMAREA(COMMAREA)
 NOHANDLE;

The KBIDPLP program MUST be defined remotely in CEDA to point to the SYSID
of the BTB CICS and use the remote transaction ID KBIM.

The standard receive structure is placed in same communication area by BTB,
before returning control to caller.

Note: The DPL action from the Client environment is always to the BTB program
KBIDPLP. The Business Application (BA) is the BPI that is registered as an BTB
resource. The BPI is then invoked by the BTB infrastructure after authorization
checking. The name of the BPI is passed from the client in the standard send
structure to BTB. (See “Standard send structure” on page 143.)

Access using native LU6.2
The access to BTB BPIs from native LU6.2 is based on the native BEC
protocol-modules and communication-modules.

The access to BTB from any platform using LU6.2 is based on the native BEC
protocol and communication modules.

 Copyright IBM Corp. 1992, 2002 149

For the native LU6.2 option, the following should be in place:

� APPC connection to the BTB CICS
� Attach Security Verify (or Identify)

The Standard send and receive structures are used.

However; the send structure should be prefixed by a two byte LL-field (HEX length
of data including the two byte field itself)

The receive structure is also prefixed by a corresponding LL-field.

 Send protocol

 │ │ │ │ 103 blanks │ │ Send data │
 └┴┴┴┴┴┴┴┴┴┴┴┴┴............┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
 ^ ^ ^ ^ ^ ^
 │ │ │ │ │ │
│ │ │ │ │ └───────── Standard Send structure
│ │ │ │ └──────────────── Length of send data plus 2
│ │ │ └───────────────────────── Send protocol, reserved
│ │ └──────────────────────────────────── Send protocol, user ID
│ └─── 0000 Hex
└─── 0073 Hex (115 dec)

 Receive protocol

 │ │ │ │ 17 blanks │ │ Receive data │
 └┴┴┘
^ ^ ^ ^ ^ ^
│ │ │ │ │ │
│ │ │ │ │ └───────── Standard Receive structure
│ │ │ │ └──────────────────── Length of receive data plus 2
│ │ │ └────────────────────────────── Receive protocol reserved
│ │ └─────────────────────────────────────── 0000 Hex
│ └─── 0015 Hex (21 dec)
└─── Total length (hex)

150 BTB Application Programming Guide

Access using CIS-CSCS

Overview of connection

B
ac

kE
nd

 C
om

m
un

ic
at

io
n

A2AIF

EXEC
CICS
"ASSIGN
UserId"

CSCS : LAN-Gateway Routing
RACF : User Authentication
A2AIF : Navigator Identification
IMB : BPI Access Control
BEC : Gateway-BackEnd Routing

P
E

M

RACF CSCS A2AIF IMB

Business
Process
Navigator
- and
Access
Control

IMB

BEC

B
us

in
es

s
A

pp
l.

C
S

C
S

B
us

in
es

s
P

ro
g.

 In
te

rf
ac

es

A2A
Business
Process
Navigator

BackEnd

Intelligent
Message
Broker

Client Server overview

A
2A

-a
ge

nt

V
M

A
S

/4
00

VAN

ATTACH Security

SME

CSCS

CSCS C1

C2

C3

C4

Figure 21. Access using CIS-CSCS

The connection between the LAN-CSCS and the Password Expiration maintenance
(PEM) box at the host is to show that CSCS has implemented an OS/2 client
application that is capable of communicating with the CICS/ESA PEM transaction.
This is currently the only architected method of maintaining the password for a
user, using the LU6.2 protocol.

Access from CIS-CSCS
When calling BTB BPIs using the CIS-CSCS protocol, the following should be in
place:

� CIS-CSCS installed (locally or on LAN server)
� LU6.2 connection to the BTB CICS
� Attach Security Verify

The normal record interfaces are used.

The standard send structure must be prefixed with 8 character 'IBMMENU ' before
calling CIS-CSCS.

Codepage translation is preformed on the workstation by the CIS-CSCS Server
using an ASCII-EBCDIC translate table defined in CM/2. The translation is
between the user's normal PC (ASCII) codepage and the user's normal host
(EBCDIC) codepage. Data is then presented in the user's normal codepage
(EBCDIC).

 Chapter 10. Client programming guidelines 151

Access using TCP/IP
Using TCP/IP to connect to BTB BPIs is limited to programs written in C language
in these environments:

� OS/2 (via a DLL)
� AIX (via object module)
� Windows NT and Windows 95 (via object module)

More information and sample programs can be found in READ ME files and in the
header file COMTCPIP.H delivered with the code.

152 BTB Application Programming Guide

Chapter 11. Midlayer server programming guidelines

When the infrastructure receives a Client request, it first performs the authorization
check to verify that the Client (user ID) is allowed to execute the named BPI.
Assuming OK, it then invokes the BPI (EXEC CICS LINK), passing a commarea
containing three pointers to the following data areas respectively:

DCL 1 COMM_AREA BASED(COMM_AREA_PTR) UNALIGNED,
 2 ENVIRO_DATA_PTR POINTER,
 2 CLIENT_DATA_PTR POINTER,
 2 SERVER_DATA_PTR POINTER;

The three pointers point to the following structures:

 1. KBIENVR—Environment data
 2. KBIIREC—Input record
 3. KBIOREC—Output record

Standard BPI input and output structures
Irrespective of from where the Client request is originating, and which transmission
protocol that has been used. The BPI navigator invokes the BPI program using the
same three standard structures.

 KBIENVR structure
The Environment record contains the static data that is registered in BTB for this
BPI, as well as dynamic data about the current user related to this specific
invocation of the BPI:

IUSRIDY CHAR (08), /* IMB user ID 000 */
IOPUCTY CHAR (03), /* COUNTRY CODE 008 */
ICUSPRM CHAR (09), /* TRADING PARTNER NUMBER 011 */
CUSRLAN CHAR (02), /* LANGUAGE CODE 020 */
ISYSIDY CHAR (04), /* APPLICATION-SYSTEM ID 022 */
IBPIGRP CHAR (08), /* IMB BPI GROUP NAME 026 */
IBPIFNC CHAR (08), /* IMB BPI FUNCTION NAME 034 */
NBPITXT CHAR (50), /* IMB BPI DESCR. TEXT 042 */
CBPITYP CHAR (04), /* BEC OR OTHER TYPE 092 */
NBPIPGM CHAR (08), /* BPI PROGRAM 096 */
CBPISCE CHAR (01), /* BPI SECURITY 104 */
NBPIXIT CHAR (08), /* BPI DATA CONVERSION EXIT 105 */
CBPIENA CHAR (01), /* BPI ENABLE-DISABLE SWITCH 113 */
CBPIPM1 CHAR (20), /* BPI PARAMETER NO. 1 114 */
CBPIPM2 CHAR (20), /* BPI PARAMETER NO. 2 134 */
CBPIPM3 CHAR (20), /* BPI PARAMETER NO. 3 154 */
CONV_MODE CHAR (01), /* TYPE OF CONVERSION (I/O) 174 */
BUILD_MSG CHAR (01), /* LET CALLER BUILD MESSAGE 175 */
MSG_ID CHAR (10), /* MESSAGE NUMBER 176 */
MSG_SUBST1 CHAR (25), /* MESSAGE TOKEN 1 186 */
MSG_SUBST2 CHAR (25), /* MESSAGE TOKEN 2 211 */
MSG_SUBST3 CHAR (25), /* MESSAGE TOKEN 3 236 */
EXITPARM CHAR (08) /* PARM INFO TO EXIT 261 */

 Copyright IBM Corp. 1992, 2002 153

 KBIIREC structure
The Client Input data is passed in the following structure:

ISYSIDY CHAR (04), /* APPLICATION-SYSTEM ID 000 */
IBPIGRP CHAR (08), /* IMB BPI GROUP NAME 004 */
IBPIFNC CHAR (08), /* IMB BPI FUNCTION NAME 012 */
RESERV_16 CHAR (16), /* RESERVED 020 */
FUT_USE CHAR (32), /* RESERVED 036 */
APPL_LNG PIC'9999999', /* LENGTH OF APPL_DATA 068 */
APPL_DATA CHAR (32692) /* APPLICATION DATA 075 */

 KBIOREC structure
The data that the BPI wants returned to the client should be passed to the
Navigator in the following structure (pre-allocated by the infrastructure):

ISYSIDY CHAR (04), /* APPLICATION-SYSTEM ID 000 */
IBPIGRP CHAR (08), /* IMB BPI GROUP NAME 004 */
IBPIFNC CHAR (08), /* IMB BPI FUNCTION NAME 012 */
ENV_MSG CHAR (10), /* MESSAGE FROM IMB 020 */
APPL_LNG PIC'9999999', /* LENGTH OF APPL_DATA 030 */
MSG_LNG PIC'99999', /* LENGTH OF MESSAGE PART 037 */
APPL_DATA CHAR (32725) /* APPLICATION DATA 042 */

Standard error message server
This function is used internally by the BTB infrastructure. It is also available for
application use—you can have BTB lookup messages for your own application if
you add them to the BTB message table.

If the server upon returning control to BTB sets the BUILD_MSG field in the
KBIENVR structure to Y and places a message ID in the MSG_ID field (in the
same structure), then BTB will lookup the message in the table and return it to the
client.

Three message variables &1, &2 and &3 in the text in the message table can be
substituted at runtime with the contents of MSG_SUBST1, MSG_SUBST2 and
MSG_SUBST3.

The MSG_TXT in the receive structure (see “Standard receive structure” on
page 143) will then contain a formatted message in the user's preferred language
as defined in BTB.

Alternatively you can decide to maintain all your application messages in the
different languages on the LANs, in which case the server should handle the
complete formatting of the KBIOREC itself.

The following is the layout of the 100 byte message area, as it is concatenated by
BTB to the application data that is returned from the server. (See also “BPI
Navigator error messages” on page 143.)

MSG_TYPE CHAR(02), /* MESSAGE TYPE 000 */
 MSG_ID CHAR(10), /* MESSAGE ID 002 */
MSG_TEXT CHAR(88); /* MESSAGE TEXT (INCL ID) 012 */

154 BTB Application Programming Guide

Super BPI exits
The BPI registration allows an exit to be defined for generic BPI programs (Super
BPIs) for application specific purposes.

The exit program principle is currently utilized by BTB when the BPI-type is BEC
(Super-BPI).

The exit is called both before and after calling BEC. Field CONV_MODE = I or O
(Inbound/Outbound) tells the exit whether it can modify the Client data input or the
Server data output.

The exit is linked to, with four pointers in the Commarea as follows:

DCL 1 COMM_AREA BASED(COMM_AREA_PTR) UNALIGNED,
 2 ENVIRO_DATA_PTR POINTER,
 2 CLIENT_DATA_PTR POINTER,
 2 SERVER_DATA_PTR POINTER,
 2 EXIT_PARMS_PTR POINTER;

The EXIT_PARMS_PTR points into an additional record structure, which can be
read or modified by the exit. The BEC Super BPI will pass a pointer to the BEC
profile structure (record KBBPRINF).

This gives the exit access to a structure containing extra information from the Super
BPI. The exit can then extract information and return it to the client.

The environment data field EXITPARM will contain the value BEC PROF in this
case. The exit should only interpret the fourth structure if it can recognize the
EXITPARM. This makes it possible to pass other structures in the future.

The exit can (on inbound) prohibit the real processing (here the call to BEC) by
issuing an error message using the method described in “Standard error message
server” on page 154.

BPI CSP modules
A BPI program can also be written in CSP. The application must be of the type
Called Batch.

Under option 1 Application Specifications in CSP the application must be type 4

Type of application => 4

 1 Main Transaction
 2 Main Batch
 3 Called Transaction
 4 Called Batch

The application will receive 3 working storage records, which are defined under
option 4 Called Parameter List in CSP. The application must have the following
called parameters:

 Chapter 11. Midlayer server programming guidelines 155

KBI__W_ENVR
KBI__W_IREC
KBI__W_OREC

The application can then read the input data from KBI__W_IREC record, read the
PWS Environment data from KBI__W_ENVR record and finally place the result in
KBI__W_OREC record.

The three records have the same layout as records for a normal BPI.

156 BTB Application Programming Guide

Chapter 12. Remote server programming guidelines

Historically, the BPI (the Server the Client is communicating with) is usually been
implemented locally, on the BTB platform.

This extra piece of Business Application code was always needed on the mid-layer
to perform data structure reformatting, to align to existing back-end applications.

As new projects emerge, with new Clients and Servers being coded, and therefore
being aware of each other's data requirements, an option is needed to be able to
invoke a (remote) server without any application code executing on the BTB
platform.

For this purpose the BEC-BPI option is available. If the BPI is registered as
type=BEC, the infrastructure can trigger a remote transaction, using the BEC
protocol.

 CICS DPL
It is not yet possible to use DPL to get to the application server/BPI—the data is
passed using Pointers. A BPI type=DPL is possibly a candidate for a future IR.

Currently you must define a BPI type=BEC and have a set of BEC definitions for
DPL, or you must develop a generic BPI type=CICS, that receives the application
data pointed to by a Pointer, takes the data and moves it to its commarea and then
DPLinks to the real server.

The effect of designing a solution this way is to trade some BEC registrations for
some other CICS registrations.

Link to application server via the generic BEC-BPI
Using this Super BPI option, a Client request can be passed by BTB to the proper
Server without any specific mid-layer programming. The following BTB registrations
and restrictions apply:

 BEC-BPI registrations
� The BPI should be of type BEC
� A BEC Appl Id is defined on BPI
� The country code of running user ID will be used as BEC Location
� BEC will perform the routing to BEC.
� Only APPL_DATA will be sent and received
� BEC length fields added

BEC-BPI data structures - example
If you need to send a structure containing the string Hello World from a PS/2 to an
IMS program, using the CIS-CSCS protocol you could use the method described
here.

 Copyright IBM Corp. 1992, 2002 157

On the PS/2 the string must be wrapped with an BTB Header structure. The
header gives the logical name of the function to perform (the BPI Business
Programming Interface) and a length field.

If the BPI is named XXX IMSACC HELLO and registered in BTB with a link to an
IMS transaction (thru BTB back-end communication BEC) the following should be
placed in the structure:

A2A_ROUTE = 'IBMMENU ' /* A2A Routing info */
ISYSIDY = 'XXX ' /* BPI System */
IBPIGRP = 'IMSACC ' /* BPI Group */
IBPIFNC = 'HELLO ' /* BPI Function */
RESERV_16 = '' /* Future use */
FUT_USE = '' /* Future use */
APPL_LNG = '0000011' /* Length of APPL_DATA */
APPL_DATA = 'Hello World' /* Actual data to send */

The IMS program will receive the following structure:

header....
LL = 13 (binary) /* Length fld (incl itself) */
MY_INP_DATA = 'Hello World' /* Actual data */

The reply from IMS program could be:

 ...protocol header....
LL = 24 (binary) /* Length fld (incl itself) */
MY_OUT_DATA = 'Hello from IMS BackEnd' /* Actual data */

The Standard Receive structure returned to the PS/2 program would look like this:

ISYSIDY = 'XXX ' /* BPI System */
IBPIGRP = 'IMSACC ' /* BPI Group */
IBPIFNC = 'HELLO ' /* BPI Function */
ENV_MSG = '' /* No errors */
APPL_LNG = '0000022' /* Length of APPL_DATA */
MSG_LNG = '00000' /* No error struct after data */
APPL_DATA = 'Hello from IMS BackEnd' /* Actual data received */

If a message is returned (for example, if the user is unknown or has no access) a
message structure (KBIOMSG) is placed after any APPL_DATA.

158 BTB Application Programming Guide

Part 3. NPT application design and development

This section describes NPT application design and development under BTB, and
covers:

� Chapter 13, “NPT/3270 applications under BTB” on page 161 describes
non-programmable terminal (NPT) (or 3270) applications under BTB.

� Chapter 14, “Business Transaction Broker CSP application modules” on
page 167 describes the BTB CSP application modules.

� Chapter 15, “Back-end programming” on page 183 describes back-end
programming.

 Copyright IBM Corp. 1992, 2002 159

160 BTB Application Programming Guide

Chapter 13. NPT/3270 applications under BTB

While much of the information in this chapter concerns CSP application
development, almost any CICS program can be started from BTB, requiring some
programming effort to return the user to BTB after executing a foreign application.

CICS and CSP concepts
BTB is executing under control of CICS, and must therefore adhere to the
principles of CICS programs and transactions. In CICS, a program can run in either
conversational mode or pseudo-conversational mode.

In CSP the same concepts are called nonsegmented mode and segmented mode.

Table 12. CICS and CSP execution mode terminology

CICS CSP Description

Conversational Nonsegmented The resources are held
during screen
conversation.

Pseudo-conversational Segmented The resources are freed at
screen conversation.

Conversational versus pseudo-conversational programs
Historically, storage was a limited resource and efficient program design was to use
pseudo-conversational mode, because it uses less storage during execution in
online environments. The storage is released during screen conversation while
users are entering data on the terminal. Using conversational mode could fill
storage with working storage from users who had left screens unattended, so
storage allocation would be expended.

With today's CICS releases this is no longer a concern. The programmer can take
advantage of the more structured and modular application design that
conversational mode offers.

A pseudo-conversational program is a sequence of non-conversational programs
ending by displaying a panel. Each program has to know the navigation path in
order to guide the user back. Therefore it is no trivial task to reuse a program in
another context.

A conversational program can call a program, and at some time the control will get
back to the statement following the call. The called program does not know
anything about the calling application, all it has to do is to be called with a well
defined record and return with another. This leads to a more modular application
design, where real reuse is a possibility.

 Copyright IBM Corp. 1992, 2002 161

BTB and underlying applications
BTB does not force underlying applications to run in particular execution mode.
Both conversational mode and pseudo-conversational mode can be used. BTB
Flexible Menu is running pseudo-conversational, while the administration
applications are currently running in conversational mode. The design principles in
this chapter also concentrate on the conversational mode. Some of the
infrastructure components described in this chapter can be used by both
conversational applications and pseudo-conversational applications, and some can
not. Especially the support for navigation inside applications is limited to
applications following the call principle.

In BTB we use the design principle call of applications.

This design supports:

� That activation of function key F3 results in a XFER/DXFR to flexible menu
(KBHMEAP)

� That activation of function key F12 will result in Converse Previous Panel

� That input in the command field is split in a command part and a data part

– The command is treated as a fastpath command (jump to another
application)

– The data is stored in KAAWCOM, from where they are available for
processing in the DXFRed to or CALLed application

Multi Language Support implementation
When a new user is defined, a default Language Code will be stored in the user
profile. This language code is a part of the key in the infrastructure tables to secure
that messages and menus can be displayed in the user's preferred language.

The language code can be modified by the local administrator.

It is up to the country to decide which languages should be supported locally. When
the BTB package is delivered from Denmark the only languages in the
infrastructure are Danish (language code DA) and English (language code UK).

Table driven MLS
In BTB Multi Language Support is implemented by use of a DB2 table with all
messages and CSP tables with all panel texts.

The panel texts must therefore be written in the supported languages at generation
time while change of messages can be done online.

Online help can easily be accomplished via BTB help APIs (see “BTB online help
system” on page 251).

162 BTB Application Programming Guide

 Transaction change
All main applications are started by CICS using a transaction call.

The name of the transaction is registered in the option table when the Installer
registers the option in BTB.

Each transaction must be defined to CICS to inform which application to start, and
in RACF all users must be given access to the transactions.

Several applications can run in the same transaction as the main application (Stub
application) can call other applications.

Each transaction has its own DB2 Plan which must be rebuilt if any SQL code has
been changed in any of the applications in the transaction. Another approach is to
use DB2 packages, where only the package must be rebound after code changes.

When a Stub application returns it must perform process KAAPDXF in order to
ensure proper navigation.

 Internal navigation
In BTB we control the internal navigation by use of the design principle calls of
applications.

In this principle the navigation is controlled by CALLs to and EZECLOSes from
applications.

No maps (except for test maps - if any) are conversed in the main application. A
called application is used for each map to be conversed. This way a panel can be
reused, by invoking it with different function codes from different areas. BTB is
widely using this idea to use same list application for both maintenance purposes
and for prompt purposes.

When DXFR-ing from flexible menu to the main application the value assigned to
ZGOTO of KAAWCOM determines which application to call. The initial ZGOTO
value is found in the navigation table. In this way it is possible to use the same
main application to support several options from flexible menu.

CSP applications which are the objects of a CALL statement must be defined as
called applications and have parameters compatible with the CALL list defined for
them. When the called application terminates execution, the called application
resumes at the statement following the call.

The main application
When the main application receives control from flexible menu, the general process
KAAPINI is performed to check the environment and to initiate KAAWCOM.

 Chapter 13. NPT/3270 applications under BTB 163

Figure 22 shows an example of the structure list for a main application.

 NAME LVL OPTION DESCRIPTION

KBGXSP_MAIN 001 EXECUTE Mail Process
KBGXSP_INIT 002 EXECUTE Init

 KAAPINI 003 EXECUTE Pre proces i each appl.
KAAPDXF 002 EXECUTE Navigate to other appl.

 KBGXSP_TEST 002 EXECUTE
 KAAPREC 003 EXECUTE Pre converse proc; called appl
 KBGXSP_CONV_TEST 003 CONVERSE Converse KBGXSMA
 KAAPCHC 003 EXECUTE Post converse proc;called appl

KAAPCMC 004 EXECUTE Interpret command line

Figure 22. Structure list for main application

164 BTB Application Programming Guide

Figure 23 illustrates the fundamental structure of the main process of a main
application.

PERFORM KBGXSP_INIT;
;
WHILE 1 = 1;
 ;
IF ZGOTO ¬= '0';
AND ZGOTO ¬= '1';
AND ZGOTO ¬= '2';

 ;
MOVE 'KBH105' TO ZMSGNO;
MOVE 'IBMMENU' TO ZNEWAPPL; /* internal command
PERFORM KAAPDXF; /* DXFR or XFER

 END;
 ;
IF ZGOTO = '0';
PERFORM KBGXSP_TEST; /* Test purpose only (conv dummy-map)

 END;
 ;
IF ZGOTO = '1';
SET KBGXXW EMPTY;
SET KBGXLWA EMPTY;

 ;
MOVE ZICUSIDY TO KBGXXW.FLDOTHR1;
MOVE ZICUSPRM TO KBGXXW.FLDOTHR2;
MOVE ZCUSTNAM TO KBGXXW.FLDOTHR3;

 ;
MOVE 'LOC' TO KBGXLWA.WHO; /* local user adm
MOVE 'LIS' TO KBGXLWA.WHAT;

 ;
IF ZGO = 'GO'; /* Any parameters passed from cmd line?
MOVE ZFIELDS(1) TO KBGXLWA.KBGXLI_FLDKEY1;
MOVE ZFIELDS(2) TO KBGXLWA.KBGXLI_FLDKEY2;

MOVE ' ' TO ZGO;

 END;
 ;

CALL KBGXLAP KBGXXW,KBGXLWA,KAAWCOM;
 ;

PERFORM KAAPDXF; /* DXFR/ leave KAAAA ?
 END;
 ;
IF ZGOTO = '2';

 ;

 ;
 END;
 ;
END; /* while
 ;

Figure 23. Main process of main application (Stub application). KAAWCOM, the general
communication working storage record, is used as parameter in the call statement. The
function code ZGOTO of KAAWCOM has been looked up in the navigation table before
DXFR-ing from flexible menu. The ZFIELDS might contain arguments passed from the
command line.

 Chapter 13. NPT/3270 applications under BTB 165

A main application post call process, KAAPDXF, is performed immediately after the
call statement in the main application.

This system process will perform the navigation to other applications / transactions
or return to the menu.

 Called applications
Only called applications conversing maps are treated in this section.

In the called application parameter list the received parameters, KAAWCOM and
others (if any) have to be specified.
Figure 24 shows the structure of the main process.

PERFORM KBGXLP_INIT; /* Init application
;
WHILE 1 = 1;

 ;
PERFORM KBGXLP_BUILD_MAP; /* Build map - Working storage

 ;
PERFORM KAAPREC; /* Pre converse process

 ;
PERFORM KBGXLP_CONV_MAP; /* Show map

 ;
IF EZEAID IS ENTER;
OR EZEAID IS PF3;
OR EZEAID IS PF12;
PERFORM KAAPCHC; /* Post converse process

 END;

 ;
END;

Figure 24. Main process structure in called application

 Message handling
Messages can be retrieved from the message table by the CSP application
KAAAMSG. They are identified by a message number, which must be assigned to
to field ZMSGNO. KAAAMSG should be called by a pre pre-converse process like
KAAPREC.

In order to maintain a general structure KAAAMSG should always be used to
retrieve messages.

All types of messages should be handled the same way and with the same steps:

1. Somewhere in a process a message number is assigned to ZMSGNO

2. When KAAPRE receives control the corresponding message is retrieved in the
message table by KAAAMSG who places the message in ZMSG. This field
should therefore be included as message line on all CSP maps.

3. When KAAPCHK receives control all fields involved in the message processing
are cleared.

166 BTB Application Programming Guide

Chapter 14. Business Transaction Broker CSP application
modules

A typical NPT task in BTB is to show and update a list of some information taken
from DB2 tables.

An example is the insertion of persons which— a Local Administrator task.

Task: Insert the person Mr. Steven Levenson, a clerk who has the job title FOS
Operator and telephone extension number 6276.

Navigate to the Persons menu using fastpath command PERSON.

� �
KBECBMLL Persons BTB

 Type one or more action codes, then press Enter.
 Action codes: D=Delete I=Insert M=Modify

 __ ____________________
 A Person Name Job Title
 i Lisa E. Hertz Manager
 _ Graham Reiswig Chief Programmer

 Command ===>
F1=Help F3=Exit F12=Cancel

� �

Figure 25. Persons panel

Type action code i, insert new person, in any of the action fields.

 Copyright IBM Corp. 1992, 2002 167

� �
 KBECCMLI Insert new Person BTB

 Press Enter to insert new Person

 Title Mr (Mr/ Mrs/ Ms)
 Firstname Steven________________________
 Lastname Levenson______________________

 Job Title FOS Operator__________________
 Professional Title . . . Clerk______

 Mail Point ______

 Telephone Extension No.. 6276___
 Alt. Telephone Ext. No.. ________

 Command ===>
F1=Help F3=Exit F12=Cancel

� �

Figure 26. Insert new Person panel

Complete the information about Mr. Steven Levenson and press enter.

� �
KBECBMLL Persons BTB

 Type one or more action codes, then press Enter.
 Action codes: D=Delete I=Insert M=Modify

 Steven Levenson_____________________________________ ____________________
 A Person Name Job Title
 _ Steven Levenson FOS Operator

 Command ===>
F1=Help F3=Exit F12=Cancel

� �

Figure 27. Adding a new Person

In the Persons menu the new person is displayed.

From a developer standpoint, this task can be broken down to these tasks:

1. Navigate to the application showing the list of persons.

2. Get the list of persons to show on the panel from DB2.

168 BTB Application Programming Guide

3. Show the list and navigate on action. Here action I requests navigation to an
insertion application.)

4. Show the insertion panel, and validate the input.

5. Insert the Person in the DB2 table.

6. Re-display list with the new person.

Skeletons are provided for each of these functions.

Navigation (Stub applications)
The Installer defines which application to execute when the user
chooses an option. BTB passes a function parameter to the application
so it can select which List application to call depending on the function
parameter. For more information refer to the System Administration
Guide.

List applications
The main tasks for a List application is to show a list meeting the search
criteria entered, to perform scroll logic and to navigate according to the
user input. The user can use Function keys or enter action codes next
to a line.

The data to be shown on the list is fetched by a call to a Browse
application.

Browse applications
A Browse application is called by a List application and makes the
necessary SQL call to DB2 tables to return a number of rows meeting
the search criteria and the scroll keys given in the call.

Detail applications
A detail application is called from a List application to insert, modify,
delete or show detail information. In the first three cases one or more
DB2 tables are to be changed, after the input has been validated. The
updating of DB2 tables is done by calls to updaters, one per DB2 table.

Update applications
Are called from Detail applications. An Updater creates the SQL
necessary to insert, delete or modify a single row in one DB2 table.

In Figure 28 on page 170 the application flow is shown.

 Chapter 14. Business Transaction Broker CSP application modules 169

 ┌───────┐
│ Flex. │

 │ Menu │
 └───┬───┘

│ Start the Main application
 │
 ┌───┴───┐
 │ Stub │
 └───┬───┘

│ Show a List
 │
 ┌───┴───┐ ┌───────┐

│ List │ Get DB2 data │Browser│
│ ├──────────────┤ │

 └───┬───┘ └───────┘
│ Insert/Delete/Modify/Show Line

 │
 ┌───┴───┐ ┌───────┐

│ Detail│ Update DB2 │Updater│
│ ├──────────────┤ │

 └───────┘ └───────┘

Figure 28. Application flow

The application types are described in this chapter.

 Stub applications
An BTB Stub application is a CSP application started by BTB.

A Stub is defined with Type of application = Main Transaction and is used to call an
underlying List application.

Before starting a Stub application BTB moves a function parameter to the field
ZGOTO in KAAWCOM. This value is specified as the function code in the definition
of the options and is used by the Stub to decide which List application to start.

Before the Stub call the List application, some parameters should be initiated as
shown here:

MOVE 'IBM' TO KBEIBWA.WHO; /* BTB installer
MOVE 'LIS' TO KBEIBWA.WHAT; /* List panel mode

These parameters are used by the List application to decide which action codes are
to be shown.

A Stub application can be generated automatically with the BTB Delevopment
skeletons (available on request). The generated code will need minor modification
before use.

 List applications
An BTB List application is an application called by a Stub application, another List
application or a Detail application.

The module is a called CSP application.

170 BTB Application Programming Guide

Call Syntax (CSP)

77─ ──CALL sssaaAP sssaaWA, KAAWCOM; ────────────────────────────────7"

Here the Working Storage record sssaaWA is used for specific information to the
List application about function and search criteria. KAAWCOM is the common BTB
work area.

First, the List application gets data to be shown on the list by a call to a browser
developed for this purpose. The search parameters from the record sssaaWA are
used as input to the browser together with information like number of lines on the
panel list.

List applications presents the data on a map together with information about valid
Action codes and F-Keys and makes the appropriate calls to Detail applications or
others List applications.

As the List application uses the information from the Browser in the call to Detail
applications more information than shown on the map is needed.

If the user wants to delete or modify the row timestamp has to be sent to the
Update application and therefore first to the Detail application.

Often all information can not be written on one line, in this case the List application
shows the action code S to let the user select the row for detailed information in a
Detail panel.

All the information shown in the Detail panel must be sent by the List application in
the call.

Multiple Function Support
Often the same list is to be shown in different situations demanding different
actions on the list.

One example is the Administration part of BTB where both a Central Administrator
and a Local Administrator can see the same list, but are allowed different actions
on the items on the list.

Another example is the need to use the list to select an item to a field in a detail
panel.

To ensure that the same List application can manage different functions we have
introduced two control parameters in sssaaWA, WHO and WHAT.

WHO tells who the user is (Central Administrator or Local Administrator) while
WHAT tells what function the calling application wants.

The skeleton List application is built with two functions:

List mode.
A List application called from a Skel application or from another List
application has the value LIS in sssaaWA.WHAT which shows the list
panel in List mode.

 Chapter 14. Business Transaction Broker CSP application modules 171

Prompt mode.
A List application called from a Detail application has the value 'PRO' in
sssaaWA.WHAT. This means that the list is shown in prompt mode.

Figure 29 and Figure 30 show the same List application in the two different modes:

� �
KBECBMCL Persons BTB

 Type one or more action codes, then press Enter.
 Action codes: D=Delete I=Insert M=Modify E=El. Addresses

 Trading Partner: 678 / 009999999 / IBM Intern Administration

 ___ ____________________
 A Person Name Job Title
 _ Bent Andersen CSP Sec. Adm.
 _ Erik Andersson
 _ Lars Bech-Larsen
 _ Inger Bengtson
 _ Karin Bisgaard Nielsen
 _ Patrick Brock Systems Analyst
 _ Kjeld Christensen BTB Support
 _ Wolfgang Christensen Systems Analyst
 _ Pia Christoffersen
 _ Ulla Dalsgaard Systemanalytiker

 Command ===>
F1=Help F3=Exit F8=Forward F12=Cancel

� �

Figure 29. List panel (List)

� �
KBECBMCP Persons BTB

 Type one action code, then press Enter.
 Action codes: S=Select

 Trading Partner: 678 / 009999999 / IBM Intern Administration

 Henry Anderson_______________________________ ____________________
 A Person Name Job Title
 _ Henry Anderson Systems analyser

 Command ===>
F1=Help F3=Exit F12=Cancel

� �

Figure 30. List panel (Prompt)

172 BTB Application Programming Guide

Multi Language Support (MLS)
BTB has Multi Language Support.

A List application tries to find the texts for the panel in the language preferred by
the user (ZCUSRLAN in KAAWCOM). If this language is not supported, English is
used instead.

 CSP Tables
A List application uses three CSP tables that must be changed by the programmer:

sssaaTP - Function key table
This table holds information of the F-key text in the supported
languages. The text is found by the List application using the language
code as key.

sssaaTA - Action code table
This table holds information of the legal action codes and their leading
texts in the supported languages. The key is built like LLHHHWWWI
where

� LL is the language code
� HHH is who (for example, CEN for Central Administrator)
� WWW is what (for examplem, LIS for List)
� I is the action code

sssaaTB - Panel text table
This table holds information of the text for the items on the map. The
key is built in the for LLHHHWWWIIIIII where:

� LL is the language code (for example UK for English)
� HHH is WHO (for example CEN for Central Administrator)
� WWW is WHAT (for example LIS for List or PRO for Prompt)
� IIIIII is the item identifier (for example ACTION for the action codes)

A List application can be generated automatically with the BTB Delevopment
skeletons (available on request). The generated code will be almost ready to use,
but will need some modification, especially to the screen layout.

 Browse applications
An BTB Browse application is an application called by a List application to get data
from DB2 tables to be shown on a list panel.

The module is a CSP application with the following CALL syntax:

Call Syntax (CSP)

77─ ──CALL sssnnAP sssnnWP5,sssnnWP6 (NOMAPS; ───────────────────────7"

The Working Storage record sssnnWP5 is the input record and sssnnWP6 is the
output record.

The input record contains these items:

 Chapter 14. Business Transaction Broker CSP application modules 173

QROWCNT - Row count
Tells how many rows the List application wants returned. This is the number
of rows that can be shown on the list panel.

SCRLLDIR - Scroll direction
If SCRLLDIR = 'F' then the browser finds the rows after the last SCRLLKEY,
else SCRLLDIR = 'B' and the browser returns the rows before the first
SCROLLKEY.

APPLNAM - Application Name
Name of the calling application.

USERID
Name of userid logged on.

sssnnI_DB2ROW
A DB2 row used for search parameters.

SCRLLAREA
Contains the top and bottom row last shown on the list panel. Used for
scrolling purposes.

The Browser makes the SQL queries against the necessary DB2 tables to return
the number of rows asked for. One extra SQL query is then made to return if more
row(s) are found. If the scroll direction is 'B' and not enough rows can be found
then the scroll direction is changed and rows are taken from the top.

Any serious SQL errors are logged to the System Errorlog.

The Browser returns the following in the output record sssnnWP6:

MSGNO - Message Number
A code to an BTB message if something went wrong.

RETCODE - Return code
RETCODE = 3 if scroll direction has been changed.

SQLCODE - SQL Error Code.
SQL Error Code.

MORE
MORE = 'Y' if more rows can be found in the scroll direction.

TABLEID - Table ID
ID of the DB2 table used. If more than one table is used TABLEID contains
ID of one of the tables.

QROWCNT - Row count
The number of rows returned. Less or equal with QROWCNT in the input
record.

SCRLLDIR- Scroll Direction
Scroll Direction used (can be different than SCRLLDIR in the input record).

sssnnI_DB2ROW
The returned rows. Max 20 rows.

SCRLLAREA
The upper and lower returned row. (This must be moved to the input record
at next call.)

174 BTB Application Programming Guide

A Browse application can be generated automatically with the BTB Delevopment
skeletons (available on request). The generated code will only need a little touch in
the SQL before it is ready to use.

 Detail applications
An BTB Detail application is an application called by a List application to perform
one of these actions:

� Show more information about a row from the list than can be seen on one line.

� Insert a new item on the list.

� Modify an item on the list.

� Delete an item from the list.

Call Syntax (CSP)

77─ ──CALL sssbbAP sssbbWA, KAAWCOM; ────────────────────────────────7"

The Working Storage record sssbbWA is used for specific information to the Detail
application about function and data from the selected row and a return code from
the Detail application. KAAWCOM is the common BTB work area.

The record sssbbWA contains the following items:

WHO Input parameter WHO tells who the user is (Central Administrator or Local
Administrator).

WHAT
Input parameter. The function to be performed by the Detail application.
(Select / Insert/ Modify / Delete / Copy)

CANCEL
Return parameter. Is 'YES' if the user has left the Detail application by
pressing F12.

CALL
No longer used.

PFVALID
No longer used.

GO No longer used.

sssbbI_DB2ROW
This is the data from the row on the List application not only the data seen
on the list panel but all the information returned from the DB2 tables
inclusive a timestamp. (If the action is Insert sssbbI_DB2ROW is empty)

The Detail application presents the data on a map together with information about
valid Action codes and F-Keys.

 Chapter 14. Business Transaction Broker CSP application modules 175

Multiple Function Support
We have built the Detail application to support all the actions on a list panel line not
resulting in another list panel.

The functions are:

 � Insert
 � Copy
 � Modify
 � Delete
 � Select

One example is the BEC Application Administration part of BTB from where all the
actions can be given (see Figure 31 through Figure 36 on page 179).

� �
 KBBABMIL BEC Applications BTB

 Type one or more action codes, then press Enter.
 Action codes: D=Delete I=Insert M=Modify S=Select C=Copy

____ ________________ ________ ________
A Appl. Name Location Transaction Transaction Parm.
 _ KAB CESIS100 678 CESIQA0 209210
 _ KAB CESIS120 678 CESIQA1 209211
 _ KAB CESIS200 678 CESIQB0 209220
 _ KAB CESIS650 678 CESIQGI 209271
 _ KAB CESIS660 678 CESIQGK 209272
 _ KAB CESIS670 678 CESIQGM 209273
 _ KAB CESIS700 678 CESIQM0 209274
 _ KAB TEST 678 SS
 _ KAE FOS-MN-01 806 UPNOT0MN 4MN
 _ KAE FOS-MN-01 678 UPOST0MN 4MN
 _ KAE FOS-MN-01 846 UPSET0MN 4MN
 _ KAE FOS-MN-01 702 UPFIT0MN 4MN

 Command ===>
F1=Help F3=Exit F8=Forward F12=Cancel

� �

Figure 31. List panel

176 BTB Application Programming Guide

� �
 KBBACMII Insert new BEC Application BTB

 Press Enter to insert new BEC Application

 Application-ID ___
 BEC Application ________________
 Location ________ Country
 Transaction ________
 Transaction Parameter . ____________________

 Destination : +
 Description : +

 Protocol : +
 User, Source : +
 User ________
 BEC Service Module . . . ________
 BEC to BEC Ext. Appl. . ________________
 BEC to BEC Ext. Loc. . . ________

 Command ===>
F1=Help F3=Exit F4=Prompt F12=Cancel

� �

Figure 32. Detail panel (Insert)

� �
 KBBACMII Insert new BEC Application BTB

 Press Enter to insert new BEC Application

 Application-ID KAB
 BEC Application CESIS200________
 Location OLD-ROUT Country
 Transaction CESIQB0_
 Transaction Parameter . 209220______________

 Destination : DKIMST +
 Description : +

 Protocol : NATIVE +
 User, Source : 3 +
 User DK11031_
 BEC Service Module . . . ________
 BEC to BEC Ext. Appl. . ________________
 BEC to BEC Ext. Loc. . . ________

 Command ===>
F1=Help F3=Exit F4=Prompt F12=Cancel

� �

Figure 33. Detail panel (Action)

 Chapter 14. Business Transaction Broker CSP application modules 177

� �
 KBBACMIM Modify BEC Application BTB

 Press Enter to modify BEC Application

 Application-ID : KAB
 BEC Application . . . : CESIS200
 Location : OLD-ROUT Country
 Transaction CESIQB0_
 Transaction Parameter . 209220______________

 Destination : DKIMST +
 Description : +
 DK TEST IMS - OLD-ROUT - CECIS online - fixed userid
 Protocol : NATIVE +
 User, Source : 3 +
 User DK11031_
 BEC Service Module . . . ________
 BEC to BEC Ext. Appl. . ________________
 BEC to BEC Ext. Loc. . . ________

 Command ===>
F1=Help F3=Exit F4=Prompt F12=Cancel

� �

Figure 34. Detail panel (Action)

� �
 KBBACMID Delete BEC Application BTB

 Press Enter to confirm deletion of BEC Application

 Application-ID : KAB
 BEC Application . . . : CESIS200
 Location : OLD-ROUT Country
 Transaction : CESIQB0
 Transaction Parameter : 209220

 Destination : DKIMST
 Description :
 DK TEST IMS - OLD-ROUT - CECIS online - fixed userid
 Protocol : NATIVE
 User, Source : 3
 User : DK11031
 BEC Service Module . . :
 BEC to BEC Ext. Appl. :
 BEC to BEC Ext. Loc. . :

 Command ===>
F1=Help F3=Exit F12=Cancel

� �

Figure 35. Detail panel (Action)

178 BTB Application Programming Guide

� �
 KBBACMIS Details of BEC Application BTB

 (no action on enter)

 Application-ID : KAB
 BEC Application . . . : CESIS200
 Location : OLD-ROUT Country
 Transaction : CESIQB0
 Transaction Parameter : 209220

 Destination : DKIMST
 Description :
 DK TEST IMS - OLD-ROUT - CECIS online - fixed userid
 Protocol : NATIVE
 User, Source : 3
 User : DK11031
 BEC Service Module . . :
 BEC to BEC Ext. Appl. :
 BEC to BEC Ext. Loc. . :

 Command ===>
F1=Help F3=Exit F12=Cancel

� �

Figure 36. Detail panel (Action)

Multi Language Support (MLS)
BTB has implemented Multi Language Support.

A Detail application tries to find the texts for the panel in the language preferred by
the user (ZCUSRLAN in KAAWCOM). If this language is not supported English is
used instead.

 CSP Tables
A Detail application uses two CSP tables that must be changed by the developer.

sssbbTP - F-Key table
This table holds information of the F-Key text in the supported languages.
Only the fields marked in UPDCOLS will be updated.

DEL - Delete a row.
The old key (and timestamp) is passed in sssnnI_DB2ROW(1).

If the timestamp (DSYSRPT) given from the "old" row is not equal to the
timestamp found on the table it has been changed after the browser has
read it, and the Updater will return with an error without deleting the row.

SEL - Return a row matching the key(s) given.
The key is passed in sssnnI_DB2ROW(1).

APPLNAM - Application Name
Name of calling application for error logging purposes.

USERID - User Id
Name of user to be registrated in the field IUSRUUL.

sssnnI_DB2ROW
Input DB2 Rows.

 Chapter 14. Business Transaction Broker CSP application modules 179

UPDCOLS
Mark for update of field.

Any serious SQL errors are logged.

The Updater returns the following in the output record sssnnWP6:

MSGNO - Message Number
A message code to an BTB message if something went wrong.

RETCODE - Return code
4 is a warning on errors e.g. row updated by another user and duplicate
keys found.

8 is an error code on errors e.g. not correct input and DB2 errors.

SQLCODE
SQL Error Code.

TABLEID
DB2 Table ID.

REFNAME
Name of Referential Integrity constraint, if any problems with referential
integrity.

An 8 character name of the Referential Integrity constraint.

sssnnI_DB2ROW
The returned row (Insert / Modify / Select)

 Referential Integrity
If you have a parent-child relation between two tables like the User table and the
User Scope table shown in Figure 37, these tables should be protected by a
referential integrity relation. This prevents a parent with children to be deleted or
children to be inserted without a parent.

 ┌──────────┐
 │ │

│ KBDTUS │
 │ │
 │ Users │
 │ │
 └────┬─────┘
 │

│ Relation RITUSTSC
 │
 ┌────┴─────┐
 │ │

│ KBDTSC │
 │ │
 │ User │
 │ Scope │
 └──────────┘

Figure 37. Parent-child referential relation

This relation is made in DB2 and is given an 8 character name. We recommend
the following format: RITppTcc, where pp is a two char id of the parent table and cc
is a two char id of the child table. The relation RITUSTSC is read like this :

180 BTB Application Programming Guide

Referential Integrity relation between parent Table (KBDT)US and child Table
(KBDT)SC.

If the Updater tries to violate a referential relation, DB2 returns EZESQCOD = -530,
-531, or -532 and the relation name in EZESQRRM.

In this cases the Updater tries to find a message in the csp table sssnnT1 using the
relation name as key. If this does not succeed, a general message is used instead.

To show a more user-friendly message do like this:

1. Find the relation name.

2. Insert a line in sssnnT1 where:

REFNAME Relation name.

MSGNO Identifier of the BTB message to be shown.

TEXT Description (not used).

3. Define the message in the BTB message table.

4. Load the message table.

An Update application can be generated automatically with the BTB Development
skeletons (only available on request). The generated code will need only minor
SQL modification.

 Chapter 14. Business Transaction Broker CSP application modules 181

182 BTB Application Programming Guide

 Chapter 15. Back-end programming

All business data to be accessed from BTB has to be placed in back-end systems,
preventing external users to have direct access to these data.

BTB Front-End applications in consequence must distribute part of the application
to a back-end.

The objective of BEC is to pass data and control from a CICS Front-End to an IMS-
or CICS back-end and to receive data and control again, once the back-end
processing is complete.

This chapter will give design and development guidelines on how to use BEC when
communicating between a BPI module (or NPT Front-End) and an application
server in CICS or IMS.

 Calling BEC

┌── ── ── FRONT-END CICS ── ── ── ┐ ┌── BACK-END IMS/CICS ──┐
│ │ │ │

│ ┌───────┐ ┌────────┐ ┌──────┐ │ │ ┌────────────────────┐ │
│ │ │ │ │ │ │ │

│ │ CSP │"──7│CSP/BEC-│"─7│ │ "──7 │ │ │
│ Appl. │ │ │ │ │ │ Back-End │

│ │ │ │Call API│ │ BEC │ │ │ │ PL/1/CSP appl. │ │
│ │ │ │ │ │ │ │

│ │Appl─A │ │KBBECAP │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │

│ │ │ │ │ │ │ │ │ │ │ │
 └───────┘ └────────┘ └──────┘ └────────────────────┘
│ │ │ │

└── ── ── FRONT-END CICS ── ── ── ┘ └── BACK-END IMS/CICS ──┘

Figure 38. Front-End/back-end communication through BEC.

Figure 38 shows a schematic outline of the communication between a Front-End-
and a back-end system. The Front-End is the CICS where BTB is installed.

The business logic of the application is placed in the back-end. All data access is
performed in the back-end

CSP application Appl_A represents an NPT or BPI application installed on BTB.

Between the Front-End and the back-end is the BEC component, that handles the
actual call to the back-end system. The Front-End applications do not need to
know the physical location of the back-end; when a Front-End application calls BEC
to access data from the back-end application, only a logical destination address is
passed. The physical destination (the VTAM node for the back-end, the back-end
transaction name, etc.) is then found by BEC from the BTB BEC tables. The
on-line BTB administration utilities provide facilities for the definition and

 Copyright IBM Corp. 1992, 2002 183

maintenance of logical and physical destinations and their connection. The logical
destination is defined by two fields:

 1. APPLCODE
 2. LOCATION

The APPLCODE and LOCATION together make up the logical destination which
is a unique identification of a BEC registration, i.e. an identification of the backend
system to communicate with. APPLCODE is the only element that has to be
"hardcoded" in the Client application/BPI definition. LOCATION enables execution
in MCO mode. The LOCATION parameter must be filled in with a logical location
code (usually the user's country code).

The BEC registration is performed from the online administration dialogue in BTB.

The Front-End application Appl_A communicates with BEC through the. CSP/BEC
call API

The CSP/BEC call API is an BTB infrastructure component that handles the call to
BEC. The call-interface to the CSP/BEC call API is described in details in the
skeleton sample application BECAPI which can be found in the skeleton MSL,
provided with the BTB package. The skeleton contains all the necessary code and
parameters and can be copied directly into the application (as a process) or used
as skeleton for a called CSP application to be used as a general component in your
application complex. See also figure Figure 42 on page 187

The call statement for calling KBBECAP is:

Call Syntax (CSP)

77─ ──CALL KBBECAP KBBECWA,KBBECW_SEND,KBBECW_RECV (NOMAPS; ─────────7"

 KBBECWA
The structure of the parameter KBBECWA is shown in Figure 39.

NAME LEVEL OCCURS TYPE LENGTH DESCRIPTION

001 IUSRIDY 10 00001 CHA 00008 BTB user ID
002 ICUSPRM 10 00001 CHA 00009 Primary Customer no.
003 * 20 00001 CHA 00002
004 ICUSPRM_BEC 20 00001 CHA 00007 Primary cust. no. (BEC)
005 * 10 00001 CHA 00003
006 LOCATION 10 00001 CHA 00008 Location / Country code
007 APPLCODE 10 00001 CHA 00016 Application code
008 MSGNO 10 00001 CHA 00006 Message number
009 MSG 10 00001 CHA 00071 Message text

Figure 39. CSP working storage KBBECWA. KBBECWA parameter to KBBECAP

IUSRIDY
Optional. You can provide the back-end application with a user ID in 3
different ways:

1. With the user ID signed on

184 BTB Application Programming Guide

2. With a user ID passed in the KBBECWA parameter (filled in by the
application)

3. With a fixed user ID registered with the BEC application registration.

KBBECWA.IUSRIDY
This field must be completed before calling the BEC, if User source has
been registered with a value of 2 (user ID to be passed in the
KBBECWA parameter) in the BEC application registration online dialogue.

ICUSPRM
Optional. The primary customer number of the user.. The primary
customer number is in the common communication working storage
KAAWCOM.

ICUSPRM_BEC
(Used by BEC). Substructure to identify IBM account number.

LOCATION
Mandatory. The logical location of the back-end (typically country code of
the user). The country code is in the common communication working
storage KAAWCOM.

APPLCODE
Mandatory. The hard-coded logical key to the BEC application
registration.

MSGNO
Returned parameter from BEC. BEC returns a message number in this
field after the call.

MSG Returned parameter from BEC. BEC returns a message text in this field
after the call.

The front-end application must move MSG and MSGNO to ZMSG and ZMSGNO of
KAAWCOM See also Figure 42 on page 187

 KBBECW_SEND
The structure of the parameter KBBECW_SEND is shown in Figure 40.

NAME LEVEL OCCURS TYPE LENGTH DESCRIPTION

001 KBBECI_SENDAREA 05 00001 CHA 31885 Send area
002 QDEXLEN 10 00001 BIN 00004 length of interface
003 KBBECI_SENDDATA 10 00001 CHA 31883 Send area data

Figure 40. CSP working storage KBBECW_SEND. KBBECW_SEND parameter to
KBBECAP

The working storage KBBECW_SEND.KBBECI_SENDDATA is filled in with
application data to be passed from the calling Front-End application to the back-end
application.

The field QDEXLEN specifies the length of the data to be passed to the back-end.
The maximum length is 31883 bytes. The calling application must make a

 Chapter 15. Back-end programming 185

redefinition of the KBBECW_SEND area, which must match the redefinition in the
corresponding back-end module.

 KBBECW_RECV
The structure of the CSP working storage KBBECW_RECV is shown in Figure 41.

NAME LEVEL OCCURS TYPE LENGTH DEC BYTES

001 KBBECI_RECVAREA 05 00001 CHA 31885 31885
002 QDEXLEN 10 00001 BIN 00004 00002
003 KBBECI_RECVDATA 10 00001 CHA 31883 31883

Figure 41. CSP working storage KBBECW_RECV

The working storage KBBECW_RECV.KBBECI_RECVDATA is used to pass
application data back from the back-end application to the calling Front-End
application.

The field QDEXLEN specifies the length of the data passed back to the Front-End.
The maximum length is 31885 bytes. The calling application must make a
redefinition of the KBBECW_RECV area, which must match the redefinition in the
corresponding back-end module.

For each call of the back-end via BEC, the working storage KBBECW_RECV must
be appropriately redefined to match the corresponding redefinition of the WS-area
in the back-end application. Figure 42 on page 187 shows how the CSP/BEC call
API (and BEC) is called, and how messages from BEC should be treated by the
calling application, It is a piece of code taken from the application BECAPI located
in the skeleton MSL, which is a part of the BTB package.

186 BTB Application Programming Guide

 001 /***
 002 /* Set parameters for BEC call (from KAAWCOM)
 003 /***
 004 /*
 005 /***
 006 /* Initiate send and receive areas (p5 & p6)
 007 /***
 008 /*
 009 SET KBBECWA EMPTY;
 010 SET SEND_REDEF_EXAMPLE EMPTY; /* Redifinition of KBBECW_SEND
 011 SET RECV_REDEF_EXAMPLE EMPTY; /* Redifinition of KBBECW_RECV
 012 /*
 014 /***
 015 /* Set necessary parameters form BEC call
 016 /***
 019 /*
 020 MOVE 'XXXXXXXXXXXXXXXX' TO KBBECWA.APPLCODE; /* IE: "ECINFO"
 021 MOVE 'NNN' TO KBBECWA.LOCATION; /* COUNTRY CODE
 022 MOVE 'YYYYYYYY' TO KBBECWA.IUSRIDY; /* user ID
 023 MOVE 'IIIIIIIII' TO KBBECWA.ICUSPRM; /* Prim. custno
 024 /*
 025 /***
 026 /* Set length of SEND and RECIEVE areas
 027 /***
 028 /*
 029 MOVE N TO SEND_REDEF_EXAMPLE.QDEXLEN;/* max 31885 (length of interface)
 030 MOVE I TO RECV_REDEF_EXAMPLE.QDEXLEN;/* max 31885 (length of interface)
 031 /*
 033 /***
 034 /* Build KBBECW_SEND area with application data
 035 /***
 037 /*
 038 MOVE XXX TO SEND_REDEF_EXAMPLE.XXX;
 039 MOVE YYY TO SEND_REDEF_EXAMPLE.YYY;
 040 /*
 042 /***
 043 /* CALL BEC CSP Call API
 044 /***
 045 /*
 046 CALL KBBECAP
 047 KBBECWA,
 048 KBBECW_SEND,
 049 KBBECW_RECV
 050 (NOMAPS;
 051 /*
 053 /***
 054 /* Return error message and errortext
 055 /***
 057 /*
 058 IF KBBECWA.MSGNO ¬= ' ';
 059 MOVE KBBECWA.MSGNO TO ZMSGNO;
 060 MOVE KBBECWA.MSG TO ZMSG;
 061 END;
 062 ;
 063 /* proceed with application logic

Figure 42. Call CSP/BEC call API. Example on how to call the CSP/BEC call API.

 Chapter 15. Back-end programming 187

CICS to CICS programming guidelines

┌── ── ── ── CICS A ── ── ── ── ┐ ┌ ── ── ── ── CICS B ── ── ── ── ┐

│ │ │ "─────── CICS transaction XXX1 ──────7 │

│ ┌───────┐ ┌────────┐ ┌──────┐ │ │ ┌───────┐ ┌───────┐ ┌──────────┐ │
│ │ │ │ │ │ │ │ │ │ │ CSP DAM │

│ │ CSP │"──7│CSP/BEC-│"──7│ │ "──7 │ PL/1 │"──7│ CSP │"──7│ Browser │ │
│ Appl. │ │ │ │ │ │ pgm. │ │ Appl. │ │ Appl─1 │

│ │ │ │Call API│ │ BEC │ │ │ │ │ │ │ └──────────┘ │
│ │ │ │ │ │ │ │ │ │ ┌──────────┐

│ │Appl─A │ │KBBECAP │ │ │ │ │ │KBBCSPP│ │Appl─B │"──7│ CSP DAM │ │
│ │ │ │ │ │ │ │ │ │ │ Updater │

│ │ │ │ │ │ │ │ │ │ │ │ │ │ Appl─2 │ │
└───────┘ └────────┘ └──────┘ └───────┘ └───────┘ └──────────┘

│ │ │ │

└── ── ── ── CICS A ── ── ── ── ┘ └ ── ── ── ── CICS B ── ── ── ── ┘

Figure 43. CICS to CICS..

Figure 43 shows a schematic outline of how an application is split between 2 CICS
to separate business logic from the presentation logic, and distribute it to a
back-end CICS.

Compared to Figure 38 on page 183 the PL/1 program KBBCSPP has been
added. KBBCSPP is an BTB infrastructure component, which makes it possible to
start a CSP application in the back-end CICS.

We will assume the following scenario:

We will install a "stub" application (Appl_B) in the back-end system to manage the
request from the Front-End application. The Front-End application can request
either a call to the browser module Appl_1 or the update module Appl_2.

This application must be a called CSP application with 1 input record and 1 output
record.

It is also possible to install real business applications (i.e. a data access module)
instead of a stub application. But by installing a stub application we minimize the
administrative work and maintenance (e.g. CICS definitions.)

CSP Front-End application Appl_A gets data from the CSP access module
Appl_1. It updates a DB2 table through CSP update module Appl_2. Both access
modules must be placed in a CICS back-end system.

We will need a CICS transaction with the appropriate definitions in the CICS RCT
table

We want our back-end applications to run in CICS transaction "XXX1", and to
execute through a DB2 plan "XXXPLAN"(static DB2).

We have been givenapplication id "XXX" and we will use Applcode "XXX-A1".
Our back-end system is located in Denmark Location "678"

188 BTB Application Programming Guide

BTB BEC application registration
Assuming that the appropriate BEC destination has been defined, the BEC
application definition panel in the BTB Application Installation should be filled in with
the following parameters (refer to System Administration Guide for details about
inserting BEC applications and destinations):

� �
 KBBACM1I Insert new BEC Application BTB

 Press Enter to insert new BEC Application

 Application code . . XXX-A1__________
 Location 678_____
 Application Id . . . XXX_
 Destination type . . CICSLU62____ +

 Transaction. XXX1________________ user ID source. . . . 1 +
 Transaction parm.. . CSPAPPL1____________ user ID _______
 Sysid. TEST________________

 Command ===>
F1=Help F3=Exit F4=Prompt F12=Cancel

� �

CEDA definition of transaction
A transaction XXX1 must be defined using CEDA. It should start program
KBBLNKP, which then will link to the program from “Transaction parm,” here
CSPAPPL1. The TWASIZE should also be changed to 1024 to allow the CSP
program to run.

CICS RCT table
The CICS RCT (Resource control table) of the back-end CICS must have the
following contents:

AUTH CICS authorization ID. This is the identifier that must be granted access to
the DB2 resources.

TXID CICS transaction ID.

PLAN DB2 plan related to the CICS transaction. The AUTD ID (XYZ) must be
granted execute to the plan (XXXPLAN).

 Chapter 15. Back-end programming 189

* CICS RCT TABLE FOR PROJECT ABC *

*
* The following RCT entries are to be applied to any CICS region
* where project ABC will execute.
*

 DSNCRCT TYPE=ENTRY, X
 TWAIT=POOL,THRDM=0,THRDA=0,AUTH=(XYZ), X
 TXID=(XXX1), X
 PLAN=XXXPLAN

CICS to IMS programming guidelines

┌── ── ── ── CICS A ── ── ── ── ┐ ┌ ── ── IMS ── ── ──┐

│ │ │ "─IMS Trans.YYY1─7 │

│ ┌───────┐ ┌────────┐ ┌──────┐ │ │ ┌──────────────┐ │
 │ │ │ │ │ │ │ │
│ │ CSP │"──7│CSP/BEC-│"──7│ │ "──7 │ PL/1 │ │

│ Appl. │ │ │ │ │ │ pgm. │
│ │ │ │Call API│ │ BEC │ │ │ │ │ │
 │ │ │ │ │ │ │ │
│ │Appl─A │ │KBBECAP │ │ │ │ │ │ Appl─B │ │
 │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │ │ │ │

└───────┘ └────────┘ └──────┘ └──────────────┘
│ │ │ │

└── ── ── ── CICS A ── ── ── ── ┘ └ ── ── IMS ── ── ──┘

Figure 44. CICS to IMS..

Figure 44 shows a schematic outline of how an application is split between a CICS
and a IMS in order to separate business logic from the presentation logic, and
distribute it to a back-end IMS.

When BEC is called from the CSP/BEC call-API (KBBCSPAP), BEC will place the
enriched send_area on the IMS message-queue. Figure 45 shows the structure
of the send_area

Prefix 14 bytes (Length of area and IMS transaction, filled in by BEC)
P3_area 115 bytes (Protocol area, filled in by BEC)
P5_area 31883 bytes (Application data input area)

Figure 45. IMS input message area

Figure 46 on page 191 shows the declare structure of the P3_area.

190 BTB Application Programming Guide

 /* +--+ *
/* | BACKEND COMMUNACATIONS (BEC) | *

 /* | ============================ | *
 /* | | *
/* | STRUCTURE : KBBI1PRO | *

 /* | | *
/* | LENGTH : 115 BYTES (DATA = 031, FUTURE USE = 084) | *

 /* | | *
 /* | CONTENTS : IMB NATIVE APPLICATION PROTOCOL PREFIX | *
/* | SENT TO BACK-END. | *

 /* | | *
/* | RELATIONS : BUILT BY BEC PROTOCOL MODULE KBBCP1M AND | *
/* | RECOGNIZED BY CORRESPONDING SERVERS IN | *

 /* | BACK-ENDS. | *
/* | HISTORICALLY THIS PARAMETER IS KNOWN AS | *
/* | ROUTER PARAMETER P3 MAPPED BY CSP WORKING | *
/* | STORAGE RECORD KAAWIP3. | *

 /* | | *
 /* +--+ *
 /* *
 /* OFFSET *
 /* --- *

3 LL BIN FIXED (15), /* RECORD LENGTH 000 *
3 ZZ BIN FIXED (15), /* INTERFACE ID 002 *
3 user ID CHAR (08), /* IMS USER ID 004 *
3 FILLER1 CHAR (05), /* FUTURE USE 012 *
3 SCOPEKEY CHAR (07), /* DATA ACCESS SCOPE KEY 017 *
3 CHOICE CHAR (12), /* COMSEC TRANS. 024 *
3 FILLER2 CHAR (79) /* FUTURE USE 036 *

 /* *
/* TOTAL LENGTH 115 *

 /* == BEC == END OF STRUCTURE KBBI1PRO == *
 /* -- *

Figure 46. P3 area

When BEC has placed the send_area on the IMS message queue, the program
related to the IMS transaction will be executed. The main structure of this program
can be seen in Figure 47

Note that a call to COMSEC is optional. If COMSEC is used, you specify the
COMSEC choice number in the transaction parameter field, when you define your
BEC application from the BTB online dialog.(see below).

000010 READ MESSAGE-QUEUE
000020 DO WHILE MESSAGE FOUND
000030 FIND USER SCOPE FROM COMSEC /* OPTIONAL */
000040 CALL APPROPRIATE MODULE
000050 BUILD AND SEND RECEIVE_AREA
000060 READ MESSAGE-QUEUE

Figure 47. Main structure of main program on IMS site.

Figure 48 on page 192 shows the structure of the receive_area.

 Chapter 15. Back-end programming 191

Prefix 6 bytes (Length of area, filled in by BEC)
 P4_area 21 bytes (Protocol area, filled in by BEC)

P6_area 31883 bytes (application data output area)

Figure 48. IMS reply message area

Figure 49 shows the declare structure of the p4_area.

 /* +--+ *
/* | BACKEND COMMUNACATIONS (BEC) | *

 /* | ============================ | *
 /* | | *
/* | STRUCTURE : KBBO1PRO | *

 /* | | *
/* | LENGTH : 021 BYTES | *

 /* | | *
 /* | CONTENTS : IMB NATIVE APPLICATION PROTOCOL PREFIX | *
/* | RECEIVED FROM BACK-END | *

 /* | | *
/* | RELATIONS : BUILT BY BACK-END SERVER ON REPLY AND | *
/* | RECOGNIZED BY CORRESPONDING BEC PROTOCOL | *

 /* | MODULE. | *
/* | HISTORICALLY THIS PARAMETER IS KNOWN AS | *
/* | ROUTER PARAMETER P4 MAPPED BY CSP WORKING | *
/* | STORAGE RECORD KAAWIP4. | *

 /* | | *
 /* +--+ *
 /* *
 /* OFFSET *
 /* --- *

3 LL BIN FIXED (15), /* RECORD LENGTH 000 *
3 ZZ BIN FIXED (15), /* INTERFACE ID 002 *
3 TRANCODE CHAR (08), /* IMS TRAN CODE 004 *
3 ENVSTAT CHAR (02), /* ENV. STATUS CODE 012 *
3 ENVMSG, /* ENV. MESSAGE NUMBER *
4 ENVMSGPR CHAR(3), /* PREFIX (E.G. 'KBB') 014 *
4 ENVMSGNO CHAR(3), /* MSG NUMBER 017 *
4 ENVMSGLV CHAR(1) /* MSG LEVEL 020 *

 /* *
/* TOTAL LENGTH 021 *

 /* == BEC == END OF STRUCTURE KBBO1PRO == *
 /* -- *

Figure 49. P4 area

We will assume the following scenario:

We will install an application (Appl_B) in the back-end IMS system.

CSP Front-End application Appl_A gets data from the PL/1 program Appl_B.

We will need to supply the IMS generation with appropriate definitions.

192 BTB Application Programming Guide

We will use COMSEC and will use COMSEC choice number: AAYY

We want our back-end applications to run in IMS transaction YYY1

We want to use the IMS NATIVE protocol. (The IMS ADF protocol is described
later in this chapter)

We have been given application id YYY and we will use Applcode YYY-A1. Our
back-end system is located in Denmark Location "678"

BTB BEC application registration
Assuming that the appropriate BEC destination has been defined, the BEC
application definition panel in the BTB Application Installation should be filled in with
the following parameters: (refer to System Administration Guide for details about
inserting BEC applications and destinations.).

� �
 KBBACM1I Insert new BEC Application BTB

 Press Enter to insert new BEC Application

 Application code . . YYY-A1__________
 Location 678_____
 Application Id . . . YYY_
 Destination type . . IMSLU61_____ +

 Transaction. YYY1________________ user ID source. . . . 1 +
 Transaction parm.. . AAYY________________ user ID ________
 Sysid. IMST________________

 Command ===>
F1=Help F3=Exit F4=Prompt F12=Cancel

� �

 IMS Definitions
The Input data to be used for the IMS generation must have the following contents:

� PSB = name of PSB and PROGRAM to be started
� CODE = name of IMS transaction.

*
* TRANSACTIONS IN IMS
*

* NON CONVERSIONAL TRANSACTIONS FOR BACKEND MODULES

*
 APPLCTN PSB=YYY1P,PGMTYPE=(TP,,12),SCHDTYP=PARALLEL
 TRANSACT PRTY=(1,1,05),EDIT=(ULC), X
 TRANSACT PRTY=(1,1,05),EDIT=(ULC), X
 CODE=YYY1,MSGTYPE=(SNGLSEG,RESPONSE),PARLIM=1

 Chapter 15. Back-end programming 193

194 BTB Application Programming Guide

Part 4. Common programming APIs

This section describes the application programming interfaces provided with BTB:

� Chapter 16, “Generic BTB programming APIs” on page 197 describes the
generic BTB programming APIs

� Chapter 17, “Programming APIs and structures for CSP 3270 applications” on
page 251 describes the APIs and structures for CSP 3270 applications

 Copyright IBM Corp. 1992, 2002 195

196 BTB Application Programming Guide

Chapter 16. Generic BTB programming APIs

The following APIs can be used from most programs running in BTB CICS. Both
online 3270/NPT applications written in CSP, and BPIs and MailRoom programs
written in PL/1 can use BTB programming APIs.

Sundry texts, prompt and validation
The BTB Sundry text table is a generic place to store various character, decimal
and integer values and related descriptions for later use in applications as F4
Prompt lists and input validation. It consists of a DB2 table to store the sundry
texts, a CSP Call API to give a Prompt list, a CSP Call API to verify a value, and a
set of CSP applications to maintain Sundry texts online under BTB.

 Usage
The Sundry Prompt List is activated under program control, and can display a list of
values like those shown in Figure 50).

� �
KBHLHMCP List of possible values BTB

Type one action code, then press Enter.
Action code: S=Select

 ________________ ___
A Value Description
_ A Value A
_ B Value B
_ C Value C

Command ===>
F1=Help F3=Exit F12=Cancel

� �

Figure 50. Sundry Prompt list

By selecting a line, the value (and description) is returned to the calling application
for further usage.

Context-sensitive help can be available, if it has been written and loaded as
described in “BTB online help system” on page 251. The used help key should
match the sundry key.

 Copyright IBM Corp. 1992, 2002 197

 Call Method
The Sundry Text APIs can be called in a number of different ways, depending on
which support is needed.

� Online Prompt List

� Return a list of values to an application

� Check a character value against the list

� Check an integer value against the list

� Check a decimal value against the list

� Return a list of values to an application where the value field is part of the
search parameter.

Sundry texts are organized in groups of Sundry Items, which can have one or more
values (in either character, integer or decimal representation). The identification of a
Sundry Item is:

� Application Id (char 4)
� Country code (char 3)
� Language code (char 2)
� Sundry Item (char 8)
� Value (char 16, optional)

To support MCO and NLS, the APIs are able to default to another language code
or country, if a Sundry Item is not registered.

The following examples show how the Sundry texts can be accessed from CSP.

198 BTB Application Programming Guide

/***/
/* Call of Sundry Text Prompt List */
/* to display values for a field */
/* CSP procedure: KBHxxP_PROMPT */
/***/
;
MOVEA ' ' TO KBHxxWM.CURSOR;
;
SET KBHLHWA EMPTY;
MOVE 'ALL' TO KBHLHWA.WHO;
MOVE 'PRO' TO KBHLHWA.WHAT;
MOVE 'Y' TO KBHLHWA.ENABLE_FLD_HELP;
MOVE 'KBH' TO KBHLHWA.ISYSIDY;
MOVE ZIOPUCTY TO KBHLHWA.IOPUCTY;
MOVE ZCUSRLAN TO KBHLHWA.CUSRLAN;
MOVE 'PROMPT-1' TO KBHLHWA.SKBH_SUNITEM;
; /* **
; /* The default sort in the Sundry Text Prompt List
; /* is sort by Sundry Value.
; /* If the Sundry Text Prompt List should be sorted
; /* by Sundry Text instead, then remove this comment
; MOVE 'T' TO KBHLHWA.KBHLHI_SKBH_SORT;
;
CALL KBHLHAP KBHLHWA,KAAWCOM;
IF ZNEWAPPL ¬= ' ';
 EZECLOS;
END;
;
IF ZMSGNO = ' ' /* No errors
AND KBHLHWA.CANCEL = 'NO'; /* Enter pressed
;/* OK user selected a value
MOVE MOVE KBHLHWA.SKBH_SUNVALUE TO KBHxxWM.xxxxxxxx;
MOVE MOVE KBHLHWA.SKBH_SUNTEXT TO KBHxxWM.xxxxxyyy;
MOVE 'YES' TO CURSOR(2); /* place cursor here

END;
;

Figure 51. Sundry Text Prompt List

 Chapter 16. Generic BTB programming APIs 199

/***/
/* Call of Sundry Text Pmg API */
/* to list all values */
/***/
MOVE ZUSERID TO KBHLGWA.USERID;
MOVE 'LST' TO KBHLGWA.FUNC;
MOVE 'KBH' TO KBHLGWA.ISYSIDY;
MOVE ZIOPUCTY TO KBHLGWA.IOPUCTY;
MOVE ZCUSRLAN TO KBHLGWA.CUSRLAN;
MOVE 'PROMPT-1' TO KBHLGWA.SKBH_SUNITEM;
;
CALL KBHLGAP KBHLGWA (NOMAPS;
;
IF KBHLGWA.MSGNO = ' '; /* found
 ; /*
; /* The list is available in

 ; /* KBHLGWA.SKBH_SUNVALUE (Char type)
 ; /* KBHLGWA.SKBH_SUNVAL_I (Integer type)
 ; /* KBHLGWA.SKBH_SUNVAL_D (Decimal type)
 ; /* KBHLGWA.SKBH_SUNTEXT (Text description)
 ; /*
; /* Info about number of rows

 ; /* KBHLGWA.QROWCNT
 ; /* KBHLGWA.MORE
 ; /*
; /* Info about actually used cty and lang

 ; /* KBHLGWA.IOPUCTY
 ; /* KBHLGWA.CUSRLAN
 ; /*
ELSE;
MOVE KBHLGWA.MSGNO TO ZMSGNO;

END;

Figure 52. Sundry, list valid values

200 BTB Application Programming Guide

/***/
/* Call of Sundry Text Pmg API */
/* to verify a value */
/***/
MOVE ZUSERID TO KBHLGWA.USERID;
MOVE 'CHK' TO KBHLGWA.FUNC;
; /* 'CHI' for Integer values
; /* 'CHD' for decimal values
MOVE 'KBH' TO KBHLGWA.ISYSIDY;
MOVE ZIOPUCTY TO KBHLGWA.IOPUCTY;
MOVE ZCUSRLAN TO KBHLGWA.CUSRLAN;
MOVE 'PROMPT-1' TO KBHLGWA.SKBH_SUNITEM;
MOVE xxmyvalue TO KBHLGWA.SKBH_SUNVALUE;
; /* For integer values: KBHLGWA.SKBH_SUNVAL_I
; /* decimal values: KBHLGWA.SKBH_SUNVAL_D
;
CALL KBHLGAP KBHLGWA (NOMAPS;
;
IF KBHLGWA.MSGNO = ' '; /* found
 ; /*
; /* The list is available in
; /* (there is normally only one row...)

 ; /* KBHLGWA.SKBH_SUNVALUE (Char type)
 ; /* KBHLGWA.SKBH_SUNVAL_I (Integer type)
 ; /* KBHLGWA.SKBH_SUNVAL_D (Decimal type)
 ; /* KBHLGWA.SKBH_SUNTEXT (Text description)
 ; /*
; /* Info about number of rows

 ; /* KBHLGWA.QROWCNT
 ; /* KBHLGWA.MORE
 ; /*
; /* Info about actually used cty and lang

 ; /* KBHLGWA.IOPUCTY
 ; /* KBHLGWA.CUSRLAN
 ; /*
ELSE;
IF KBHLGWA.MSGNO = 'KAA100'; /* not found
; /* Your value is wrong

 ELSE;
MOVE KBHLGWA.MSGNO TO ZMSGNO;

 END;
END;

Figure 53. Sundry, verify a value

 Chapter 16. Generic BTB programming APIs 201

/***/
/* Call of Sundry Text Pmg API */
/* to get a list where the input parameter */
/* Value contains the first part of the */
/* word in the output parameter Value. */
/* Like a *-search. */
/***/
MOVE ZUSERID TO KBHLGWA.USERID;
MOVE 'BCK' TO KBHLGWA.FUNC;
MOVE 'KBH' TO KBHLGWA.ISYSIDY;
MOVE ZIOPUCTY TO KBHLGWA.IOPUCTY;
MOVE ZCUSRLAN TO KBHLGWA.CUSRLAN;
MOVE 'PROMPT-1' TO KBHLGWA.SKBH_SUNITEM;
MOVE xxmyvalue TO KBHLGWA.SKBH_SUNVALUE;
;
CALL KBHLGAP KBHLGWA (NOMAPS;
;
IF KBHLGWA.MSGNO = ' '; /* found
 ; /*
; /* The list is available in

 ; /* KBHLGWA.SKBH_SUNVALUE (Char type)
 ; /* KBHLGWA.SKBH_SUNTEXT (Text description)
 ; /*
; /* Info about number of rows

 ; /* KBHLGWA.QROWCNT
 ; /* KBHLGWA.MORE
 ; /*
; /* Info about actually used cty and lang

 ; /* KBHLGWA.IOPUCTY
 ; /* KBHLGWA.CUSRLAN
 ; /*
ELSE;
IF KBHLGWA.MSGNO = 'KAA100'; /* not found
; /* Your value is wrong

 ELSE;
MOVE KBHLGWA.MSGNO TO ZMSGNO;

 END;
END;

Figure 54. Sundry between character search. Return a list of values to an application
where the value field is part of the search parameter.

 System Errorlog
If an error occurs in an application program, information is often available regarding
the problem. This information can be important for later problem resolution, but the
application might not need or understand it. It is nevertheless important to store
the information for later use. The BTB System Errorlog is used for this purpose.

The System Errorlog can be used for these types of errors:

SQL errors from DB2
The information returned in the SQL Communication Area is in packed
format. This data is useful for the DBA or programmer during problem
determination. The user needs a more basic presentation of the error
information. Storing the information in a DB2 Table lets you keep the

202 BTB Application Programming Guide

information for later tracing of the problem. The System Errorlog formats
SQLCA into readable text by using the DB2 system routine DSNTIAR.

Simple errors with a message number
The application might have so important an error message that it must be
kept and possibly automatically sent to someone in the form of alert.

The System Errorlog looks up the message number in the DB2 message
table, substitutes any variables and formats the resulting text.

Text information
The application can use the API to store up to 7 lines of formatted text.

Combination of message number and free text
A combination of the previous two message types.

CICS errors and message number
Support for handling and formatting CICS errors. This is the support as for
plain messages with the addition of automatic resolving of CICS EIBRESP
and EIBRESP2 into the text.

IMS errors and message number
Support for formatting IMS errors. This is the support as for plain
messages with the addition of extra information about the IMS system and
Lterm where the error was encountered.

Using System Errorlog
The System Errorlog is available as an API for:

� PL/1 programs using an include member. Working in these environments by
linking an environment-specific module into the main load module:

 – CICS
 – IMS
 – Batch TSO

� CICS programs using EXEC CICS LINK

� CSP applications (under CICS) through a called application

Processing in CICS environment
A CICS main program is the real API to System Errorlog. Other CICS programs
and CSP applications can call it directly. PL/I programs will call (through an include
member) a generic API. In the CICS environment the call is eventually transformed
to a LINK to the real API by including the CICS version of the System Errorlog in
the final load module.

The real API will initialize some parameters like time, user ID, CICS system,
transaction, task, etc. then write a record to a TD Queue and return to the original
program for further processing. The actual insertion into the System Errorlog will
take place in a different task.

Processing in an IMS environment
PL/I programs will call (through an include member) a generic API. In the IMS
environment the call results in the insertion of a message to the IMS queue, which
starts an IMS transaction with the System Errorlog structure.

 Chapter 16. Generic BTB programming APIs 203

The IMS transaction performs the insertion into the System Errorlog. If the TIE-MQ
scenario is being used, the IMS transaction formats the message for MQSeries and
puts it on the queue for errors.

If there is a general DB2 error or a plan error on the IMS transaction for error
handling, the transaction fails and the error message is written to the IMS region.

Processing in a batch TSO environment with DB2 access
PL/I programs will call (through an include member) a generic API. In the
BATCH/TSO environment the call is eventually transformed to an insertion into the
System Errorlog.

The insertion will fail if the current DB2 plan is not working correctly. In that case,
the formatted error message will only be written to SYSPRINT.

Processing in a batch TSO environment without DB2 access
PL/I programs will call (through an include member) a generic API. In the
BATCH/TSO environment the call is eventually transformed into writing a formatted
error message to SYSPRINT.

Calling System Errorlog
The System Errorlog is called in 2 functionally different ways:

� Entry point with parameters from PL/I
� Link to API with structure from CICS and CSP

The required parameters for the entry points as well as the fields in the structures
are shown in Table 13.

Table 13 (Page 1 of 2). System Errorlog. Parameters to the API

Parameter parms for entry point
fields in structure

Description

MSG DB2 CICS GEN GMS

SKBH_ELOG_TYPE 1 2 3 4 5 Type of call

SKBH_ELOG_PROG � � � � � Calling program

SKBH_ELOG_SUBRUT � � � � � Process in program

SKBH_ELOG_CFROM � � � � � Called from

SKBH_ELOG_OBJECT � � � � � Related object

SKBH_ELOG_SUBSYS � � � � � Subsystem

SKBH_ELOG_ALERT � � � � � Alert Y/N

SKBH_ELOG_SYS � � � � � Assigned by API

SKBH_ELOG_TIME � � � � � Assigned by API

SKBH_ELOG_TRX � � � � � Assigned by API

SKBH_ELOG_TASK � � � � � Assigned by API

SKBH_ELOG_TERM � � � � � Assigned by API

SKBH_ELOG_USER � � � � � Assigned by API

SKBH_MSGID � � � � Message id

SKBH_MSGSEVR � Message severity

SKBH_MSGVAR1 � � � Message variable 1

SKBH_MSGVAR2 � � � Message variable 2

204 BTB Application Programming Guide

Table 13 (Page 2 of 2). System Errorlog. Parameters to the API

Parameter parms for entry point
fields in structure

Description

MSG DB2 CICS GEN GMS

SKBH_MSGVAR3 � � � Message variable 3

SKBH_ELOG_EIBRESP � CICS EIBRESP

SKBH_ELOG_EIBRESP2 � CICS EIBRESP2

SKBH_ELOG_TEXT1 � � Text line 1

SKBH_ELOG_TEXT2 � � Text line 2

SKBH_ELOG_TEXT3 � � Text line 3

SKBH_ELOG_TEXT4 � � Text line 4

SKBH_ELOG_TEXT5 � � Text line 5

SKBH_ELOG_TEXT6 � Text line 6

SKBH_ELOG_TEXT7 � Text line 7

SKBH_ELOG_SQLCA � DB2 SQLCA

RESERVED � � � � � Filler, leave blank

Legend: The symbols used in the table are interpreted as follows:

For PL/I entry points a � indicates a required parameter
MSG: Use the KBHLMSG entry point to store a message no
DB2: Use the KBHLDB2 entry point to store SQL errors from DB2
CICS: Use the KBHLCIC entry point to store CICS errors
GEN: Use the KBHLGEN entry point to store generic text
GMS: Use the KBHLGEN entry point to store message and generic text

For CICS/CSP API a �, �, 1-5 indicates field in structure
MSG: Use the KBHERWLM structure to store a message no
DB2: Use the KBHERWLD structure to store SQL errors from DB2
CICS: Use the KBHERWLC structure to store CICS errors
GEN: Use the KBHERWLG structure to store generic text
GMS: Use the KBHERWLJ structure to store message and generic text
�: indicates a field where input is required
�: indicates a field where input must be blank
Use value 1:'MSG', 2:'SQL', 3:'CICS', 4:'GEN', 5:'GMS'

Calling the API from PL/I
The PL/I program must include the KBHERROR member. This member will define
5 entry points to be used when calling the System Errorlog. The 5 entry points are
resolved to real code by including the relevant environment version of the API in
the linkage editor:

 INCLUDE SYSNCAL(KBHERCM) Errorlog module for CICS
 INCLUDE SYSNCAL(KBHERIM) Errorlog module for IMS
 INCLUDE SYSNCAL(KBHERTM) Errorlog module for TSO/BATCH with DB2
 INCLUDE SYSNCAL(KBHERBM) Errorlog module for TSO/BATCH without DB2

The API is exactly the same, but the internal processing will vary in the different
environments.

The following is a sample of calling the System Errorlog from PL/I in order to store
a CICS error:

 Chapter 16. Generic BTB programming APIs 205

 %INCLUDE KBHERROR;
CALL KBHLCIC(MY_MODULE, /* name of this module */

'XYZ_PROCESS', /* name of process */
BEC_XXX.TOPPGM, /* name of top lvl pgm */
BEC_COMM.APPLCODE, /* name of current 'object' */
'BEC', /* name of subsystem */

 'Y', /* Alert=Yes */
'MSG123', /* message number */
COMM.LUNAME /* variable 1 */
'EIBRESP' /* var 2, put CICS msg here */
'', /* variable 3 not used */
EIBRESP, /* EIBRESP from CICS EIB */
EIBRESP2); /* EIBRESP2 from CICS EIB */

If MSG123 has a message text like 'Error accessing LU=&1 (tech. reason: &2)'
the resulting message in the System Errorlog could be something like: 'Error
accessing LU=FKBZ1234 (tech. reason: TERMERR RESP2=4)'

Calling the API from CSP
CSP is using the EXEC CICS LINK version of the API. The calling program must
prepare a working storage area, and then call the CICS program. Other programs
in CICS can use the same API (the CICS commarea must contain a pointer to the
structure).

The following is a sample of calling the System Errorlog from CSP in order to store
a message number with variables:

Include the following records in the application (option 3)
(you may leave out any unused redefinitions)
 KBHERWL

KBHERWLC (redefinition of KBHERWL for CICS errors)
 KBHERWLD (-"- -"- for DB2 errors)

KBHERWLG (-"- -"- for generic text)
KBHERWLJ (-"- -"- for msg + gen. text)
KBHERWLM (-"- -"- for plain message no)

In the application:
 ;

SET KBHERWLM EMPTY;
 ;
 KBHERWLM.SKBH_ELOG_TYPE = 'MSG';
 KBHERWLM.SKBH_ELOG_PROG = 'THISPGM';

KBHERWLM.SKBH_ELOG_SUBRUT = 'MY_PROCESS_IN_ERROR';
 KBHERWLM.SKBH_ELOG_CFROM = 'TOPPGM';

KBHERWLM.SKBH_ELOG_OBJECT = XXX.TPNUMBER;
KBHERWLM.SKBH_ELOG_SUBSYS = 'MY SYS';

 KBHERWLM.SKBH_ELOG_ALERT = 'N';
 KBHERWLM.SKBH_MSGID = 'MSG456';
 KBHERWLM.SKBH_MSGVAR1 = XXX.TPNUMBER;
 KBHERWLM.SKBH_MSGVAR2 = 'ACCESS RIGHTS';
 KBHERWLM.SKBH_MSGVAR3 = ' ';
 ;

; /* Call common error log
CALL KBHELGP KBHERWLM (NOMAPS,NONCSP;

 ;

If MSG456 has a message text like 'Error updating data for Trading Partner
&1 (reason: &2)' the resulting message in the System Errorlog could be

206 BTB Application Programming Guide

something like: 'Error updating data for Trading Partner 012345678 (reason:
ACCESS RIGHTS)'

 Internal structure

Structure in CICS (CSP)
 ┌─────────────────────┐ ┌───────────────┐
 │ CSP application: │ │ KBHELGP │ ┌───────────┐
 │ │ │ CICS Error API│ │ Error Log │
 │ SET err─rec EMPTY │ │ (LINK)│ │ table │
 │ CALL ERRAPI err─rec;│────7│ assign value │ ├───┬───┬───┤
 └─────────────────────┘ ┌─7│ write TD queue│ │ │ │ │
┌─────────────────────┐ │ └──────)────────┘ │ │ │ │
 │ CICS pgm: │ │) └───┴───┴───┘
 │ │ │) ^
 │ SET err─rec EMPTY │ │ ─────┐) ┌────── ┌───────^───────┐
 │ EXEC CICS LINK │──┘ │ │ │KBHELRP: │
└─────────────────────┘ │ │ Trigger │Read Queue │

│ │ ──────────7│┌─────────────┐│
 └────┘ ││KBHELXM: ││
 KBHL ││Format and ││
 ││insert msg ││
 Error Log │└─────────────┘│
 TD Queue └───────────────┘

 Linkage Editor parameters:
 No special requirements except linking to a CICS program

Structure in CICS (PL/I)
 ┌─────────────────────┐
 │ CICS load module │
 │ │
 │┌───────────────┐ │
 ││ PL/I main │ │
 ││ │ │
 ││ Call abc │ │
 ││ Call xxx(a,b,)│ │ ┌───────────────┐
 ││ incl KBHERROR │ │ │ KBHELGP │ ┌───────────┐
 │└───────────────┘ │ │ CICS Error API│ │ Error Log │
 │ ┌───────────────┐ │ ┌─7│ (LINK)│ │ table │
 │ │ PL/I submodule│ │ │ │ assign value │ ├───┬───┬───┤
│ │ abc: │ │ │ │ write TD queue│ │ │ │ │
│ │ │ │ │ └──────)────────┘ │ │ │ │

 │ │ Call xxx(a,b,)│ │ │) └───┴───┴───┘
 │ │ incl KBHERROR │ │ │) ^
│ └───────────────┘ │ │ ─────┐) ┌────── ┌───────^───────┐
 │ ┌───────────────┐ │ │ │ │ │KBHELRP: │
│ │ KBHERCM: │ │ │ │ │ Trigger │Read Queue │
 │ │ CICS Error API│ │ │ │ │ ──────────7│┌─────────────┐│
 │ │ xxx: (call)│ │ │ └────┘ ││KBHELXM: ││
 │ │ │ │ │ KBHL ││Format and ││
 │ │ EXEC CICS LINK│────┘ ││insert msg ││
 │ └───────────────┘ │ Error Log │└─────────────┘│
 └─────────────────────┘ TD Queue └───────────────┘

 Linkage Editor parameters:
 INCLUDE SYSNCAL(yourpgm) Main module in NCAL
 INCLUDE SYSNCAL(KBHERCM) Error log module for CICS

 Chapter 16. Generic BTB programming APIs 207

Structure in IMS (PL/I)
 ┌───┐
 │ IMS load module │
 │ │
 │┌─────────────────────────────────────┐ │
 ││ PL/I main │ │
 ││ yyy: PROCEDURE │ │
 ││ (IOPCBPTR, │ │
 ││ ..., │ │
 ││ TRXPTR) │ │
 ││ │ │
 ││ DCL TRXPTR POINTER; │ │
 ││ DCL ERR─PTR POINTER STATIC EXT;│ │
 ││ DCL ERR─IO POINTER STATIC EXT;│ │
 ││ DCL ERR─SYSINFO CHAR(8) STATIC EXT;│ │
 ││ │ │
 ││ ERR─PTR ═ TRXPTR; │ │
 ││ ERR─IO ═ IOPCBPTR; │ │
 ││ ERR─SYSINFO ═ 'SYSINFO '; │ │
 ││ │ │
 ││ Call abc │ │
 ││ Call xxx(a,b,) │ │ ┌───────────┐
 ││ incl KBHERROR │ │ │ Error Log │
 │└─────────────────────────────────────┘ │ │ table │
 │ ┌───────────────┐ │ ├───┬───┬───┤
 │ │ PL/I submodule│ ┌────────────────┘ │ │ │ │
│ │ abc: │ │ │ │ │ │
 │ │ │ │ └───┴───┴───┘
 │ │ Call xxx(a,b,)│ │ ^
 │ │ incl KBHERROR │ │ ^
 │ └───────────────┘ │ ┌────────────────────────────^────────┐
 │ ┌───────────────┐ │ │ KBHELIP ^ │
 │ │ KBHERIM: │ │ │ IMS load module ^ │
 │ │ IMS Error API │ │ │ ^ │
 │ │ │ │ │ ┌─────────────┐│
│ │ xxx: (call)│ │ │ │KBHELXM: ││
 │ │ │ │ │ get passed data │Format and ││
 │ │ insert IMS trx│─────────7│ call format module │insert msg ││
 │ └───────────────┘ │ │ └─────────────┘│
 └────────────────────────┘ └─────────────────────────────────────┘

 Linkage Editor parameters:
 INCLUDE SYSNCAL(yourpgm) Main module in NCAL
 INCLUDE SYSNCAL(KBHERIM) Error log module for IMS

 PSB definition for IMS transaction:
 PCB ...
 PCB TYPE=TP,NAME=KBHELI0,EXPRESS=YES Transaction for error program

The external variables are declared and initialised in the main program. The
external pointer ERR_PTR which is set to the address of the alternate PCB is
mandatory, as this is used to make the insert to the IMS queue of the message
which triggers the real Error API. The external pointer ERR_IO, which is set to the
address of the IO PCB, and the field ERR_SYSINFO belong together, use of one
demands the other. These fields are used to extract more information from IMS
about the system ID, Lterm, transaction, and so on, where the error occurred.
Without these fields the corresponding fields in the ERRLOG are set to blank. In
the interests of backward compatibility these variables are not mandatory but it is
recommended you use them.

It is important to initialise the external variables at the earliest opportunity in the
application program.

The IMS Error transaction is a clone of the CICS Error transaction, and it calls the
same internal code to insert the message on the System Errorlog DB2 table. If the

208 BTB Application Programming Guide

IMS and CICS are running against the same DB2 system then the call will be local.
If the IMS and CICS are running on two different DB2 systems, the DB2 release
must be release level DB2 3.1 or higher. To perform remote updates, the VTAM
application definition for the DB2 systems must be:

luname APPL APPC=YES,

 ATTNLOSS=ALL,
 ...
 SYNCLVL=SYNCPT,
 ...

Structure in TSO - batch (PL/I)
 ┌─────────────────────┐
 │ TSO load module │
 │ │
 │┌───────────────┐ │
 ││ PL/I main │ │
 ││ │ │
 ││ Call abc │ │
 ││ Call xxx(a,b,)│ │
 ││ incl KBHERROR │ │
 │└───────────────┘ │
 │ ┌───────────────┐ │
 │ │ PL/I submodule│ │
 │ │ abc: │ │
 │ │ │ │
 │ │ Call xxx(a,b,)│ │
 │ │ incl KBHERROR │ │
 │ └───────────────┘ │
 │ ┌───────────────┐ │
 │ │ KBHERTM: │ │
 │ │ TSO Error API │ │
 │ │ xxx: (call)│ │
 │ │ │ │ ┌───────────┐
 │ │ call format │ │ │ Error Log │
 │ │ module │ │ │ Error Log │
 │ │┌─────────────┐│ │ │ table │
 │ ││KBHELXM: ││ │ ├───┬───┬───┤ ┌───────────┐
│ ││Format and ││ │ │ │ │ │ │ SYSPRINT │
│ ││insert msg │777777777777777777│ │ │ │77│ ────┘
 │ │└─────────────┘│ │ └───┴───┴───┘ │ .
 │ └───────────────┘ │ └─────.
 └─────────────────────┘

 Linkage Editor parameters:
 INCLUDE SYSNCAL(yourpgm) Main module in NCAL
 INCLUDE SYSNCAL(KBHERTM) Error log module for TSO/BATCH with DB2

For applications that only need the errors written to SYSPRINT
with no insertion on the DB2 error log another version exists:

 INCLUDE SYSNCAL(yourpgm) Main module in NCAL
 INCLUDE SYSNCAL(KBHERBM) Error log module for TSO/BATCH without DB2

Additional features of System Errorlog
Here ar some more features of System Errorlog:

Backward compatibility with old KAAAERR
The old CSP error handler for DB2 errors application KAAAERR has
been changed internally to call the new API. As a result, the DBRM
KAAAERR must be removed from any application plans.

 Chapter 16. Generic BTB programming APIs 209

Backward compatibility with old KBHDB2E
The old PL/I error handler for DB2 errors include member KBHDB2E
has been changed internally to call the new API. As a result, the
environment specific version of the API must be included using a linkage
editor card.

Messages from CSP/RS
CSP/RS puts messages in TD queue ELAD. The System Errorlog has a
CICS transaction, that is run by the BTB timer at certain intervals. This
transaction will catch these message records and format them into
System Errorlog entries. This will assist the error determination, if
CSP/RS is involved in an error situation.

Alert scanner
If the call to the System Errorlog API indicated ALERT=Y, then a CICS
transaction (run timer driven) will pick up the record later and format the
message into a note, and send it to the BTB support person/group
(using ISERROR definitions in WC table).

System Errorlog Browse application
An application has been made for the purpose of browsing through the System
Errorlog table. The application first displays a selection screen with the possibility of
generic search on all of the displayed columns. The selection screen displays all
errors matching the search criteria. By selecting a specific error (with a line
command) all available information would be displayed in a detail panel.

The application can be called from a command line (fastpath ERRLOG) giving
arguments to the search. If no arguments are given, today's date is used as default
search criteria.

� �
 KBHDBMCL System Errorlog IMB

 Type one or more action codes, then press Enter.
 Action codes: S=Select

________ 2000-03-02_________ ________ ________ __________________________
 A System Log Date Time user ID Program First line of Error msg.
 _ IMM 2000-03-02-08.49.17 DK0GUR KBDUAAP DSNT408I SQLCODE = -805, E
 _ IMM 2000-03-02-09.47.58 ISBNY KBAMXAP ELA00105I Error occurred a
 _ IMM 2000-03-02-09.48.01 ISBNY KBAMAAP ELA00105I Error occurred a
S IMM 2000-03-02-12.47.49 CC206M1 KBADTTM DSNT408I SQLCODE = -904, E

 Command ===>
F1=Help F3=Exit F5=Refresh F6=Bottom F12=Cancel

� �

Figure 55. Searching in System Errorlog Browse application. You are able to search for a
specific Error log registration by typing a search argument, or select more information for an
individual row.

210 BTB Application Programming Guide

Selecting a row on the list will display a panel with more information.

� �
 KBHDCM1S Details of System Errorlog IMB

 Error Time . . . : 2000-03-02-12.47.49.720000
 RACF user ID. . . : CC206M1 System Id. . . . : IMM
 Program. : KBADTTM Transaction. . . : KBA9
 Process. : SQL_FETCH_KBDVTR Task no. : 0000105
 Object / Table . : KBDVTR Terminal :
 Called from. . . : 4 Sybsystem. . . . : PLI SQL
 Message. : SQL-904 Severity : A

 Error Message. . :
 DSNT408I SQLCODE = -904, ERROR: UNSUCCESSFUL EXECUTION CAUSED BY AN

UNAVAILABLE RESOURCE. REASON 00C90082, TYPE OF RESOURCE 00000201, AN
RESOURCE NAME KBDD001 .KBDXTR

 DSNT418I SQLSTATE = 57011 SQLSTATE RETURN CODE
 DSNT415I SQLERRP = DSNXRRC SQL PROCEDURE DETECTING ERROR
 DSNT416I SQLERRD = 111 13172746 0 13223106 -974970871 12714050 SQL
 DIAGNOSTIC INFORMATION

 Command ===>
F1=Help F3=Exit F12=Cancel

� �

Figure 56. Detailed information in the System Errorlog Browse application.. By pressing F1
online help is available, and the most common DB2 reason codes can be found.

In the case of DB2 errors you can press F1 to get the help panel shown in
Figure 57.

 Help panel

� �
KBHDCM1S Details of System Errorlog - Help

From the panel it is possible to see all the detail fields from a
System Errorlog entry.

 Selection mode
All fields are protected.
Press F12 to return to list

 Related information
 _ (Common DB2 Resource Types - Help)
 _ (Common DB2 Reason Codes - Help)

 Function keys
The normal Function keys for a detail panel are valid.

F1=Help F3=Exit F12=Cancel
� �

Figure 57. Details of System Errorlog - Help panel

Place the cursor next to Common DB2 Resource Types and a list of the most
common DB2 resource types is displayed, as shown in Figure 58 on page 212.

 Chapter 16. Generic BTB programming APIs 211

Common DB2 Resource Types - Help

� �
KBHDCDB2 Common DB2 Resource Types - Help

The following list is extracted form the DB2 Messages and Codes

The possible codes are:

 +--
| Figure x. Resource Types

 +----------------+-------------------------------------+-------------
| TYPE Code | Type of Resource | Name, Conten

 | | | Format
 +----------------+-------------------------------------+-------------
 | 00000100 | Database | DB
 +----------------+-------------------------------------+-------------

| 00000200 | Table space | DB.SP
 +----------------+-------------------------------------+-------------

| 00000201 | Index space | DB.SP
 +----------------+-------------------------------------+-------------

| 00000202 | Table space | RD.DB.TS

F1=Help F3=Exit F8=Forward F12=Cancel
� �

Figure 58. Common DB2 Resource Types - Help panel

Place the cursor next to Common DB2 Reason codes and you get a list of the most
common DB2 reason codes, as shown in Figure 59.

Common DB2 Reason Codes - Help

� �
KBHDCDB2 Common DB2 Reason Codes - Help

The following list is extracted from the DB2 Messages and Codes
It is like a 'Hitch-hikers guide to DB2 Reason Codes'

The most common DB2 Reason Codes are: (list is NOT complete...)

 Reason Code Short description
-805: 01 DBRM name not in member or package list
-805: 02 The collection or location in package list is wrong
-805: 03 DBRM found in package list but not this version
-805: 04 Remote DBRM does not exist on remote system

00C200E1 DB2 is unable to open a VSAM dataset (error)
00C200E2 DB2 is unable to open a VSAM dataset (dyn alloc err)
00C200F6 DB2 is unable to open a VSAM dataset (migrated)
00C200F8 DB2 is unable to open a VSAM dataset (I/O error)
00C200FA DB2 is unable to open a VSAM dataset (timeout)

F1=Help F3=Exit F8=Forward F12=Cancel
� �

Figure 59. Common DB2 Reason Codes - Help panel

212 BTB Application Programming Guide

Determining the cause of the problem
The System Errorlog entry on the previous figure was about a DB2 problem. By
using the information available on the panel, it is possible to pinpoint what the exact
reason is. The relevant reference manual is the DB2 Messages and Codes, where
all the necessary information can be found. Extracts of most used codes can also
conveniently be found in the online help for the Details of System Errorlog panel,
where some common DB2 Resource Types and DB2 Reason Codes are listed.

In this case the problem was a SQLCODE = -904, which means that a necessary
element in DB2 was not available when (in this case) a process in CICS needed it.

Further the REASON 00C90082 can explain more: An attempt was made to allocate a
resource that is already allocated to a DB2 utility function.

Finally the TYPE OF RESOURCE 00000201 can tell that the resource is an Index Space
with the RESOURCE NAME KBDD001 .KBDXTR.

So the basic problem is that a DB2 utility job is using the index KBDXTR
exclusively. This index belongs to the MailRoom Transport table KBDTTR which is
used by the MailRoom to store documents in. DB2 table maintenance (using DB2
utility jobs) should be performed while the CICS is down to prevent cases like this.

Codepage translation services
Codepage translation is often necessary when sending data from one platform to
another. If character data is transmitted from MVS to a PC, codepage translation
must be performed from EBCDIC1 to ASCII2 before the data is readable on the PC.
Both EBCDIC and ASCII exist in a number of variants, or codepages, that are
denominated Coded Character Set Identifier (CCSID).

This chapter introduces codepages and discusses common problems when
exchanging data in relation to BTB.

EBCDIC: IBM MVS and AS/400 systems use EBCDIC, and codepages are
available for several countries. Some samples are:

037 USA, Canada, Netherlands, Portugal, Brazil, Australia, New Zealand

277 Denmark and Norway

285 United Kingdom

500 International, Belgium, Canada, Switzerland

EBCDIC codepages represent the letters a—z and A—Z and numbers 0–9 using
the same hexadecimal values, but some other characters have different
hexadecimal values across codepages.

ASCII: Unix, AIX, PC systems, and the Internet use ASCII. The common ASCII
codepages are:

1 EBCDIC is an abbreviation of IBM Extended Binary Coded Decimal Interchange Code.

2 ACSII is an abbreviation of American National Standard Code for Information Interchange.

 Chapter 16. Generic BTB programming APIs 213

437 PC Data, USA and many other countries

819 ISO-8859-1

850 PC Data, Europe, Latin countries

The hexadecimal values used for the letters a—z and A—Z and numbers 0–9 are
the same in ASCII codepages, but the actual values are not the same as for
EBCDIC. Other characters have different hexadecimal values across codepages.

 Translation tables
There are many codepages and many combinations of codepage conversions.
When performing a conversion from EBCDIC to ASCII it is necessary to have a
distinct translation table for each combination and associated conversion logic.

BTB supplies codepage translation tables that are used in different parts of the
system, see “Summary of codepage usage” on page 216. The translation tables
are listed in Table 14.

Table 14 (Page 1 of 2). SBCS codepage translation tables. BTB supports these single-byte character sets
codepage conversions.

Translation
table

From codepage To codepage

EBCDIC to ASCII translation:

CP037437 USA, Canada, Netherlands, Portugal, Brazil,
Australia, New Zealand

PC Data, USA and many other countries

CP037819 USA, Canada, Netherlands, Portugal, Brazil,
Australia, New Zealand

ISO-8859-1

CP037850 USA, Canada, Netherlands, Portugal, Brazil,
Australia, New Zealand

PC Data, Europe, Latin countries

CP273819 Germany and Austria ISO-8859-1

CP277819 Denmark and Norway ISO-8859-1

CP277850 Denmark and Norway PC Data, Europe, Latin countries

CP278819 Sweden and Finland ISO-8859-1

CP280819 Italy ISO-8859-1

CP284819 Spain ISO-8859-1

CP285819 United Kingdom ISO-8859-1

CP297819 France ISO-8859-1

CP297850 France PC Data, Europe, Latin countries

CP500819 International, Belgium, Canada, Switzerland ISO-8859-1

CP500850 International, Belgium, Canada, Switzerland PC Data, Europe, Latin countries

ASCII to EBCDIC translation:

CP437037 PC Data, USA and many other countries USA, Canada, Netherlands, Portugal, Brazil,
Australia, New Zealand

CP819037 ISO-8859-1 USA, Canada, Netherlands, Portugal, Brazil,
Australia, New Zealand

CP819273 ISO-8859-1 Germany and Austria

CP819277 ISO-8859-1 Denmark and Norway

CP819278 ISO-8859-1 Sweden and Finland

CP819280 ISO-8859-1 Italy

CP819284 ISO-8859-1 Spain

214 BTB Application Programming Guide

Table 14 (Page 2 of 2). SBCS codepage translation tables. BTB supports these single-byte character sets
codepage conversions.

Translation
table

From codepage To codepage

CP819285 ISO-8859-1 United Kingdom

CP819297 ISO-8859-1 France

CP819500 ISO-8859-1 International, Belgium, Canada, Switzerland

CP850037 PC Data, Europe, Latin countries USA, Canada, Netherlands, Portugal, Brazil,
Australia, New Zealand

CP850277 PC Data, Europe, Latin countries Denmark and Norway

CP850297 PC Data, Europe, Latin countries France

CP850500 PC Data, Europe, Latin countries International, Belgium, Canada, Switzerland

EBCDIC to EBCDIC translation:

CP037280 USA, Canada, Netherlands, Portugal, Brazil,
Australia, New Zealand

Italy

CP037297 USA, Canada, Netherlands, Portugal, Brazil,
Australia, New Zealand

France

CP037500 USA, Canada, Netherlands, Portugal, Brazil,
Australia, New Zealand

International, Belgium, Canada, Switzerland

CP277500 Denmark and Norway International, Belgium, Canada, Switzerland

CP280037 Italy USA, Canada, Netherlands, Portugal, Brazil,
Australia, New Zealand

CP280500 Italy International, Belgium, Canada, Switzerland

CP297037 France USA, Canada, Netherlands, Portugal, Brazil,
Australia, New Zealand

CP297500 France International, Belgium, Canada, Switzerland

CP500037 International, Belgium, Canada, Switzerland USA, Canada, Netherlands, Portugal, Brazil,
Australia, New Zealand

CP500277 International, Belgium, Canada, Switzerland Denmark and Norway

CP500280 International, Belgium, Canada, Switzerland Italy

CP500297 International, Belgium, Canada, Switzerland France

CP500500 Null conversion Null conversion

Any EBCDIC to ASCII codepage translation table will convert the letters a—z and
A—Z and numbers 0–9 from EBCDIC to ASCII correctly, but many other characters
such as national letters and special signs such as @ will be correctly converted
only if the exact codepage translation table matching the requirements of the
sender and receiver is used.

Codepage translation tables used in BTB have been created using translation
tables from the IBM Character Data Representation Architecture (CDRA) Registry.
The CDRA roundtrip conversion tables have been used.

Single-byte and double-byte
In European and American countries it is common to represent a character in a
single byte, because there are less then 256 different characters. This is called a
single-byte character set (SBCS). However, this is not possible in many Asian
countries because the large number of characters will not fit into a single byte. It is
therefore necessary to use two bytes to represent one character. This is called a
double-byte character set (DBCS).

 Chapter 16. Generic BTB programming APIs 215

It is relatively simple to perform SBCS conversions, where one character in
EBCDIC is translated to the related character in ASCII. In DBCS countries it is
common to mix DBCS characters and SBCS characters, called multi-byte character
sets (MBCS). In MBCS there is no common way to determine the beginning and
end of a DBCS character string. EBCDIC uses shift-out and shift-in characters.
PC systems use the hexadecimal value of a byte to determine if it is SBCS or
DBCS. In Internet transmissions it is common to use a three— or four—byte
escape character sequence when moving from SBCS to DBCS and back.

The result of a normal SBCS codepage translation is a string that has the same
length as the input string. In MBSC this is not the case, because the switch from
SBCS to DBCS changes the length of the output string. It is therefore difficult to
perform DBCS and MBCS codepage conversion on structured data, because the
structure is destroyed due to the length change.

Support of DBCS and MBCS is limited to a few places in BTB, see “Summary of
codepage usage.” The available MBCS translation tables are listed in Table 15.

Table 15. MBCS codepage translation tables. BTB supports these multi-byte character sets codepage
conversions.

Translation
table

From codepage To codepage

Host to Internet translation:

CP930ISO Japanese Katakana-Kanji Host Mixed ISO-2022-JP

CP939ISO Japanese Latin-Kanji Host Mixed ISO-2022-JP

Note: The conversion to ISO-2022-JP for Japanese e-mail is based on translation tables from CCSID 930/939 to 5054. A
subset of the available SBCS and DBCS charachers are defined in ISO-2022-JP, and it is therefore not recommended to use
characters from JIS X201 Katakana set and JIS X212 set because the receiver e-mail client might not display the characters
correctly.

Summary of codepage usage
Codepage conversion is available in a number of places in BTB. All of them
support SBCS conversions and a few places have limited support for MBCS
conversions.

Mail and Fax API
See “Mail and Fax API—KBHFTXP” on page 222. SBCS codepage
conversion from EBCDIC to ASCII and EBCDIC to EBCDIC is possible when
sending files and messages.

Internet e-mail API
See “Internet e-mail API—KBHSMTP” on page 232. SBCS codepage
conversion from EBCDIC to ASCII is needed for the mail header part. Both
SBCS and MBCS is possible for the mail items being sent. The length
change is of no importance to e-mails being sent.

MailRoom MQSeries source and destination scenario
See “Using MQSeries MQPUT to send documents to MailRoom” on
page 104 and “Using MQSeries MQGET to receive documents from
MailRoom” on page 106. Codepage conversions are performed in
MQSeries. BTB can calculate the correct length for the transmission length
fields, which can be incorrect in the MQSeries codepage conversion due to
the length change for MBCS conversions.

216 BTB Application Programming Guide

MailRoom APPC source scenario
See “APPC MailRoom write/send program—F2A” on page 136. SBCS
codepage conversion from ASCII to EBCDIC is performed when receiving
the data.

MailRoom APPC destination scenario
See “APPC MailRoom read/receive program—A2F” on page 137. SBCS
codepage conversion from EBCDIC to ASCII is performed before sending
the data.

MailRoom TCP/IP source scenario
See “TCP/IP MailRoom write/send program—F2T” on page 128 and “OS/2
MailRoom write/send program—FILE2TCP” on page 132. SBCS codepage
conversion from ASCII to EBCDIC is performed when receiving the data.

MailRoom TCP/IP destination scenario
See “TCP/IP MailRoom read/receive program—T2F” on page 129 and “OS/2
MailRoom read/receive program—TCP2FILE” on page 133. SBCS
codepage conversion from EBCDIC to ASCII is performed before sending
the data.

MailRoom Expedite/CICS destination scenario
See also System Administration Guide. SBCS codepage conversion from
EBCDIC to ASCII is possible before sending the data.

MailRoom codepage conversion exit
See “Codepage conversion exit KBAGXCP” on page 60. SBCS codepage
conversion from EBCDIC to EBCDIC is possible in this MailRoom supplied
kernel and destination exit.

 Chapter 16. Generic BTB programming APIs 217

Validating and calculating dates—KBHDATE
The date API is used to:

ADD Add a number of days to a date.

CHECK Check if a date is valid.

DIFF Calculate the difference between 2 dates

FIRST Find first month or day.

LAST Find last month or day.

 Format
KBHDATE is a CICS Main program, with the following LINK syntax:

LINK Syntax (PL/I):

77── EXEC CICS LINK PROGRAM('KBHDA2P')
 COMMAREA(COMMAREA)
 NOHANDLE; ──────────────────────────────────7"

DCL 1 COMMAREA,
 2 KBHDATE─PTR POINTER;

 Parameters
Parameters as declared in PL/1:

 /* */
 /* +--+ */
 /* | IMB INFRASTRUCTURE | */
 /* | =============================== | */
 /* | | */
 /* | STRUCTURE : KBHDATE | */
 /* | | */
 /* | LENGTH : 00500 BYTES | */
 /* | | */
/* | CONTENTS : API TO DATE ROUTINE/MODULE | */
 /* | | */
 /* | RELATIONS : NONE. | */
 /* | | */
 /* +--+ */
 /* */
 /* OFFSET */
 /* --- */

3 SKBH_FNC CHAR(008), /* FUNCTION NAME 000 */
3 SKBH_IN_DATE CHAR(040), /* INPUT DATE 1 008 */
3 SKBH_IN_DATE2 CHAR(040), /* INPUT DATE 2 048 */
3 SKBH_IN_FORMAT CHAR(040), /* FORMAT OF INPUT DATE 088 */
3 SKBH_OUT_DATE CHAR(040), /* OUTPUT DATE 128 */
3 SKBH_OUT_FORMAT CHAR(040), /* FORMAT OF OUTPUT DATE 168 */
3 SKBH_PERIOD FIXED BIN(15), /* DISPLACEMENT OF IN_DATE 208 */
3 SKBH_PERIOD_TYPE CHAR(001), /* UNIT OF DISPLACEMENT 210 */
3 SKBH_MSGID CHAR(010), /* MESSAGE NUMBER 211 */

 3 RESERV_1 CHAR(279) /* RESERVED 221 */
 /* */
 /* TOTAL LENGTH 00500 */
/* == END OF STRUCTURE KBHDATE == */

218 BTB Application Programming Guide

 /* -- */

Here is a description of the fields:

SKBH_FNC
API function, which can contain ADD, CHECK, DIFF, FIRST or LAST.

SKBH_IN_DATE
The input date to be checked or used as base for a calculation.

SKBH_IN_DATE2
Used for second input date in DIFF function.

SKBH_IN_FORMAT
The format of the IN_DATE. The following formats are supported:

TIMESTAMP DB2 timestamp format:
YYYY-MM-DD-HH.MM.SS.mmmmmm

DATE DB2 ISO format: YYYY-MM-DD

EUR DD.MM.YYYY format

USA MM.DD.YYYY format

SKBH_OUT_DATE
The returned date. If the input date is to be checked, no date is returned in
this field.

SKBH_OUT_FORMAT
The format of the OUT_DATE. The same formats as for IN_DATE are
supported.

SKBH_PERIOD
ADD function: A number (of days) to add to or subtract from the IN_DATE.

DIFF function: Result of the calculation, days between IN_DATE and
IN_DATE2

SKBH_PERIOD_TYPE
The measurement of PERIOD. The following kinds are supported:

D: Days

SKBH_MSGID
MailRoom message Id. If the message id is blank, then call was
successful.

RESERV_1
Future use. Must be initialised to blanks by calling application.

 Chapter 16. Generic BTB programming APIs 219

 Examples
Here is an example of calling the API from CSP:

;
;/* Call PL1 program KBHDA2P to ADD 8 days to IN_DATE
;
SET KBHDATE EMPTY;
KBHDATE.SKBH_FNC = 'ADD';
KBHDATE.SKBH_IN_DATE = '1997-12-24';
KBHDATE.SKBH_IN_FORMAT = 'DATE';
KBHDATE.SKBH_OUT_FORMAT = 'DATE';
KBHDATE.SKBH_PERIOD = 8;
KBHDATE.SKBH_PERIOD_TYPE = 'D';
;
CALL KBHDA2P KBHDATE (NOMAPS,NONCSP;
;
IF KBHDATE.SKBH_MSGID = ' ';
 ;/* OK
 ;/*
;/* The date '1998-01-01' is in KBHDATE.SKBH_OUT_DATE

 ;/*
ELSE;
 ;/* Error
;/* More info in KBHDATE.SKBH_MSGID

END;
;

;
;/* Call PL1 program KBHDA2P to validate a date in IN_DATE
;
SET KBHDATE EMPTY;
KBHDATE.SKBH_FNC = 'CHECK';
KBHDATE.SKBH_IN_DATE = '1997-12-24';
KBHDATE.SKBH_IN_FORMAT = 'DATE';
;
CALL KBHDA2P KBHDATE (NOMAPS,NONCSP;
;
IF KBHDATE.SKBH_MSGID = ' ';
;/* Date OK

 ;/*
ELSE;
 ;/* Error
;/* More info in KBHDATE.SKBH_MSGID

END;
;

220 BTB Application Programming Guide

;
;/* Call PL1 program KBHDA2P to find first month and day in IN_DATE
;
SET KBHDATE EMPTY;
KBHDATE.SKBH_FNC = 'FIRST';
KBHDATE.SKBH_IN_DATE = '1998 ';
KBHDATE.SKBH_IN_FORMAT = 'DATE';
KBHDATE.SKBH_OUT_FORMAT = 'DATE';
;
CALL KBHDA2P KBHDATE (NOMAPS,NONCSP;
;
IF KBHDATE.SKBH_MSGID = ' ';
;/* Date OK

 ;/*
;/* The date '1998-01-01' is in KBHDATE.SKBH_OUT_DATE

 ;/*
ELSE;
 ;/* Error
;/* More info in KBHDATE.SKBH_MSGID

END;
;

;
;/* Call PL1 program KBHDA2P to find last day in IN_DATE
;
SET KBHDATE EMPTY;
KBHDATE.SKBH_FNC = 'LAST';
KBHDATE.SKBH_IN_DATE = '1998-02 ';
KBHDATE.SKBH_IN_FORMAT = 'DATE';
KBHDATE.SKBH_OUT_FORMAT = 'DATE';
;
CALL KBHDA2P KBHDATE (NOMAPS,NONCSP;
;
IF KBHDATE.SKBH_MSGID = ' ';
;/* Date OK

 ;/*
;/* The date '1998-02-28' is in KBHDATE.SKBH_OUT_DATE

 ;/*
ELSE;
 ;/* Error
;/* More info in KBHDATE.SKBH_MSGID

END;
;

 Processing
The module KBHDA2P will call sub-module KBHDATM which will do the date
processing.

KBHDATM can also be used directly from PL/I programs outside the CICS
environment, however this method is unsupported, since BTB modules should not
be linked into user programs.

 Chapter 16. Generic BTB programming APIs 221

Mail and Fax API—KBHFTXP
The Mail and Fax API is used to send messages and files to users on different
kinds of systems.

Examples are:

� Sending a file to a user on MVS
� Sending a note to a VM user
� Sending e-mail to an Internet user
� Appending to a TOOLS forum
� Sending a fax

The API is very configurable, and various protocol modules are used internally to
provide the desired routing to the receiver, see Figure 60. You can also extend the
API with private routing modules.

The API can either send the passed data as a file or as a note.

)))))
┌───┐
│ M A I L and F A X A P I (KBHFTXP) - Public │
└───┘

)))))))
┌─────────┐┌─────────┐┌─────────┐┌─────────┐┌─────────┐┌─ ── ── ─┐┌─────────┐ . .
│Protocol ││Protocol ││Protocol ││Protocol ││Protocol │ Protocol │Protocol │
│ module ││ module ││ module ││ module ││ module ││ module ││ module │ . .
│ ││ ││ ││ ││ │ │ │ . Routing .
│ VM ││ VM ││ TOOLS ││Internet ││ FAX ││ private ││Internet │ . parms .
│ direct ││ Mailman ││ Mailman ││ IBMMAIL ││ IBMMAIL │ ext │ SMTP │ . .
└─────────┘└─────────┘└─────────┘└─────────┘└─────────┘└─ ── ── ─┘└─────────┘

))))))))))))
┌───┐ ┌──┐
│ I M B C I C S J E S interface │ │ Internet e-mail API (KBHSMTP) - Public │
└───┘ └──┘
 │ │

.....) ┌───────┐) ┌──────┐
.....│Mailman││ SMTP │
. └───────┘ │Server│
 └──────┘
 . SNA Network . ┌───────┐ . Lotus Notes ."────. TCP/IP Intranet .
 . .───────────7│ Notes │───7. . . .
... │Gateway│

 │ └───────┘ │
))
 ┌────────┐ ┌────────┐
 │MailExch│───────────────────────────┐ ┌───────────────│Firewall│
 └────────┘ │ │ └────────┘
 │) │

))
┌────────┐

 │ FAX │ . Internet .
 └──.. │ . .

..──┘

Figure 60. Mail and Fax API, protocol modules and routing options.

 Format
KBHFTXP is a CICS Main program, with this LINK syntax:

LINK Syntax (PL/1):

77── EXEC CICS LINK PROGRAM('KBHFTXP')
 COMMAREA(KBHFTW)
 LENGTH(CSTG(KBHFTW))
 NOHANDLE; ──────────────────────────────────7"

The API also accepts an alternative call method with only a pointer in the
communication area. The pointer must then contain the address of the KBHFTW
structure. This is convenient when using the API from CSP.

222 BTB Application Programming Guide

 Parameters
Passed structure for the Mail and Fax API. It can be found in
KBH.R450.PLINCL(KBHFTW)

 /* +---+ */
 /* | -------- INTELLIGENT MESSAGE BROKER (IMB) --------- | */
 /* | (C) COPYRIGHT IBM DENMARK. 1999. ALL RIGHTS RESERVED. | */
 /* | (C) COPYRIGHT IBM CORP. 1999. ALL RIGHTS RESERVED. | */
 /* | | */
 /* | | */
 /* +---+ */

 /* +--+ */
 /* | IMB FILE TRANSFER / EMAIL | */
 /* | =============================== | */
 /* | | */
 /* | STRUCTURE : KBHFTW | */
 /* | | */
 /* | LENGTH : 00900 BYTES | */
 /* | | */
/* | CONTENTS : CICS API TO SEND MAIL | */
 /* | | */
 /* | RELATIONS : NONE. | */
 /* | | */
 /* +--+ */
 /* */
 /* OFFSET */
 /* --- */

3 SKBH_FNC CHAR(008), /* FUNCTION NAME 000 */
3 SKBH_MSGID CHAR(010), /* MESSAGE NUMBER 008 */
3 IOPUCTY CHAR(003), /* COUNTRY CODE 018 */
3 SKBH_LTSQ CHAR(008), /* LTSQ WITH LARGE DATA 021 */
3 SKBH_TSQUEUE CHAR(008), /* SINGLE TS QUEUE WITH DATA 029 */
3 USERID CHAR(008), /* USERID OF SENDER 037 */
3 SKBH_REFERENCE CHAR(016), /* OPT: REFERENCE 045 */
3 SKBH_CODEPAGE CHAR(008), /* OPT: CODEPAGE CONV. TABLE 061 */
3 KBHFTW_RES1 CHAR(031), /* RESERVED 069 */
3 SKBH_MAILBLOCK, /* MAIL ADRESSING BLOCK 100 */
4 SKBH_MAILTYPE CHAR(002), /* TYPE OF ADDRESS 100 */
4 KBHFTW_RES2 CHAR(008), /* RESERVED 102 */
4 SKBH_MAILADR, /* LONG ADDRESS 110 */
5 SKBH_MAILADR1 CHAR(016), /* ADDRESS PART 1 110 */
5 SKBH_MAILADR2 CHAR(016), /* ADDRESS PART 2 126 */
5 SKBH_MAILADR3 CHAR(016), /* ADDRESS PART 3 142 */
5 SKBH_MAILADR4 CHAR(016), /* ADDRESS PART 4 158 */
5 SKBH_MAILADR5 CHAR(016), /* ADDRESS PART 5 174 */
4 KBHFTW_RES3 CHAR(410), /* RESERVED 190 */
3 SKBH_SUBJECT CHAR(080), /* OPT: USE THIS SUBJECT 600 */
3 SKBH_SENDER CHAR(080), /* OPT: SENDER OF THIS MAIL 680 */
3 SKBH_FILEID, /* FILENAME OF FILE TO SEND 760 */
4 SKBH_FILENAME CHAR(008), /* EITHER TRADITIONAL 2 PART 760 */
4 SKBH_FILETYPE CHAR(008), /* FILENAME.FILETYPE 768 */
4 KBHFTW_RES4 CHAR(024), /* OR DOTTED NOTATION 776 */

 3 KBHFTW_RES5 CHAR(100) /* RESERVED 800 */
 /* */
 /* TOTAL LENGTH 00900 */
/* == END OF STRUCTURE KBHFTW == */
 /* -- */

 Chapter 16. Generic BTB programming APIs 223

SKBH_FNC
The function code to the API. Possible values:

NOTE Send the passed data as a note.

FILE Send the passed data as a file.

SKBH_MSGID
Message id pointing to error message. If the message id is blank, then the
call was successful.

IOPUCTY
Country code of calling project. This value are used when determining the
routing and looking up default values.

SKBH_LTSQ
Name of the LTSQ containing multiple TS Queues to be sent (support for
files). The passed LTSQ is a normal TS Queue where each record is the
name of another TS Queue. Multiple TS Queues can be concatenated and
sent this way.

Either SKBH_LTSQ or SKBH_TSQUEUE should be used, but not both.

It is the responsibility of the calling program to delete its own TS Queues
after the API has been used.

SKBH_TSQUEUE
Name of the TS Queue containing data to be sent.

Either SKBH_TSQUEUE or SKBH_LTSQ should be used, but not both.

It is the responsibility of the calling program to delete its own TS Queues
after the API has been used.

USERID
The User ID of the person or system sending a note or a file. In some
cases this value is used as the sender identification.

SKBH_REFERENCE
Optional reference key to be used in some mail scenarios (Fax, Mailman,
Internet e-mail via SMTP).

SKBH_CODEPAGE
Codepage translation table to be used before sending mail. The usage is
dependent on the used mail scenario. Transmission via JES will normally not
need conversion, but an EBCDIC to EBCDIC conversion is possible, while
Internet e-mail via SMTP needs full EBCDIC to ASCII conversion. Leave
blank for scenario dependent default value. See also “Codepage translation
services” on page 213.

KBHFTW_RES1
Future use. Must be initiated to blanks by calling program.

SKBH_MAILBLOCK
Structure divided in different fields. Use the following fields for normal mail
and simple fax and the KBHFTXW structure for fax via IBM Mail Exchange
with full address on cover page.

SKBH_MAILTYPE
The mail type identifies the type of address being used. The meaning of the
SKBH_MAILADR1–5 and SKBH_MAILADR is dependent on the mail type.
Valid types are:

224 BTB Application Programming Guide

HO Host address

 VM VM/Host address

ME IBMMAIL IEA on IBM Mail Exchange

IN Internet e-mail address

TL Tools Append

FX Telefax number

LI Distribution list

KBHFTW_RES2
Future use. Must be initiated to blanks by calling program.

SKBH_MAILADR
Normally a structure containing SKBH_MAILADR1–5, but for mail type IN
(Internet e-mail) SKBH_MAILADR should be considered one input field
containing the e-mail address. See also “Passing different addresses” on
page 226.

SKBH_MAILADR1–5
Five fields used to pass different parts of an address to the API. See
“Passing different addresses” on page 226 for usage.

KBHFTW_RES3
Future use. Must be initiated to blanks by calling program.

SKBH_SUBJECT
Free text to appear in the subject of the mail. Primarily intended for notes,
but also used for files sent to Internet via SMTP.

SKBH_SENDER
Optional address of sender. If not specified here, the API will lookup a
default sender based on the country code. The format of the field is: name
name name User ID at Node ID
It is important that either at, At or AT is used between the User ID the Node
ID.

SKBH_FILEID
Pass a full filename when sending a file. Use SKBH_FILEID as one long
field if the file should be named PROJECT.TEST.DATA

SKBH_FILENAME
Or pass the filename TEST in SKBH_FILENAME

SKBH_FILETYPE
And pass the filetype DATA in SKBH_FILETYPE

KBHFTW_RES4
And leave this field blank.

KBHFTW_RES5
Future use. Must be initiated to blanks by calling program.

 Chapter 16. Generic BTB programming APIs 225

 Processing
The Mail and Fax API is called with an address and some data to send.
Depending on the used country code IOPUCTY the API will select the proper
routing module and transmit the passed data to the receiver.

The routing can be configurable using entries in the working criteria (WC) table, see
BTB Installation Guide. So, you can send files or notes direct to the receiver or
send it via a mailman. Furthermore e-mail for Internet can be sent via the Internet
e-mail API and a SMTP server, or via a more simple path via IBM Mail Exchange.

Passing different addresses
The API must be called with a mail type and an associated address. The API
supports the mail types and addressing format shown in Table 16.

Table 16. Mail addressing modes. The supported mail types and associated usage of SKBH_MAILADR1–5

Mail
type

Description and usage

SKBH_MAILADR1 SKBH_MAILADR2 SKBH_MAILADR3 SKBH_MAILADR4 SKBH_MAILADR5

HO Host address: user ID at node ID

User ID Node ID (not used) (not used) (not used)

VM VM/Host address: user ID at node ID
VM is usually an alias for HO, but can be routed differently.

User ID Node ID (not used) (not used) (not used)

ME IBMMAIL IEA on IBM Mail Exchange: user ID at IBMMAIL

User ID IBMMAIL (not used) (not used) (not used)

IN Internet e-mail address: j_doe@somedomain.com.
The e-mail address can span SKBH_MAILADR1–5

TL Tools append to FORUM: my_forum FORUM on disk

forum name forum type forum disk (not used) (not used)

FX Telefax: cty_code + fax_number
Use record overlay KBHFTWF to specify information for cover page. See “IBM Mail Exchange Fax record
overlay.”

fax number country code (not used) (not used) (not used)

LI Distribution list DIST-xxxxxxxx

list name
xxxxxxxx

(not used) (not used) (not used) (not used)

IBM Mail Exchange Fax record overlay
When sending a fax through IBM Mail Exchange you can specify additional
information to appear on the fax cover page. This is done by using a record
overlay KBHFTWF and filling in the SKBH_FAXADR structure with information
about the receiver and sender of the fax.

Alternative structure for the Mail and Fax API for sending a fax to IBM Mail
Exchange. It can be found in KBH.R450.PLINCL(KBHFTWF)

226 BTB Application Programming Guide

...
3 SKBH_MAILBLOCK, /* MAIL ADRESSING BLOCK 100 */
4 SKBH_MAILTYPE CHAR(002), /* TYPE OF ADDRESS 100 */
4 KBHFTW_RES2 CHAR(008), /* RESERVED 102 */
4 SKBH_FAXADR, /* FAX ADDRESSING SUB STRUCT 110 */
5 SKBH_FAX_NO CHAR(016),/* FAX TELEPHONE NUMBER 110 */
5 SKBH_FAX_CTY CHAR(016),/* TELEPHONE COUNTRY CODE 126 */
5 SKBH_FAX_TO_NAME CHAR(060),/* ATTENTION PERSON 142 */
5 SKBH_FAX_TO_TP CHAR(060),/* TO COMPANY 202 */
5 SKBH_FAX_TO_TPADR1 CHAR(060),/* TO ADDRESS LINE1 262 */
5 SKBH_FAX_TO_TPADR2 CHAR(060),/* TO ADDRESS LINE2 322 */
5 SKBH_FAX_TO_TPZIP CHAR(015),/* TO ZIP NUMBER 382 */
5 SKBH_FAX_TO_TPCITY CHAR(045),/* TO CITY 397 */
5 SKBH_FAX_FROM_NAME CHAR(060),/* FROM PERSON/SYSTEM 442 */
5 SKBH_FAX_FROM_TP CHAR(060),/* FROM COMPANY 502 */

 4 KBHFTWF_RES3 CHAR(038),/* 562 */
 3 SKBH_SUBJECT
...

SKBH_MAILBLOCK
Structure divided in different fields. Use the following fields only when
sending a fax to IBM Mail Exchange

SKBH_MAILTYPE
The mail type identifies the type of address being used. For sending a fax to
IBM Mail Exchange, it is necessary to use type FX

KBHFTW_RES2
Future use. Must be initiated to blanks by calling program.

SKBH_FAXADR
Address structure for formatting a fax cover page for IBM Mail Exchange

SKBH_FAX_NO
The fax telephone number to send the fax to.

SKBH_FAX_CTY
The international telephone country code

SKBH_FAX_TO_NAME
Name of the person to receive the fax

SKBH_FAX_TO_TP
Company name of receiver

SKBH_FAX_TO_TPADR1
Address line 1 of receiver

SKBH_FAX_TO_TPADR2
Address line 2 of receiver

SKBH_FAX_TO_TPZIP
ZIP number of receiver

SKBH_FAX_TO_TPCITY
City name of receiver

SKBH_FAX_FROM_NAME
Name of person sending the fax

SKBH_FAX_FROM_TP
company name of sender

 Chapter 16. Generic BTB programming APIs 227

KBHFTW_RES3
Future use. Must be initiated to blanks by calling program.

 Examples
Small example of calling the API from PL/1:

KBHFTW = '';

KBHFTW.SKBH_FNC = 'NOTE';
KBHFTW.IOPUCTY = '123'; /* My country code */
KBHFTW.USERID = 'CICSUSER'; /* Userid of the sender */
KBHFTW.SKBH_TSQUEUE = 'ENGLISH'; /* TS Queue with data */
KBHFTW.SKBH_MAILTYPE = 'HO'; /* Address is MVS host */
KBHFTW.SKBH_MAILADR1 = 'MYUSER'; /* userid on host system */
KBHFTW.SKBH_MAILADR2 = 'MYNODE'; /* nodeid of host system */
KBHFTW.SKBH_SUBJECT = 'This is the subject of my note';

/* Finally override the default sender */
KBHFTW.SKBH_SENDER = 'Santa Claus SANTA at GREENL';

/* Call the API */
EXEC CICS LINK PROGRAM('KBHFTXP')
 COMMAREA(KBHFTW)
 LENGTH(CSTG(KBHFTW))
 NOHANDLE;

/* Check return code */
IF EIBRESP = 0 THEN
IF KBHFTW.SKBH_MSGID = '' THEN
PUT SKIP EDIT('e-mail was sent OK') (A);

 ELSE
PUT SKIP EDIT('e-mail was not sent. Message=',

 KBHFTW.SKBH_MSGID) (A,A);
ELSE
PUT SKIP EDIT('Problem during link to API. EIBRESP=',

EIBRESP,' EIBRESP2=',EIBRESP2) (A,F(4),A,F(4));

228 BTB Application Programming Guide

Send File to user panel—KBHSFAP
When an application presents information to a user, it might also need to provide a
facility to send the same information to the user for further processing. This module
provides a method to let the user specify where the data should be sent, as e-mail
or as a file. If the user at a later time in current session enters the application, the
application remember the address type and address.

The module is for CSP applications running under BTB control.

 Format
A CICS version of this module is available.

Call Syntax (CSP)

77─ ──CALL KBHSFAP KBHSFWA,KAAWCOM; ─────────────────────────────────7"

CSP Working storage KBHSFWA:

NAME LEVEL OCCURS TYPE LNG DESCRIPTION
FUNCTION 10 1 CHA 6 function to be performed
WHO 20 1 CHA 3 Who are we: CEN(tral)/LOC(al)
WHAT 20 1 CHA 3 What to do: SND

SKBH_FNC 10 1 CHA 8 Function name
SKBH_FILEID 10 1 CHA 40 File name long version
SKBH_FILENAME 10 1 CHA 8 File name (part 1)
SKBH_FILETYPE 10 1 CHA 8 File type (part 2)
SKBH_MAILTYPE 10 1 CHA 2
SKBH_SUBJECT 10 1 CHA 80 Optional: Subject of mail
SKBH_DELETE_TSQ 10 1 CHA 1 Should TS Queues be deleted
SKBH_LTSQ 10 1 CHA 8 List TS Queue (multiple TSQs)
SKBH_TSQUEUE 10 1 CHA 8 TS Queue name
SKBH_REFERENCE 10 1 CHA 16 Optional reference
SKBH_MAILADR 10 1 CHA 80 Mail address
* 10 1 CHA 135 Reserved

WHO A code to be passed on input to indicate who the caller is. Valid values are:

CEN to indicate that the user is free to type any electronic address

LOC to indicate that the user must select an address from a list of
electronic addresses defined for the Trading Partner.

WHAT
A code to indicate what is to be done by the application. The value should
be SND to indicate send function.

SKBH_FNC
An optional function code to be passed. It can be used to override the Send
mode field on the panel. Valid values are blank, FILE and NOTE. The
default is to send the passed data as a file.

SKBH_FILEID
Together with SKBH_FILENAME and SKBH_FILETYPE this field can be
used to pass a predefined value to appear in the Filename field on the
panel. The user can update this panel field.

The SKBH_FILEID is a full file name in the format MYFILE.TXT.

 Chapter 16. Generic BTB programming APIs 229

Leave SKBH_FILENAME and SKBH_FILETYPE blank if using
SKBH_FILEID.

SKBH_FILENAME
Together with SKBH_FILETYPE and SKBH_FILEID this field can be used to
pass a predefined value to appear in the Filename field on the panel. The
user can update this panel field.

The SKBH_FILENAME is part 1 of a full filename: FILENAME.FILETYPE

Use SKBH_FILETYPE together with SKBH_FILENAME and leave
SKBH_FILEID blank.

SKBH_FILETYPE
Together with SKBH_FILENAME and SKBH_FILEID this field can be used to
pass a predefined value to appear in the Filename field on the panel. The
user can update this panel field.

The SKBH_FILETYPE is part 2 of a full filename: FILENAME.FILETYPE

Use SKBH_FILENAME together with SKBH_FILETYPE and leave
SKBH_FILEID blank.

SKBH_MAILTYPE
Use this field to pass a preselected electronic address type to be used on
the panel. For example, IN for an Internet e-mail address. This will cause
the panel to start with a single long input field instead for the default user ID
and node ID fields for usual host addresses. Leave the field blank for default
type.

SKBH_SUBJECT
Use this field to pass a preselected subject to appear on the panel.

SKBH_DELETE_TSQ
Pass value Y to ask for deletion of passed TS queues after the data has
been sent.

SKBH_LTSQ
Pass the name of a List TS Queue (LTSQ) containing data in one or multiple
TS queues to be sent.

Use either SKBH_LTSQ or SKBH_TSQUEUE to pass data, but not both.

SKBH_TSQUEUE
Pass the name of a single TS Queue containing data to be sent.

Use either SKBH_LTSQ or SKBH_TSQUEUE to pass data, but not both.

SKBH_REFERENCE
Optionaly pass a value or reference identifying the data to be sent. It is
used for some types of electronic addresses.

SKBH_MAILADR
A value returned after successful processing to tell where the data was
actually sent.

After a call to KBHSFAP field ZMSGNO in structure KAAWCOM will contain
message number KBH352 to indicate that the data was sent successfully, or other
message numbers to indicate errors.

230 BTB Application Programming Guide

 Processing
The calling application must prepare the data to be sent in either a single TS
Queue, or in List TS Queue (LTSQ) (see: “Multiple TS queues” on page 21) if the
data is too big for one TS Queue. Then the KBHSFAP CSP application should be
called. It will present the user with the panel shown in Figure 61. KBHSFAP
validates the values entered by the user and performs the send function.

� �
 KBHSFMTY Send file IMB

 Press Enter to send file

 Addressing mode:
 Lookup existing addr . . _ +
 Address type HO +

 Host address:
 User ID. ________
 Node ID. ________

 Sending options:
 Send mode. FILE____ +
 Subject. __
 Filename MYFILE.TXT______________________________
 Codepage conversion. . . ________ +

 KBH106A Required field is blank
 Command ===>
F1=Help F3=Exit F4=Prompt F12=Cancel

� �

Figure 61. Send file panel

 Examples
How to use KBHSFAP in a CSP application:

;
SET KBHSFWA EMPTY; /* Always initialize WS
;
KBHSFWA.WHO = 'CEN'; /* User is allowed to type any address
KBHSFWA.WHAT = 'SND'; /* We need send function
KBHSFWA.SKBH_FILETYPE = 'MYFILE';
KBHSFWA.SKBH_MAILTYPE = 'TXT';
KBHSFWA.SKBH_SUBJECT = "Data export XYZ from Whatever system";
KBHSFWA.SKBH_DELETE_TSQ = 'Y';
KBHSFWA.SKBH_TSQUEUE = MY_DATA_TSQ;
;
CALL KBHSFAP KBHSFWA,KAAWCOM; /* Call module
;
IF ZMSGNO = 'KBH352'; /* OK file was sent
; /* You might keep KBHSFWA.SKBH_MAILADR to tell where data was sent

ELSE;
; /* We have a problem

END;
;

 Chapter 16. Generic BTB programming APIs 231

Internet e-mail API—KBHSMTP
You can use the Internet e-mail API to send messages and files to users Internet
users via the Simple Mail Transfer Protocol (SMTP) for e-mail. The specifications of
SMTP can be found in RFC3 821.

Messages and files are passed to the API as CICS TS Queues and then
transmitted to Internet through TCP/IP communication with an SMTP server.

The API implements Multipurpose Internet Mail Extensions (MIME), which enables
it to send complex e-mails with both a plain message as well as attached files. The
specifications of MIME can be found in RFC 2045 - 2049.

The API is called in different ways to either send a mail with a single message or
an attached file, to send a mail with up to five messages or attachments, or to send
an unlimited number4 of messages or attachments.

 Format
KBHSMTP is a CICS Main program, with this LINK syntax:

LINK Syntax (PL/1):

77── EXEC CICS LINK PROGRAM('KBHSMTP')
 COMMAREA(KBHSMWT)
 LENGTH(CSTG(KBHSMWT))
 NOHANDLE; ──────────────────────────────────7"

The API also accepts an alternative call method with a only a pointer in the
communication area. The pointer must then contain the address of the KBHSMWT
structure. This is convenient when using the API from CSP.

 Parameters
Passed structure for the Internet e-mail API. It can be found in
KBH.R450.PLINCL(KBHSMWT)

 /* +---+ */
 /* | -------- INTELLIGENT MESSAGE BROKER (IMB) --------- | */
 /* | (C) COPYRIGHT IBM DENMARK. 1999. ALL RIGHTS RESERVED. | */
 /* | (C) COPYRIGHT IBM CORP. 1999. ALL RIGHTS RESERVED. | */
 /* | | */
 /* | | */
 /* +---+ */

 /* +--+ */
 /* | IMB TRANSMIT FILE/NOTE VIA SMTP | */
 /* | ================================== | */

3 The name of the result and the process for creating a standard on the Internet. New standards are proposed and published
online, as a Request For Comments. The Internet Engineering Task Force is a consensus-building body that facilitates
discussion, and eventually a new standard is established, but the reference number and name for the standard retains the
acronym RFC, for example, the official standard for e-mail is RFC 822.

4 While the API has no coded limits on the number of attachments, it can be be limited by the total size of the e-mail being sent.
Mail gateways have implemented various size limits (for example 2 megabytes or 4 megabytes) to avoid abuse of the e-mail
system (like sending very big files as e-mails).

232 BTB Application Programming Guide

 /* | | */
 /* | STRUCTURE : KBHSMWT | */
 /* | | */
 /* | LENGTH : 2000 BYTES | */
 /* | | */
/* | CONTENTS : INTERFACE TO KBHSMTM | */
 /* | | */
 /* | RELATIONS : NONE. | */
 /* | | */
 /* +--+ */
 /* */
 /* OFFSET */
 /* --- */

3 SKBH_FNC CHAR(8), /* FUNCTION TO PERFORM 000 */
3 SKBH_MSGID CHAR(10), /* MESSAGE NUMBER 008 */
3 SKBH_BASE_CODEPAGE CHAR(8), /* CODEPAGE FOR MAIL HDR 018 */
3 SKBH_SUBJECT CHAR(80), /* SUBJECT OF MAIL 026 */
3 SKBH_SENDER CHAR(80), /* SENDER OF THIS MAIL 106 */
3 SKBH_REPLY_TO CHAR(80), /* OPTIONAL REPLY TO 186 */
3 SKBH_REFERENCE CHAR(16), /* OPTIONAL REFERENCE 266 */
3 SKBH_MULTIX_TSQUEUE CHAR(8), /* MULTIX SESSION TSQ 282 */
3 SKBH_SMTP_SERVER CHAR(80), /* SMTP SERVER HOSTNAME 290 */
3 SKBH_SMTP_PORT CHAR(5), /* SMTP SERVER PORTNUM. 370 */
3 IOPUCTY CHAR(3), /* COUNTRY CODE 375 */

 3 KBHSMWT_RES1 CHAR(22), /* RESERVED 378 */
3 SKBH_INET_RECV(5), /* LIST OF RECEIVERS 400 */
5 SKBH_RECV_TYP CHAR(2), /* RECEIVER TYPE TO/CC *400 */
5 SKBH_MAILADR CHAR(80), /* RECEIVER E-MAIL ADR *402 */

 5 KBHSMWT_RES2 CHAR(18), /* RESERVED *482 */
3 SKBH_MAIL_ITEM(5), /* CODEPAGE CONV 900 */
5 SKBH_TSQ_MODE CHAR(2), /* TYPE OF TS QUEUE *900 */
5 SKBH_TSQUEUE CHAR(8), /* TS QUEUE WITH DATA *902 */
5 SKBH_ITEM_TYPE CHAR(8), /* TYPE OF ITEM *910 */
5 SKBH_CODEPAGE CHAR(8), /* CODEPAGE CONV *918 */
5 SKBH_FILEID CHAR(40), /* EXTERNAL FILENAME *926 */
5 SKBH_MIME_TYPE CHAR(40), /* MIME TYPE *966 */
5 SKBH_MIME_ENCOD CHAR(8), /* MIME ENCODING *1006 */

 5 KBHSMWT_RES3 CHAR(36), /* RESERVED *1014 */
 3 KBHSMWT_RES4 CHAR(350) /* RESERVED 1750 */
 /* TOTAL LENGTH 2000 */
 /* */
/* == IMB == END OF STRUCTURE KBHSMWT == */
 /* -- */
 /* */

SKBH_FNC
The function code to the API. Possible values:

SINGLE Send mail item one to the listed receivers.

MULTI Send up to five mail items to the listed receivers.

MULTIX Prepare five mail items for later sending.

SENDX Send previously prepared (one or more MULTIX calls) mail items
to the listed receivers.

SKBH_MSGID
Message id pointing to error message. If the message id is blank, then the
call was successful.

 Chapter 16. Generic BTB programming APIs 233

SKBH_BASE_CODEPAGE
Reference to a codepage translation table. This translation table will be used
for all the mail headers and for other mail items unless overwritten on the
individual mail item. This translation table must be single byte only. See
“Codepage translation services” on page 213.

SKBH_SUBJECT
Free text to appear in the subject of the mail.

SKBH_SENDER
Optional e-mail address of sender. If not specified here, the API will lookup a
default sender based on the country code. See “Valid e-mail addresses” on
page 238 for valid formats.

SKBH_REPLY_TO
Optional e-mail address. If specified here, the mail will have a Reply-To:
mail header. See “Valid e-mail addresses” on page 238 for valid formats.

SKBH_REFERENCE
Optional text to appear in an additional mail header X-IMB-Ref:.

SKBH_MULTIX_TSQUEUE
Intermediate TS Queue used internally in a sequence of MULTIX, MULTIX,
..., SENDX calls to hold the mail items to be sent. The field must be blank
on first call and must not be changed on subsequent calls.

This TS Queue will be deleted by the API after a call with function code
SENDX or after an unsuccessfull MULTIX call.

SKBH_SMTP_SERVER
Optional hostname or IP address of the SMTP server. If not specified here,
the API will lookup a default server based on the country code.

SKBH_SMTP_PORT
Optional port number of the SMTP server. The commonly used port number
for SMTP servers are 00025. If not specified here, the API will lookup a
default port number based on the country code.

IOPUCTY
Country code of calling project. This value are used when looking up default
values.

KBHSMWT_RES1
Future use. Must be initiated to blanks by calling program.

SKBH_INET_RECV
A structure containing up to five receivers of the e-mail. More receivers can
be specified by using a TS Queue.

SKBH_RECV_TYP
The type of receiver:

TO Normal To receiver

CC Receiver is Cc (carbon-copy)

BC Receiver is Bcc (blind carbon-copy)

TS Indicate that SKBH_MAILADR is the name of a TS Queue containing
more receivers. The format of records in such a TS Queue is 2 byte
receiver type and 80 byte e-mail address.

234 BTB Application Programming Guide

SKBH_MAILADR
The e-mail address of a receiver. See “Valid e-mail addresses” on
page 238 for valid formats of an e-mail address.

A total of 100 receivers are supported by the API.

KBHSMWT_RES2
Future use. Must be initiated to blanks by calling program.

SKBH_MAIL_ITEM
A structure containing up to five mail items to be sent. Item one is sent with
function SINGLE, all five are sent with function MULTI. More mail items can
be queued for sending by using function MULTIX one or more times folowed
by a call with function SENDX.

SKBH_TSQ_MODE
The mode of passing data in TS Queues:

TS The data is passed in a normal TS Queue (default).

LT The data is passed in an LTSQ (support for big items). The passed
LTSQ is a normal TS Queue where each record is the name of another
TS Queue. Multiple TS Queues can be concatenated and sent this
way.

SKBH_TSQUEUE
Name of the TS Queue (or LTSQ) containing data to be sent.

It is the responsibility of the calling program to delete its own TS Queues
after the e-mail has been sent.

SKBH_ITEM_TYPE
Identification of the item to be sent

MAIL Use data as a mail message (default). Perform codepage
conversion.

FILE Use data as a file attachment. Perform codepage conversion.

FILEBIN Use data as a binary file attachment. No codepage conversion.

RAW Pass data as-is to SMTP. No codepage conversion.

SKBH_CODEPAGE
Codepage translation table to be used for current mail item. If not specified
the base codepage will be used. See “Codepage translation services” on
page 213.

SKBH_FILEID
A end-user filename must be passed here for file attachments

SKBH_MIME_TYPE
The MIME content type for mail item. Leave blank for default values for
different mail item types.

 text/plain
 application/octet-stream
 image/gif
 image/jpeg

Other values as specified in RFC 2046

SKBH_MIME_ENCOD
The MIME content transfer encoding be performed. Leave blank for default
values for different mail item types. Valid values:

 Chapter 16. Generic BTB programming APIs 235

QUOTED Send as quoted printable. Special characters are encoded to
prevent transmission problems.

7BIT Send as 7 bit. Only usable for US ASCII. Line length below 998
bytes.

8BIT Send as 8 bit. Special characters are sent as-is. Line length
below 998 bytes.

BINARY Send as binary (as-is), no special encoding.

BASE64 Send as base 64 encoded data. Robust transmission.

KBHSMWT_RES3
Future use. Must be initiated to blanks by calling program.

KBHSMWT_RES4
Future use. Must be initiated to blanks by calling program.

 Processing
The Internet e-mail API can either be called with just a few fields filled in and taking
advantage of the default values, or it can be called with all fields used to obtain
special results.

Normally an e-mail is just a plain message, or it is one message with one or more
attached files. But other combinations are also possible. The mail item type
SKBH_ITEM_TYPE is used to control how the items passed to the API are used in
the sent e-mail.

 Item type—MAIL
An item of type MAIL is interpreted as a message, that is directly readable in the
sent e-mail. The first item should usually be such a message.

Data is passed in a TS queue. Every record will become a line in the mail. Record
width up to 2000 bytes is supported by the API but not necessarily by all mail
gateways. The subject is not part of the message, it must be passed directly in
SKBH_SUBJECT since it is used in the mail headers.

The default MIME content type SKBH_MIME_TYPE for this item is text/plain and
the MIME content transfer encoding type SKBH_MIME_ENCOD is QUOTED.

Codepage translation is always performed based on the contents of
SKBH_CODEPAGE. Both single byte codepage conversion and double byte
conversion is possible via various codepage translation tables. See “Codepage
translation services” on page 213 for more information. If the message is double
byte character set it is necessary to override the MIME content transfer encoding
type SKBH_MIME_ENCOD to 7BIT.

The end-user filename SKBH_FILEID is not used for this item type.

 Item type—FILE
An item of type FILE will appear in the e-mail as an attached file. The MIME
content disposition: attachment header is used to achieve this. While it is possible
to send an e-mail with just an attached file and no message, it is not common
practice.

236 BTB Application Programming Guide

Data is passed in a TS queue. Every record will become a line in the attached file
(CR+LF is added at the end of a record). Record width up to 2000 bytes is
supported by the API but not necessarily by all mail gateways.

The default MIME content type SKBH_MIME_TYPE for this item is text/plain and
the MIME content transfer encoding type SKBH_MIME_ENCOD is 8BIT. It is
possible to use BASE64 encoding to avoid possible reformatting by a mail gateway
on the way to the receiver.

Codepage translation is always performed based on the contents of
SKBH_CODEPAGE. Both single byte codepage conversion and double byte
conversion is possible via various codepage translation tables. See “Codepage
translation services” on page 213 for more information.

The end-user filename SKBH_FILEID can be used to give a meaningful filename
like MYFILE.TXT for this item type. The receiver will use this filename when
detaching the file.

 Item type—FILEBIN
An item of type FILEBIN will appear in the e-mail as an attached file. The MIME
content disposition: attachment header is used to achieve this. While it is possible
to send an e-mail with just an attached file and no message, it is not common
practice.

Binary data is passed in a TS queue. While binary data is interpreted as a long
stream of bytes, it must be blocked in records in order to be stored in a TS Queue.
Record width up to 2000 bytes is supported by the API.

The default MIME content type SKBH_MIME_TYPE for this item is
application/octet-stream and the MIME content transfer encoding type
SKBH_MIME_ENCOD is BASE64. It is not recommended to use a different
encoding type, but the content type could be changed to image/gif or image/jpeg for
graphic images.

Codepage translation is never performed for this item type.

The end-user filename SKBH_FILEID can be used to give a meaningful filename
like MYLOGO.JPG for this item type. The receiver will use this filename when
detaching the file.

 Item type—RAW
An item of type RAW can be used if a program needs to specify other MIME
headers not directly supported by the API. The caller must supply all necessary
MIME headers except the beginning and ending boundary, which is written by the
API.

ASCII data including CR+LF is passed in a TS queue. Record width up to 2000
bytes are supported by the API.

The fields for MIME content type, MIME encoding type, codepage translation and
filename are not used for this item type.

 Chapter 16. Generic BTB programming APIs 237

Valid e-mail addresses
E-mail addresses are passed to the API in three fields: sender, receiver, and
optional reply-to field.

Valid formats are:

 j_doe@somedomain.com
 <j_doe@somedomain.com>

"John Doe" <j_doe@somedomain.com>

The at sign @ is known to cause problems in the EBCDIC world because it has
different hexadecimal values in different EBCDIC codepages. The API will
recognize a serie of values as a valid @ and convert correctly before sending. This
way an English user can type an address on the terminal and it will still be valid for
a French user.

 Examples
Small example of calling the API from PL/1:

KBHSMWT = '';
KBHSMWT.SKBH_FNC = 'MULTI';
KBHSMWT.IOPUCTY = '000';
/* Conversion from Internatl. EBCDIC (CP500) to ISO-8859-1 (CP819) */
KBHSMWT.SKBH_BASE_CODEPAGE = 'CP500819';
KBHSMWT.SKBH_SUBJECT = 'This is my subject';
KBHSMWT.SKBH_RECV_TYP(1) = 'TO';
KBHSMWT.SKBH_MAILADR(1) = 'j_doe@somedomain.com';
/* First item is a normal message (text) */
KBHSMWT.SKBH_TSQ_MODE(1) = 'TS';
KBHSMWT.SKBH_TSQUEUE(1) = 'ENGLISH';
KBHSMWT.SKBH_ITEM_TYPE(1) = 'MAIL';
/* Second item is a graphic image (binary file) */
KBHSMWT.SKBH_TSQ_MODE(2) = 'TS';
KBHSMWT.SKBH_TSQUEUE(2) = 'IMBLOGO';
KBHSMWT.SKBH_ITEM_TYPE(2) = 'FILEBIN';
KBHSMWT.SKBH_MIME_TYPE(2) = 'image/jpeg';
KBHSMWT.SKBH_FILEID(2) = 'imblogo.jpg';

/* Call the API */
EXEC CICS LINK PROGRAM('KBHSMTP')
 COMMAREA(KBHSMWT)
 LENGTH(CSTG(KBHSMWT))
 NOHANDLE;

/* Check return code */
IF EIBRESP = 0 THEN
IF KBHSMWT.SKBH_MSGID = '' THEN
PUT SKIP EDIT('e-mail was sent OK') (A);

 ELSE
PUT SKIP EDIT('e-mail was not sent. Message=',

 KBHSMWT.SKBH_MSGID) (A,A);
ELSE
PUT SKIP EDIT('Problem during link to API. EIBRESP=',

EIBRESP,' EIBRESP2=',EIBRESP2) (A,F(4),A,F(4));

238 BTB Application Programming Guide

Generate unique TS queue names—KBHUQNP
The unique TS queue name API is used to generate names on application TS
queues, which must not collide with parallel executing programs.

The API will generate unique TS queue names. A number of counters are
maintained for different prefixes. Before a name is returned, it is checked that no
TS queue exists with that name.

Up to 10 TS queue names with same or different prefix can be generated in the
same call.

 Format
KBHUQNP is a CICS Main program, with the following LINK syntax:

LINK Syntax (PL/I):

77── EXEC CICS LINK PROGRAM('KBHUQNP')
 COMMAREA(COMMAREA)
 NOHANDLE; ──────────────────────────────────7"

DCL 1 COMMAREA,
 2 KBHUQWN─PTR POINTER;

 Parameters
Parameters as declared in PL/1:

 /* +---+ */
 /* | -------- INTELLIGENT MESSAGE BROKER (IMB) --------- | */
 /* | (C) Copyright IBM Denmark. 1998. All Rights Reserved. | */
 /* | (C) Copyright IBM Corp. 1998. All Rights Reserved. | */
 /* | | */
 /* | | */
 /* +---+ */

 /* +--+ */
 /* | IMB GENERAL INFRASTRUCTURE | */
 /* | =============================== | */
 /* | | */
 /* | STRUCTURE : KBHUQWN | */
 /* | | */
 /* | LENGTH : 00200 BYTES | */
 /* | | */
/* | CONTENTS : IMB API TO GENERATE UNIQUE TS QUEUE NAME| */
 /* | | */
 /* | RELATIONS : NONE. | */
 /* | | */
 /* +--+ */
 /* */
 /* OFFSET */
 /* --- */

3 SKBH_TSPREFIX(10) CHAR (04),/* INP TS QUEUE PREFIX ARRAY 000 */
3 SKBH_TSQUEUE(10) CHAR (08),/* OUT TS QUEUE NAME ARRAY 040 */
3 SKBH_MSGID CHAR (10),/* MESSAGE NUMBER 120 */
3 SKBH_RESERV CHAR (70) /* RESERVED 130 */

 /* */

 Chapter 16. Generic BTB programming APIs 239

 /* TOTAL LENGTH 00200 */
/* == IMB == END OF STRUCTURE KBHUQWN == */
 /* -- */

SKBH_TSPREFIX
Array of 10 prefixes of TS queue names, that should be used to generate
unique TS queue names.

SKBH_TSQUEUE
Array of 10 generated TS queue names.

SKBH_MSGID
Message id pointing to error message. If the message id is blank, then call
was successful.

RESERVED
Future use.

Must be initialised to blanks by calling application.

 Examples
Here is an example of calling the API from CSP:

;
;/* Call PL1 program KBHUQNP to get 3 unique TS queues
;
SET KBHUQWN EMPTY;
KBHUQWN.SKBH_TSPREFIX(1) = 'KBAK';
KBHUQWN.SKBH_TSPREFIX(2) = 'KBAK';
KBHUQWN.SKBH_TSPREFIX(3) = 'KBAL';
;
CALL KBHUQNP KBHUQWN (NOMAPS,NONCSP;
;
IF KBHUQWN.SKBH_MSGID = ' ';
 ;/* OK
 ;/*
;/* 3 unique TS queue names is in

 ;/* KBHUQWN.SKBH_TSQUEUE(1) e.g. KBAK00A7
 ;/* KBHUQWN.SKBH_TSQUEUE(2) e.g. KBAK00A8
 ;/* KBHUQWN.SKBH_TSQUEUE(3) e.g. KBAL1AD4
 ;/*
ELSE;
 ;/* Error
;/* More info in KBHUQWN.SKBH_MSGID

END;

 Processing
The TS queue KBHunqnm is used to keep the list of last used tokens for the
different groups.

240 BTB Application Programming Guide

Allocate a VSAM data set from a pool—KBHUVSP
The VSAM pool allocate API is used to select a VSAM file from a pool of VSAM
files. This is useful when a temporary VSAM file is needed for parallel executing
programs, especially when interfacing with other program products which either
support TS queues or VSAM files.

Normally TS queues are used as temporary storage in CICS, but if the contents
would fill more than one TS queue (32K records), and only a single file can be
used, it might be necessary to use other storage types.

Up to 5 VSAM files can be acquired from a pool in the same call (if the pool is big
enough).

On the first call, an allocated VSAM file will be emptied and a CICS enqueue is
done to prevent other tasks from getting the same VSAM file. The file can then be
used in the calling program. After usage, the API is called again to free the VSAM
file(s).

 Format
KBHUVSP is a CICS Main program, with the following LINK syntax:

LINK Syntax (PL/I):

77── EXEC CICS LINK PROGRAM('KBHUVSP')
 COMMAREA(COMMAREA)
 NOHANDLE; ──────────────────────────────────7"

DCL 1 COMMAREA,
 2 KBHUVWS─PTR POINTER;

 Parameters
Parameters as declared in PL/1:

 /* +---+ */
 /* | -------- INTELLIGENT MESSAGE BROKER (IMB) --------- | */
 /* | (C) COPYRIGHT IBM DENMARK. 1998. ALL RIGHTS RESERVED. | */
 /* | (C) COPYRIGHT IBM CORP. 1998. ALL RIGHTS RESERVED. | */
 /* | | */
 /* | | */
 /* +---+ */

 /* +--+ */
 /* | IMB GENERAL INFRASTRUCTURE | */
 /* | =============================== | */
 /* | | */
 /* | STRUCTURE : KBHUVWS | */
 /* | | */
 /* | LENGTH : 00200 BYTES | */
 /* | | */
/* | CONTENTS : IMB API TO ALLOCATE VSAM FILE | */
 /* | | */
 /* | RELATIONS : NONE. | */
 /* | | */
 /* +--+ */
 /* */

 Chapter 16. Generic BTB programming APIs 241

 /* OFFSET */
 /* --- */

3 SKBH_FNC CHAR(08),/* FUNCTION CODE 000 */
3 ISYSIDY CHAR(04),/* APPLICATION SYSTEM ID 008 */
3 IOPUCTY CHAR(03),/* COUNTRY CODE 008 */
3 SKBH_VSAM(5) CHAR(08),/* ARRAY OF VSAM FILE NAMES 040 */
3 SKBH_MSGID CHAR(10),/* MESSAGE NUMBER 120 */
3 SKBH_RESERV CHAR(70) /* RESERVED 130 */

 /* */
 /* TOTAL LENGTH 00200 */
 /* == == END OF STRUCTURE KBHUVWS == */
 /* -- */

SKBH_FNC
The function code to the API. Possible values:
'ALLOC','ALLOC2','ALLOC3','ALLOC4','ALLOC5' to allocate 1 to 5 VSAM
files and 'FREE' to free them all again.

ISYSIDY
Application id of calling project. This id together with the IOPUCTY forms the
name of the pool.

IOPUCTY
Country code of calling project. This value together with the ISYSIDY forms
the name of the pool.

SKBH_VSAM
Array of 5 generated VSAM file names.

SKBH_MSGID
Message id pointing to error message. If the message id is blank, then call
was successful.

SKBH_RESERV
Future use. Has to be initiated to blanks by the calling application.

 Processing
A BTB WC table entry is used to control a pool. BTB itself is using the following
entry:

WC-Key Cty Value
VSAM FILES KBH 000 KBHVS 001 006 02

The above pool contains 6 VSAM files KBHVS001 to KBHVS006.

It will usually give the best performance, if other applications have their own pool,
since taking VSAM files from the BTB pool will have a negative effect on the
processing done in MailRoom.

A pool is created by physically defining a number of VSAM files, for example,
ZZZVS001 to ZZZVS025, create the related CICS CEDA entries and by adding an
entry to the WC table (use option WCEDIT). The API should then be called with
ISYSIDY: ZZZ and IOPUCTY: 000, and the entry in the WC table should be:

WC-Key Cty Value
VSAM FILES ZZZ 000 ZZZVS 001 025 02

242 BTB Application Programming Guide

XML Text Scanner, primitive XML Parser—KBHXMLM
The XML Text Scanner is a primitive XML Parser that can be used in the absence
of a high performing XML Parser for CICS. This XML Text Scanner is inspired of
the SAX API programming model (Simple API for XML) where a user program gets
events during XML parsing.

The user program, normally a PL/I main program, defines the XML Text Scanner as
an ENTRY EXTERNAL as well as two local procedures, one for reading the XML file
and one for processing the events during XML parsing. When the XML Text
Scanner is called, it will call back several times to these procedures in the main
program.

┌──────────────────────────────────────┐
│ User loadmodule │
│ ┌─────────────┐ │
│ │User MAIN │ │
│ │module │ ┌─────────────┐ │
│ │ ─────────7│KBHXMLM │ │
│ │ │ │module │ │
│ │ │ │ │ │
│ │ │ │XML Text │ │
│ │ │ │Scanner │ │
│ │ │ │ │ │
│ │ Read file"──────────── │ │
│ │ Logic │ │ │ │
│ │ │ │ │ │
│ │ Process "──────────── │ │
│ │ Event Logic │ │ │ │
│ └─────────────┘ └─────────────┘ │
│ │
└──────────────────────────────────────┘

The XML Text Scanner module KBHXMLM itself does not require CICS. It is
therefore possible to use it outside CICS with proper implementation of the file
reading in the main PL/I program.

 Restrictions
The XML Text Scanner is not a real XML Parser and the following should be
observed:

� XML files must be encoded in EBCDIC.

� It is a non validating parser (the DTD is not used) and only certain markup
errors will be detected if the program is instructed to do so.

� Certain limits in the length of XML tag names, attribute names and attribute
values exist in this program. See the structure passed to the event handler.

� Line feed and tab characters are not handled specially. Pass individual lines
as separate records to the module.

� The XML Text Scanner was originally developed for CICS and PL/I and it has
not been tested outside of this environment.

� The programming language of the main program should also be PL/I, but other
languages might be possible to use with Language Environment.

� Always consider using a real XML Parser if one is available for your
environment and programming language.

 Chapter 16. Generic BTB programming APIs 243

 XML events
The XML Text Scanner (module KBHXMLM) will produce a number of events while
the XML file is processed. It is up to the main PL/I program to use these events
and the associated data.

E.g. when processing an order XML file, the program could capture data to be
used in the order header record and process all order_line element groups as
individual order lines. When an order_line tag begins, it could initiate a new order
line record, then capture element data for tags inside the order_line tag and set
related fields in the order line record. Finally when the order_line end tag is
reached, the program could save the order line record in a database.

The following sample XML file will be used to illustrate which events are generated
by the XML Text Scanner:

<?xml version="1.0" ?>
<!DOCTYPE test SYSTEM "test.dtd">
<!-- This is a test XML file -->
<test>
 <aaa bb="123">
 <ddd>Test XML</ddd>
 <eee ff="XYZ"/>
 <xxx>Data ln1
Data ln2
Data ln3
 </xxx>
 </aaa>
</test>

The following events will be generated for the above XML file:

Start of document
PI element: xml /
PI Attribute: version = 1.0 /
Start of element: test /test
Start of element: aaa /test/aaa
Attribute: bb = 123 /test/aaa
Start of element: ddd /test/aaa/ddd
Characters: Test XML /test/aaa/ddd
End of element: ddd /test/aaa/ddd
Start of element: eee /test/aaa/eee
Attribute: ff = XYZ /test/aaa/eee
End of element: eee /test/aaa/eee
Start of element: xxx /test/aaa/xxx
Characters: Data ln1 /test/aaa/xxx
Characters: Data ln2 /test/aaa/xxx
Characters: Data ln3 /test/aaa/xxx
End of element: xxx /test/aaa/xxx
End of element: aaa /test/aaa
End of element: test /test
End of document

244 BTB Application Programming Guide

 Format
KBHXMLM is a PL/I external procedure with the following call syntax:

Call Syntax (PL/I):

 DCL KBHXMLM ENTRY EXTERNAL;
 DCL KBHXML_PTR POINTER;

DCL 1 KBHXML,
 %INCLUDE KBHXML;;

KBHXML_PTR = ADDR(KBHXML);
 ...

 CALL KBHXMLM(KBHXML_PTR,
 MY_XML_BUF_HANDLER,
 MY_XML_DOC_HANDLER);

 MY_XML_BUF_HANDLER:PROCEDURE(BUF_HNDL_PTR) REORDER;
/* local implementation of read XML file */

 ...
 END MY_XML_BUF_HANDLER;

 MY_XML_DOC_HANDLER:PROCEDURE(DOC_HNDL_PTR) REORDER;
/* local implementation of XML event handler */

 ...
 END MY_XML_DOC_HANDLER;

The passed procedure names from the main PL/I program must implement the
following logic:

XML_BUF_HANDLER
User procedure to perform read of the XML file (get one record at a
time). When end of file is reached return a special message id.

XML_DOC_HANDLER
User procedure to receive various events during XML processing.

� Start of document
 � Processing Instruction
� Processing Instruction attribute
� Start of element

 � Element attribute
� Characters (element data)
� End of element
� End of document

This procedure may stop the further XML parsing with a special
message id when all necessary XML elements have been found. This is
useful if you are just looking for s specific tag.

 Chapter 16. Generic BTB programming APIs 245

 Parameters
Passed structure for the XML Text Scanner. It can be found in
KBH.R450.PLINCL(KBHXML)

 /* +---+ */
 /* | -------- INTELLIGENT MESSAGE BROKER (IMB) --------- | */
 /* | (C) Copyright IBM Denmark. 2001. All Rights Reserved. | */
 /* | (C) Copyright IBM Corp. 2001. All Rights Reserved. | */
 /* | | */
 /* | | */
 /* +---+ */

 /* +---+ */
 /* | KBHXML PROGRAM CHANGE LOG | */
 /* | ======= ================== | */
 /* | | */
 /* | DATE USER COMMENT Rel | */
 /* | -------- -------- --------------------------------------- --- | */
 /* | 01/02/27 ISHLS Initial version 450 | */
 /* | | */
 /* +---+ */
 /* */
/* +---+ */
 /* | IMB XML TEXT SCANNER | */
 /* | ==================== | */
 /* | | */
/* | STRUCTURE : KBHXML | */
 /* | | */
/* | LENGTH : 00200 BYTES | */
 /* | | */
/* | CONTENTS : API FOR XML TEXT SCANNER (SIMPLE XML PARSER) | */
 /* | | */
/* | RELATIONS : NONE. | */
 /* | | */
/* +---+ */
 /* */
 /* OFFSET */
 /* --- */

3 INP_DEBUG_SW_ON BIT(1), /* DEBUG SWITCH 000 */
3 IGNORE_XML_ERR BIT(1), /* IGNORE XML ERRORS 000 */
3 SKBH_MSGID CHAR(10), /* MESSAGE TO USER 001 */
3 SKBH_MSGVAR CHAR(75), /* MESSAGE VARIABLES 011 */
3 RESERVED CHAR(114) /* RESERVED 086 */

 /* */
 /* TOTAL LENGTH 00200 */
/* == END OF STRUCTURE KBHXML == */
 /* -- */

INP_DEBUG_SW_ON
Enable or disable internal debugging in KBHXMLM module.
Use '0'B for false and '1'B for true.

IGNORE_XML_ERR
Instruct KBHXMLM to ignore certain XML markup errors, e.g. unfinished
tags and improper nesting of tags.
Use '0'B for false and '1'B for true.

246 BTB Application Programming Guide

SKBH_MSGID
Message id with error message. If the message id is blank, then call was
successful.

SKBH_MSGVAR
Message variables for SKBH_MSGID

RESERVED
Future use. Must be initialized to blanks by calling program.

User procedure XML_BUF_HANDLER
The XML_BUF_HANDLER procedure is the file or buffer handler. The procedure
must be implemented in the main PL/I program and its entry passed to KBHXMLM.
The name of the procedure does not have to be XML_BUF_HANDLER, but it
should implement the functionality described here.

The procedure is used to read sequentially through an XML file and return a single
record (line) each time the procedure is called. The returned record can be up to
32K in length. When end of file is reached, the procedure must return the message
id KBHXML001 to signal end of file.

Other message ids of own choice can be returned at an earlier point if errors occur.
When such an error message id or end of file is returned, the XML Text Scanner
will stop and return control to the main PL/I program.

The procedure should look like the following:

 XML_BUF_HANDLER:PROCEDURE(BUF_HNDL_PTR) REORDER;
 DCL BUF_HNDL_PTR POINTER;
DCL 1 BUF_HNDL BASED(BUF_HNDL_PTR),

2 XML_BUF_LNG BIN FIXED (31),
 2 XML_BUF CHAR(32767),
 2 SKBH_MSGID CHAR(10);

BUF_HNDL.SKBH_MSGID = ''; /* OK */

/* Read file from wherever you have it */
 MY_FILE_READ
/* Check the outcome */
IF 'file read OK' THEN

 DO;
BUF_HNDL.XML_BUF = yyy; /* Actual data */
BUF_HNDL.XML_BUF_LNG = xxx; /* Actual length */

 END;
 ELSE

IF 'file EOF' THEN
BUF_HNDL.SKBH_MSGID = 'KBHXML001'; /* EOF reached */

 ELSE
BUF_HNDL.SKBH_MSGID = 'XXXYYY009'; /* Other problem */

 END XML_BUF_HANDLER;

User procedure XML_DOC_HANDLER
The XML_DOC_HANDLER procedure is the document or event handler. The
procedure must be implemented in the main PL/I program and its entry passed to
KBHXMLM. The name of the procedure does not have to be
XML_DOC_HANDLER, but it should implement the functionality described here.

The procedure is used to process the events that are generated by KBHXMLM
during the XML parsing.

 Chapter 16. Generic BTB programming APIs 247

� Start of document
� Processing Instruction (PI)
� Processing Instruction attribute
� Start of element

 � Element attribute
� Characters (element data)
� End of element
� End of document

This procedure can use msgid KBHXML002 to signal soft stop (we got all elements
we were looking for, skip rest of XML file). Other message ids of own choice can
be returned at any time if errors occur. When such an error message id or soft stop
is returned, the XML Text Scanner will stop and return control to the main PL/I
program.

The procedure should look like the following:

 XML_DOC_HANDLER:PROCEDURE(DOC_HNDL_PTR) REORDER;
 DCL DOC_HNDL_PTR POINTER;
DCL 1 DOC_HNDL BASED(DOC_HNDL_PTR),

 2 DOC_HNDL_FNC CHAR(02) VAR,
 2 DOC_HNDL_NAME CHAR(100) VAR,
 2 DOC_HNDL_ATTR CHAR(100) VAR,
 2 DOC_HNDL_PATH CHAR(400) VAR,
 2 DOC_HNDL_DATA CHAR(32767) VAR,
 2 SKBH_MSGID CHAR(10);

DOC_HNDL.SKBH_MSGID = ''; /* OK */

/* Process an event */
/* Depending on the event type do whatever necessary */

 SELECT (DOC_HNDL_FNC);
WHEN('SD'); /* startDocument event */
/* No data available */

WHEN('PI'); /* ProcessingInstruction event */
/* Name of tag in DOC_HNDL_NAME */

WHEN('PA'); /* PIAttribute event */
/* Name of tag in DOC_HNDL_NAME */
/* Name of attribute in DOC_HNDL_ATTR */
/* Value of attribute in DOC_HNDL_DATA */

WHEN('SE'); /* startElement event */
/* Name of tag in DOC_HNDL_NAME */
/* Name of path in DOC_HNDL_PATH */

WHEN('AT'); /* Attribute event */
/* Name of tag in DOC_HNDL_NAME */
/* Name of path in DOC_HNDL_PATH */
/* Name of attribute in DOC_HNDL_ATTR */
/* Value of attribute in DOC_HNDL_DATA */

WHEN('CH'); /* Characters event */
/* Name of tag in DOC_HNDL_NAME */
/* Name of path in DOC_HNDL_PATH */
/* Element data in DOC_HNDL_DATA */

WHEN('EE'); /* endElement event */
/* Name of tag in DOC_HNDL_NAME */
/* Name of path in DOC_HNDL_PATH */
/* Element data in DOC_HNDL_DATA (concatenated) */

WHEN('ED'); /* endDocument event */
/* No data available */

248 BTB Application Programming Guide

 OTHERWISE;
/* Should not occur */

 END;

/* Check the outcome */
IF 'I got what I were looking for, stop scanning' THEN
DOC_HNDL.SKBH_MSGID = 'KBHXML002'; /* Soft stop */

 ELSE
IF 'any errors' THEN
DOC_HNDL.SKBH_MSGID = 'XXXYYY002'; /* Other problem */

 END XML_DOC_HANDLER;

 Processing
The XML Text Scanner might return one of the following message ids (field
SKBH_MSGID) during the parsing of an XML file. A blank message id indicates
successful completion.

KBHXML001 End of XML Document reached (not returned)

KBHXML002 XML processing stopped at program request (not returned)

KBHXML003 Incorrect level return: &1 Current level: &2 in XML line &3

KBHXML004 Invalid attribute value/format (&1) in XML line &2

KBHXML005 XML File ended before all started tags were ended

XXXYYY0nn Other error returned from file or event handler

Message id KBHXML001 (EOF) and KBHXML002 (soft stop) are not returned.
Instead a blank massage id is returned indicating successful completion.

&1, &2 and &3 are message variables that should be substituted with runtime
values found in field SKBH_MSGVAR.

 Examples
A sample PL/I program for CICS using the XML Text Scanner can be found in
KBH.R450.PLI(KBHXMPM)

This sample program can be tested from CECI as follows:

CECI LINK PROGRAM('KBHXMPP') COMMAREA('ttttttttn') LENGTH(200)

tttttttt is the name of a TS queue containing an XML file
use DEMO to try with a sample XML file (internal in the pgm)

n is a debug switch: Y or N

Text is written to CEEMSG during processing illustrating the events. A text
message is returned in commarea upon completion.

The sample program has an event handler that prints the events as they occur and
keeps track of the root element. It has two different file handlers, one that reads an
XML file from a TS queue and one that reads a sample XML file from internal
storage.

 Chapter 16. Generic BTB programming APIs 249

250 BTB Application Programming Guide

Chapter 17. Programming APIs and structures for CSP 3270
applications

This chapter describes of some of the BTB components that can be used in other
applications and applications running under BTB control.

BTB online help system
The BTB help system is a generic component to store text information and later
present it to the user. It consists of a DB2 table to store the help text, a CSP Call
API to present the help online, and a utility program to control the loading of new
help text.

 Usage
The BTB help system is activated under program control, and can display a help
screen like this:

� �
KBEHBMIL Options - Help

The panel presents a list of all options that are defined to BTB.

[See also the Option System Description]

Action codes (Depending on authorization)
If panel used as action list:
D - Delete option.
I - Insert new option.
M - Modify option.
C - Copy option contents to a new option.
S - Select option for detail information.

If panel used as prompt list:
S - Select option for further use.
A - Add option (and option path) to agreement set.
R - Remove option (and all underlying options) from agreement set.

Generic Search
Is possible by entering a search argument on the underscored lines
on top of the list.

F1=Help F3=Exit F8=Forward F12=Cancel
� �

By placing the cursor on the line [See also the Option System Description], a
hyperlink will be made to another help text, that could give more information about
the topic. Here it would display a manual with the title Option System Description.
All hyperlinks are displayed in yellow on the help screen.

 Copyright IBM Corp. 1992, 2002 251

� �
OPTIONMA Option System Description

The following text is a sample of a manual, that could be displayed
online via a hyperlink.

Some interesting text
Further, the product assurance architecture necessitates that urgent
consideration be applied to the structural design, based on system
engineering concepts. Interestingly enough, the characterization of
specific criteria mandates staff-meeting-level attention to the
evolution of specifications over a given time period. Thus, initiation
of critical subsystem development must utilize and be functionally
interwoven with the postulated use of dialog management technology. In
this regard, the characterization of specific criteria recognizes other
systems' importance and the necessity for possible bidirectional
logical relationship approaches. In particular, the independent
functional principle must utilize and be functionally interwoven with
any discrete configuration mode.

F1=Help F3=Exit F12=Cancel
� �

By pressing F12, the user will return to the previous panel, and F3 will return
directly to the calling application.

 Call Method
The help system can be called in a number of different ways, depending on what
kind of help is needed.

 � Panel help
 � Field help
 � Other help

The type of Help is specified in the SKBH_HLPTYP field and the name/Id of Help is
specified in the SKBH_HLPID field.

A System ID ISYSIDY must be passed to the Help Display Module. The Language
is taken directly from KAAWCOM.ZCUSRLAN, and if help in this language doesn't
exist, the help system will try with the default language UK (English).

The following examples show how the help system can be called from CSP.

252 BTB Application Programming Guide

/***/
/* Call of help systen from CSP appl */
/* Panel-help for active panel */
/* CSP procedure: KBHxxP_CONV_HELP */
/***/
;
SET KBHSHWA EMPTY;
MOVE 'XXX' TO KBHSHWA.ISYSIDY; /* help key SYSTEM=XXX
MOVE 'PAN' TO KBHSHWA.SKBH_HLPTYP; /* help key TYPE=PAN
MOVE KBHxxWM.MAPID TO KBHSHWA.SKBH_HLPID;/* help key ID=(mapid)
; /* help key LANGUAGE=zz
CALL KBHSHAP KBHSHWA,KAAWCOM; /* Process help request
;

Figure 62. Panel Help. This is the normal case, where an application wants to present
some help text about the current panel. The help system should be called with a Help ID
related to the current panel, for example, panelid, and a Helptype of 'PAN'.

/***/
/* Call of help systen from CSP appl */
/* Mixed Field- and Panel-Help */
/* Panel-help for active panel */
/***/
/* CSP procedure: KBHxxP_FND_CSR */
/***/
MOVEA ' ' TO KBHxxWM.CURSOR;
MOVE ' ' TO KBHxxWM.FLDHLPID;
;
IF KBHxxM1.FIELD01 IS CURSOR;
KBHxxWM.CURSOR(1) = 'YES';
KBHxxWM.FLDHLPID = 'FIELD01'; /* HelpId for this field

END;
 ...
/***/
/* CSP procedure: KBHxxP_CONV_HELP */
/***/
;
IF KBHxxWM.FLDHLPID ¬= ' '; /* Field help,
SET KBHSHWA EMPTY;
MOVE 'XXX' TO KBHSHWA.ISYSIDY; /* help key SYSTEM=XXX
MOVE 'FLD' TO KBHSHWA.SKBH_HLPTYP; /* help key TYPE=PAN
MOVE KBHxxWM.FLDHLPID TO KBHSHWA.SKBH_HLPID;/* help key ID=(mapid)
; /* help key LANGUAGE=zz
CALL KBHSHAP KBHSHWA,KAAWCOM; /* Process help request

ELSE; /* Panel help
SET KBHSHWA EMPTY;
MOVE 'XXX' TO KBHSHWA.ISYSIDY; /* help key SYSTEM=XXX
MOVE 'PAN' TO KBHSHWA.SKBH_HLPTYP; /* help key TYPE=PAN
MOVE KBHxxWM.MAPID TO KBHSHWA.SKBH_HLPID;/* help key ID=(mapid)
; /* help key LANGUAGE=zz
CALL KBHSHAP KBHSHWA,KAAWCOM; /* Process help request

END;

Figure 63. Mixed Field and Panel Help. This is an extension to panel help. Some
applications might want to have help for each field on the panel as well as general help
about the panel. The help system should be called with a Help ID related to the current field
on the current panel, for example, PAN1FIELDXXX, and a Helptype of 'FLD'.

 Chapter 17. Programming APIs and structures for CSP 3270 applications 253

/***/
/* Call of help systen from menu */
/* Code is placed in a stub main appl. and */
/* activated with functioncode/ZGOTO=2 */
/***/
;
IF ZGOTO = '2';
 ;
ZGOTO = '0';

 ;
SET KBHSHWA EMPTY;
MOVE 'KBH' TO KBHSHWA.ISYSIDY; /* help key SYSTEM=KBH
MOVE 'TST' TO KBHSHWA.SKBH_HLPTYP; /* help key TYPE=TST
MOVE 'TEST1' TO KBHSHWA.SKBH_HLPID; /* help key ID=TEST1
; /* help key LANGUAGE=zz
CALL KBHSHAP KBHSHWA,KAAWCOM;/* Process help request

 ;
PERFORM KAAPDXF; /* XFER/DXFR to menu or appl

END;

Figure 64. Other Help. Other kinds of text information can be stored and presented online.
A User Manual, a Messages and Codes manual, Descriptions of WC table keys, or
something else could be accessible online directly from the menu.

The help system should be called with a Help-Id related to the text, for example,
XXXXXMANUAL, and a Helptype of 'MAN', 'MSG', 'WCK' or another 3 char. abbreviation.

 External input
The BTB help system keeps the help text in a DB2 table (KBDVMH), and in order
to make the load of new or changed text easy, a load utility program exists. The
program is normally run from a batch JCL job, and takes a flat file as input. The flat
file is 80 char wide.

Help text is defined as a number of text lines, that are shown together on the
screen. The different parts of the text (title, body text, highlighted lines and
hyperlinks) are identified by markup tags in the input file. An input file can contain a
sequence of help text definitions. The text is not free format with auto-reflow. The
tagged file is loaded line by line using the tags to control special functions.

Sample input file
The following input file will extract (READ) all defined help text under System KBH
and having an Id stating with KBH. It will then add or replace the help text as
shown in the previous screen example.

254 BTB Application Programming Guide

:HELP SYSTEM=KBH LANGUAGE=* TYPE=* ID=KBH* FUNCTION=READ.
:EHELP.

:HELP SYSTEM=KBH LANGUAGE=UK TYPE=PAN ID=KBEHBMIL FUNCTION=REPLACE.
:TITLE.
Options - Help
:ETITLE.

The panel presents a list of all options that are defined to BTB.

:LINK TYPE=MAN ID=OPTIONMANUAL.
See also the &1
:ELINK.

:HP1.
Action codes (Depending on authorization)
:EHP1.
If panel used as action list:
D - Delete option.
I - Insert new option.
M - Modify option.
C - Copy option contents to a new option.
S - Select option for detail information.

If panel used as prompt list:
S - Select option for further use.
A - Add option (and option path) to agreement set.
R - Remove option (and all underlying options) from agreement set.

:HP1.
Generic Search
:EHP1.
Is possible by entering a search argument on the underscored lines
on top of the list.

:EHELP.
.*
.*
:HELP SYSTEM=KBH LANGUAGE=UK TYPE=MAN ID=OPTIONMANUAL FUNCTION=REPLACE.
:TITLE.
Option System Description
:ETITLE.

The following text is a sample of a manual, that could be displayed
online via a hyperlink.

:HP1.
Some interesting text
:EHP1.
Further, the product assurance architecture necessitates that urgent
consideration be applied to the structural design, based on system
engineering concepts. Interestingly enough, the characterization of
specific criteria mandates staff-meeting-level attention to the
evolution of specifications over a given time period. Thus, initiation
of critical subsystem development must utilize and be functionally
interwoven with the postulated use of dialog management technology. In
this regard, the characterization of specific criteria recognizes other
systems' importance and the necessity for possible bidirectional
logical relationship approaches. In particular, the independent
functional principle must utilize and be functionally interwoven with
any discrete configuration mode.
:EHELP.

 Chapter 17. Programming APIs and structures for CSP 3270 applications 255

Sample JCL job
The JCL job KBHLMHX is a sample job to load help text into the help system. The
program uses 3 datasets:

DATAIN Contains the input file

DATAOUT Contains the output from any function=read

DATABCK Contains a backup of old text function=replace or delete

Syntax of input
The formal specification of the input file is given here:

help text definition

The different attributes have the following meaning:

SYSTEM
The project or system, this help text is related to (maximum 4 characters).

LANGUAGE
The language of the help text. Default is UK (length 2 characters).

TYPE Type of help text. Default is PAN (Panel help), other possible types are
FLD (Field Help), MSG (Message Help), WCK (WC Table Keys Help),
MAN (Manuals and User Guides) and other abbreviations. (length 3 char.)

ID Identification of this help text, for example panel ID or name of a manual
(length maximum 16 char.)

FUNCTION
FUNCTION determines what should happen. Default is REPLACE, that
will add or replace existing help text. Other functions are READ, that can
extract text from the help system, and DELETE, that will remove help text.
READ and DELETE can only have the :HELP and :EHELP. tags.

Syntax

:help

...
:title

...
:etitle

...
:hp1

...
:ehp1

...
:link

...
:elink

...
:ehelp

Attributes

:HELP

 Attributes Value
 SYSTEM= system id.
 [LANGUAGE= {UK|DA|DE|ES|
 IT|FI|FR|NL|NO|SV}]
 [TYPE= {PAN|FLD|MAN|other types}]
 ID= Help identification
 [FUNCTION= {REPLACE|READ|DELETE}]
 [.]

:EHELP[.]

256 BTB Application Programming Guide

 Title definition

There can be only one title line. (maximum length 58 char.)

 Text definition

There can be one or more text lines. (maximum length 72 char.)

Highlighted text definition

There can be one or more text lines (maximum length 72 char.) between a set of
:HP1. and :EHP1. tags. All the lines will then be highlighted.

 hyperlink definition

Syntax

:help

...
:title

...
:etitle

...
:ehelp

Attributes

:TITLE[.]
title line
:ETITLE[.]

Syntax

:help

...
:ehelp

Attributes

[text lines]

Syntax

:help

...
:hp1

...
:ehp1

...
:ehelp

Attributes

:HP1[.]
[Highlighted text lines]
:EHP1[.]

 Chapter 17. Programming APIs and structures for CSP 3270 applications 257

The different attributes has the following meaning:

SYSTEM The project or system, that the hyperlink should go to. Default is the
same system as the current help text.

TYPE The type of help text, that the hyperlink should go to. Default is the same
type as the current help text.

ID The identification of the help text, that the hyperlink should go to.

The following text [reference text to &1 hyperlink] is the text, that will appear on
screen. A &1 will insert the title of the referenced help text.

Syntax

:help

...
:link

...
:elink

...
:ehelp

Attributes

:LINK

 Attributes Value

[SYSTEM= link system id.]
 [TYPE= link type]

ID= link help identification
 [.]
[reference text to &1 hyperlink]
:ELINK[.]

Application data in KAAWCOM
When an application returns the control to BTB all allocated storage is released. If
the user at a later time (same day without logging off) enters the application, the
application does not know anything about the previous entered information, and the
user would have to enter it again. If the application wants to keep some
information during the current session it can be kept in KAAWCOM in a special
application data slot.

When the user logs off from BTB, or the user is timed out due to inactivity all fields
will be reset and application data in KAAWCOM are lost.

An example of application data in KAAWCOM could be a Dealer application, where
an user can work with a limited set of customers. A selected customer number
could be kept during the session for later use in the same or related applications.
All the application has to do, is to allocate a slot in KAAWCOM, give the slot a
name, place the customer number in the slot, and refer to this slot on the next
invocation.

� 10 slots are available for applications.

� Application can allocate a slot of 200 bytes.

� A slot is identified by an unique ID, which identifies the owner (and the format)
of the slot. The ID is 8 bytes long.

� The application data is kept during BTB session

� The slot might be taken by another application

258 BTB Application Programming Guide

Locate a previous or a new slot
When an application is started, it should either find the previous allocated
application data slot or allocate a new one.

; /* TEST-ID is the Id of our slot
; /* MY_200_CHAR_DATA is a local structure of the slot
;
IF 'TEST-ID' IN ZAPPLDATA_ID; /* OK, we have a slot
 ;
MOVE ZAPPLDATA_REC(EZETST) TO MY_200_CHAR_DATA;

 ;
ELSE; /* No, we don't have a slot
 ;
IF ' ' IN ZAPPLDATA_ID; /* Any free slots ?

 ;
MOVE 'TEST-ID' TO ZAPPLDATA_ID(EZETST);
MOVE "Reserve" TO ZAPPLDATA_REC(EZETST);
MOVE "My data" TO MY_200_CHAR_DATA;

 ;
ELSE; /* No free slots

 ;
; /* We have to steal one ...
; /* Pickup a number (and hope nobody is hurt)
; /* or decide not to take a slot

 ;
MOVE 'TEST-ID' TO ZAPPLDATA_ID(4);
MOVE "Reserve" TO ZAPPLDATA_REC(4);
MOVE "My data" TO MY_200_CHAR_DATA;

 ;
 END;
END;
;

Write data to application slot
On exit the application should save its data in the previous allocated application
data.

IF 'TEST-ID' IN ZAPPLDATA_ID; /* We should have a slot now
 ;
MOVE MY_200_CHAR_DATA TO ZAPPLDATA_REC(EZETST);

 ;
END;
;

 Chapter 17. Programming APIs and structures for CSP 3270 applications 259

Common work area—KAAWCOM
KAAWCOM is the main communication work area, used by the infrastructure for
building menus and navigation purposes. KAAWCOM is always passed between
flexible menu (KBHMEAP) and the F/E applications. KAAWCOM has been added
the area ZAPPLDATA where the F/E applications can store whatever data they
want to. The infrastructure will not reset this part of KAAWCOM. ZAPPLDATA has
an occurrence of 10, each with a length of 200 bytes and with an 8 character key
to hold an application ID. All fields are initiated by application KBHINAP.

 Format
Structure of KAAWCOM:

NAME LEVEL OCCURS TYPE LENGTH DESCRIPTION
Z_ALL_KAAWCOM_STRUCT 05 00001 CHA 04000
FIELDP0 10 00001 CHA 00013 Structure kaawip0
QDEXLEN 20 00001 BIN 00004 Length of interface
IDEXSET 20 00001 BIN 00004 Id of interface set
CPGMSTC 20 00001 BIN 00004 Environment status
IPGMEWM 20 00001 CHA 00007 Message no

 Z_USER_AND_CUSTOMER_PROFILE 10 00001 CHA 00332 User/company ref data
 ZCUSTPROF 15 00001 CHA 00066

ZIOPUCTY 20 00001 CHA 00003 Country
ZICUSPRM 20 00001 CHA 00009 Primary cust.no.
ZCUSTNAM 20 00001 CHA 00030 Customer name
ZICUSIDY 20 00001 BIN 00009 Address id - (CS-DB)
* 20 00001 CHA 00020

 ZREFPROF 15 00001 CHA 00066 Reference data
 ZSIM_CUST 15 00001 CHA 00001 Primary acc. to simulate
 ZUSERPROF 15 00001 CHA 00149 User ref. data

ZUSERID 20 00001 CHA 00008 Racf user ID
ZCUSRLAN 20 00001 CHA 00002 Language identifier
ZCUSRSEC 20 00001 CHA 00001 Security indicator
ZMSGLANG 20 00001 CHA 00002 Message language identifier
ZCUSRDLM 20 00001 CHA 00001 User delimiter in expert mode
ZIKAAPRF 20 00001 CHA 00008 User profile id
ZSTDPRF 20 00001 CHA 00008 User standard profile
ZADMPRF 20 00001 CHA 00008 User administration profile
ZFUSRFID 20 00001 CHA 00001 Show PF-keys
ZCUSRPOC 20 00001 CHA 00001 Panel-id option code
ZIUSRPRM 20 00001 CHA 00007 Customer to be simulated
ZCUSRIAS 20 00001 CHA 00003 User classification default
ZCUSRCTG 20 00001 CHA 00001 User category
ZCUSRCSR 20 00001 CHA 00001 Cursor default
ZCUSRLVL 20 00001 CHA 00003 User level
ZIUSRHLN 20 00001 CHA 00008 Node id - home location
ZIUSRHLT 20 00001 CHA 00008 Term id - home location
ZIUSRHLP 20 00001 CHA 00008 Printer id - home location
ZIUSRIDY_DIAL 20 00001 CHA 00009 Dial IBM user ID
ZIUSRIDY_SAC 20 00001 CHA 00009 SAC user ID
ZIUSRIDY_ENG 20 00001 CHA 00009 Engine user ID
ZIUSRIDY_IMS 20 00001 CHA 00009 IMS user ID
ZNCUSDEPT 20 00001 CHA 00030 Department
ZIPRSIDY 20 00001 BIN 00009 PersonID (Key in person table)

 * 15 00001 CHA 00050
Z_ENVIRONMENT 10 00001 CHA 00455 Environment ref.data
ZNODE 20 00001 CHA 00008 Node

260 BTB Application Programming Guide

ZINITALF 20 00001 CHA 00007 Called alf name
ZALF 30 00001 CHA 00001 First pos in alf-file
* 30 00001 CHA 00006
ZINITAPP 20 00001 CHA 00007 Called application name
ZCHOICE 20 00001 CHA 00012 COMSEC Choice number
ZCMD 20 00001 CHA 00057 Command line
ZCOMMAND 30 00001 CHA 00008 Left part of command line
* 30 00001 CHA 00049
ZAPPLNAM 20 00001 CHA 00008 Name of current application
ZNEWAPPL 20 00001 CHA 00008 Name of new application
ZTRXNAM 20 00001 CHA 00004 Current CICS transaction
ZNEWTRX 20 00001 CHA 00004 New CICS transaction
ZPANELID 20 00001 CHA 00008 Current panel
ZOPTION 20 00001 CHA 00006 Identify screen for return
ZGOTO 20 00001 CHA 00002 Information - where to go
ZGOTOLVL 20 00001 NUM 00001 Level in goto zstack
ZGSTACK 20 00015 CHA 00002 Stack
ZGO 20 00001 CHA 00002 Indentifier if data are passed
ZDATA 20 00001 CHA 00240 Data passed - total
ZFIELDS 30 00006 CHA 00040 Data passed
ZCHK_MSG 20 00001 CHA 00001
* 20 00001 CHA 00050

Z_MESSAGE_HANDLING 10 00001 CHA 00359
ZMSGNO 20 00001 CHA 00006 Message number
ZMSGSEVR 20 00001 CHA 00001 Message severity
ZMSG 20 00001 CHA 00077 Message text
ZMSGAMP1 30 00001 CHA 00027 Text insertable in ZMSG (&1)
ZMSGAMP2 30 00001 CHA 00025 Text insertable in ZMSG (&2)
ZMSGAMP3 30 00001 CHA 00025 Text insertable in ZMSG (&3)
ZSQLCOD 20 00001 NUM 00004 SQL feedback code
ZSQLERR 20 00001 CHA 00077 SQL error text
Z_LASTMSG 20 00001 CHA 00080 Info about last message
ZMSGID_LONG 20 00001 CHA 00010 Long message id, special use
* 20 00001 CHA 00104

Z_OTHER_FIELDS 10 00001 CHA 00151
ZDEBUG 20 00001 CHA 00001 DEBUG: Y / N switch for test
ZMON_FNC 20 00001 CHA 00003 MONITOR: Function code
ZMON_DATA 20 00001 CHA 00128 MONITOR: Userfield data
ZCURSOR 20 00001 CHA 00008 Name of cursor field
ZFOUND 20 00001 CHA 00005 Record found indicator
ZI 20 00001 NUM 00003 Used for index m.m.
ZJ 20 00001 NUM 00003 Used for index m.m.

* 10 00001 CHA 00610
ZAPPLDATA 10 00010 CHA 00208 Application data area
ZAPPLDATA_ID 20 00001 CHA 00008 Id of owner of appl.data recd.
ZAPPLDATA_REC 20 00001 CHA 00200 Application def. recd. struct.

 Processing
The F/E application can reserve one (or more if needed) of the 10 ZAPPLDATA
areas by entering the application id in the ZAPPLDATA_ID field, and the application
data in the ZAPPLDATA_rec field. The F/E applications using the application data
area should first check if the ZAPPLDATA_ID 1 through 10 are filled in.

When an empty ZAPPLDATA_ID is found, the application can fill in it's own
application-id and the application data in the ZAPPLDATA_REC. Now the
application has stored its data in KAAWCOM, and the infrastructure will not touch

 Chapter 17. Programming APIs and structures for CSP 3270 applications 261

the area. Whenever the F/E application needs the application data it should check
the appl-id in the ZAPPLDATA_ID to ensure that no other application has
overwritten the area.

All applications should in common interest only put data in an empty occurrence of
ZAPPLDATA_ID/ZAPPLDATA_REC. Only in cases where all 10 occurrences are
used, it is necessary to overwrite another applications area.

The F/E applications can retrieve the user country code from
KAAWCOM.ZIOPUCTY for MCO operation purposes.

262 BTB Application Programming Guide

F-keys string builder—KBHPFKP
Given a string containing texts for all 12 F-keys and an array with marks for
required F-keys, this module builds a string of only the valid F-keys (with text) to be
shown on map.

The module should be called at application initialization, or prior to screen
converses, if the valid F-keys change dynamically (F8 is only valid when more data
is available).

 Format
The module is available in a CICS version.

Call Syntax (CSP)

77─ ──CALL KBHPFKP KBHPFW (NOMAPS,NONCSP; ───────────────────────────7"

CSP Working storage KBHPFW:

NAME LEVEL OCCURS TYPE LNG DESCRIPTION

WPFSEL 10 1 CHA 12 key to PF keys 'Y Y YY'
 WPFSELX 15 12 CHA 1 show pf-key(x)
WPFKEYS 10 1 CHA 144 all pfkeys
WPFKEYA 15 12 CHA 12 all pfkeys - substructure

WPFTEXT 10 2 CHA 78 selected pfkeys

Before the call, WPFSELX should be filled with non-blank character to toggle the
display of the corresponding F-key.

Here is an example:

WPFSELX(3) = Y would cause F3 to be displayed.

WPFKEYS is filled with the total F-key string (usually extracted from a CSP table).

After a call to the module WPFTEXT would contain two lines of formatted F-keys.

 Processing
Build a string of valid F-keys based on a string with all possible texts and an array
with the currently active F-keys. The module places the text at fixed positions to
avoid flipping left-right. This principle is conflicting with the CUA Architecture, which
recommends two blanks between each F-key.

 Examples
How to use KBHPFKP in a CSP application:

 Chapter 17. Programming APIs and structures for CSP 3270 applications 263

;
SET KBHPFW EMPTY; /* Always initialize WS
;
RETR
ZCUSRLAN /* Current language
KBHxxTx.CUSRLAN /* Language column in table
KBHPFW.WPFKEYS /* Destination area
PF; /* Wanted column from table

;
MOVE 'Y' TO KBHPFW.WPFSELX(1); /* F1 valid
MOVE 'Y' TO KBHPFW.WPFSELX(3); /* F3 valid
MOVE 'Y' TO KBHPFW.WPFSELX(12); /* F12 valid
;
IF MORE_DATA_UPWARDS = 'Y';
MOVE 'Y' TO KBHPFW.WPFSELX(7); /* F7 valid

END;
;
IF MORE_DATA_DOWNWARDS = 'Y';
MOVE 'Y' TO KBHPFW.WPFSELX(8); /* F8 valid

END;
;
CALL KBHPFKP KBHPFW (NOMAPS,NONCSP; /* Call module
;
; /* Move 2 occurences of formatted text to map
MOVEA KBHPFW.WPFTEXT TO KBHxxMxx.PF;
;
----- CONVERSE KBHxxMxx -----------
;

264 BTB Application Programming Guide

Extended scope API—KBHECAP
To test which rights for the user.

 Format
The module is a CSP application with the following CALL syntax:

 Call Syntax (CSP)

77─ ──CALL KBHECAP KBHECW (NOMAPS; ──────────────────────────────────7"

 Parameters
NAME LEV OCC TYPE LEN Inp/ Mandatory DESC.
 Outp
------------------ --- ----- - ----- - - -------------
SKBH_FNC 10 00001 C 00008 I Y Function name
QROWCNT 10 00001 N 00002 O number of lines/rows
APPLNAM 10 00001 C 00008 I Y Application name
USERID 10 00001 C 00008 I Y
MSGNO 10 00001 C 00006 O message number
MSG_SUBST1 10 00001 C 00025 O
MSG_SUBST2 10 00001 C 00025 O
MSG_SUBST3 10 00001 C 00025 O
MSG_TXT 10 00001 C 00080 O Message txt
KBHECI_RTNCODE 10 00001 C 00001 O Return Code
MORE 10 00001 C 00001 O more rows ?

IUSRIDY 10 00001 C 00008 I Y IMB user ID
IKAAPRF 10 00001 C 00008 I Agreement Subset ID
IKAAOPT 10 00001 C 00006 I Y Option id. from table
ISCOIDY 10 00001 C 00016 I Y Scope key
ISCOVAL 10 00001 C 00024 I Y/N Scope value
ISCOVAL_X 20 00024 C 00001 I Scope value
CSCOPRI 10 00001 C 00004 I N PRIVILEGE
IOPUCTY 10 00001 C 00003 I Y Country number
ICUSPRM 10 00001 C 00009 I Y Primary Customer no.

SCOPE_VALUES 10 00050 C 00024 O
SCOPE_RIGHTS 05 00050 C 00004 O

SCRLLAREA 05 00001 C 00160 I/O Area for scroll keys
SCRLLKEY 10 00002 C 00080 I/O Scroll key

SKBH_FNC
The function to be done. Valid input values are:

LIST List all rights the user has.

LISTF More than 50 rows were returned by first LIST call. Second and
subsequent LIST calls should use this function, and pass the
returned SCRLLAREA to the API.

CHECK Check if user has the right to perform an action.

QROWCNT
How many rows (of SCOPE_VALUES) will be returned.

 Chapter 17. Programming APIs and structures for CSP 3270 applications 265

APPLNAM
Application name (used by error logging).

USERID
User Identification (used by error logging).

MSGNO
Message number. Valid values for MSGNO are:

KBH080 Unknown function parameter passed to KBHECAP.

KBH081 No user ID, option, or scope key passed to KBHECAP.

KBH082 Option not defined.

KBH083 Scope not defined.

KBH084 No user ID or applnam passed to KBHECAP.

KBH085 User has no access to option.

KBH086 User has no access to scope.

KBH087 Trading Partner has no access to option.

KBH088 Trading Partner has no access to scope.

KBHESI_RTNCODE
Return code, can have one of these values:

0 All Ok

1 No access, see message number or message text for further
description.

5 Other error.

MORE
If MORE = Y, the user has more than 50 scope values listed and the API
should be called again in order to get the rest of the rows.

IUSRIDY
BTB user ID.

IKAAPRF
Not used.

IKAAOPT
Which option has been chosen.

ISCOIDY
Scope Key.

ISCOVAL
Scope Value. Mandatory when SKBH_FNC = CHECK.

CSCOPRI
Privilege should be filled out if the scope has privileges.

IOPUCTY
Country code the user belongs to.

ICUSPRM
Trading Partner the user belongs to.

266 BTB Application Programming Guide

SCOPE_VALUES
An array with all the scope values listed that user has access to. This field
is always completed, regardless of which function has been chosen, if the
user has any rights to use any scope.

SCOPE_RIGHTS
An array with all privileges listed that user has access to. This field is
always completed, regardless of which function has been chosen, if the user
has any rights to use any scope.

 Description
A scope is a restriction filter telling specifically which data an user can operate on.
Assume a company had 3 departments: A, B and C.

Employees of department A, should only be able to operate on data belonging to
department A, with update privileges.

Employees of department B, should only be able to operate on data belonging to
department B, with update privileges.

Employees of department C, should be able to operate on data belonging to
department C (with update privileges), but should also be able to select(view) data
from department A and B.

Finally, superior employees should have rights to operate on all data with update
privileges.

 Chapter 17. Programming APIs and structures for CSP 3270 applications 267

 ┌──────────────┐
 │ │
 │ Company │
 │ │
 └───┬──┬───────┘
 ┌─────────────────────┘ │
 │ ┌──────────────┼─────────────┐
 │ │ │ │
 │ │ │ │
 │ ┌────┴─────┐ ┌─────┴────┐ ┌────┴─────┐
 │ │ │ │ │ │ │
 │ │Department│ │Department│ │Department│

│ │ A │ │ B │ │ C │
 │ └────┬─────┘ └─────┬────┘ └─────┬────┘

│ │ │ │
│ ┌────┴───┐ ┌────┴───┐ ┌────┴───┐

 │ │ USER2 │ │ USER3 │ │ USER4 │ Scope through
│ └────────┘ └────────┘ └────────┘ Agreement Subsets

 │ ^ ^ ^ ^ ^
│ │ ┌────────── │ ─────────────┘ │ │
│ │ │ │ ┌─────────────┘ │

 │) │) │)
 │ ┌──────────────┬──────────────┬──────────────┐

│ │ │ │ │
 │ │ Data │ Data │ Data │
 │ │ A │ B │ C │
 │ └──────────────┴──────────────┴──────────────┘
 │ ^ ^ ^

│ └───────────┐ │ ┌─────────────┘
│ │ │ │
│)))

 │ ┌────────┐
└────────────────────┤ USER1 │ Scope through a

 └────────┘ Trading Partner

Figure 65. Example of use of the Scope facility.

Once the registrations are made in BTB a Business Application could call the API
asking if the user is allowed to perform the task the user is attempting. If USER2,
for example tries to select data from department B, the API should be called and a
return code would tell the Business Application that the user has no such rights.

 Processing
Module has two main functions:

LIST A list will be returned with all the scopes user has access to.

LISTF function is used for repeated LIST calls.

CHECK A list will be returned with all the scopes user has access to, and a return
code will tell whether the user has access to the given scope/option.

For both functions the program tests whether the user has scope rights through an
agreement subset or if she has scope rights through Trading Partner and if she has
access to the given option.

268 BTB Application Programming Guide

 String handler—KBHSTRP
This assembler program is for CSP to assist the work with text strings, especially
with reference to BTB.

 Format
The module is available in a CICS version only.

Call Syntax (CSP)

77─ ──CALL KBHSTRP KAAWZSTR (NOMAPS,NONCSP; ─────────────────────────7"

CSP Working storage KAAWZSTR holding data contents:

NAME LEVEL OCCURS TYPE LNG DESCRIPTION

ROUTINE 10 00001 CHA 8 routine name
SUBPARM 10 00001 CHA 16 Sub-parameters
TEXT1 10 00001 CHA 256 Text string 1
TEXT2 10 00001 CHA 256 Text string 2
TEXT3 10 00001 CHA 256 Text string 3
LENGHT 10 00001 BIN 4 Length of result
RESULT 10 00001 CHA 256 Result string
RNCODE 10 00001 CHA 1 Return code

Note: Mispelling of LENGHT parameter.

 Processing
The program is designed as a routine with six subroutines, of which one is
specified in the 'Routine name' field. The possibilities are:

 1. ARRANGE
 2. FOLD
 3. MESSAGE
 4. SUBSTR
 5. TRANSLAT
 6. USCORE

The load module name of the string handler is KBHSTRP, but it is also available
under aliases P455A001 and P455A002 for backward compatibility.

 Chapter 17. Programming APIs and structures for CSP 3270 applications 269

Usage with ARRANGE
In the sub-parameter field five different parameters can be used: *,1,2,3,B. In the
three text fields three different texts can be written, which are referred to by
sub-parameters 1, 2 and 3. A text in one of these fields is read 'from first
non-blank to last non-blank character' (including both characters).

A '*' in the sub-parameter field means a collection of blanks, which are dependent
on the total number of characters, the total number of non-blanks and on the
number of asterisks ('*') in the sub-parameter field. See the example later in this
text. A 'B' in the sub-parameter field means a single blank.
In the length field the maximum text length is written.
In the result field the output text is fetched.

Message Explanation

0 Everything OK

6 The sub-parameters and written texts exceed the specified length.
The result field remains unchanged.

7 In the sub-parameter field reference is made to a text, which only
contains blanks. The result field is unchanged.

8 Sub-parameter field cannot be read. Result field is unchanged.

9 The specified text length is either less than 1 or greater than 256. The
result field is unchanged.

A Routine name field is incorrect. Only uppercase letters are accepted.
Result field is unchanged.

 Examples
How to use the ARRANGE function from a CSP application:

;
SET KAAWZSTR EMPTY; /* Always initialize WS
;
; /* Setup parameters for ARRANGE
;
MOVE 'ARRANGE' TO KAAWZSTR.ROUTINE;
MOVE '1*2*3' TO KAAWZSTR.SUBPARM;
MOVE "abcd" TO KAAWZSTR.TEXT1;
MOVE "123" TO KAAWZSTR.TEXT2;
MOVE "abcd" TO KAAWZSTR.TEXT3;
MOVE 20 TO KAAWZSTR.LENGHT;
;
CALL KBHSTRP KAAWZSTR (NOMAPS,NONCSP;
;
IF KAAWZSTR.RNCODE = '0';

/* KAAWZSTR.RESULT holds the result
END;
;

After the routine call:

Return code = 0
Result = abcd����123�����abcd

270 BTB Application Programming Guide

The �'s will be represented as blanks. The same output could have been obtained
if the sub-parameter field had contained 1*2*1. With an odd number of blanks an
extra blank is added for each * from the right to the left.

Usage with FOLD
In the text1 field the text that is to be folded is written. In the result field the 'folded'
text is fetched. All Danish lowercase letters are folded into Danish uppercase
letters, while all other characters are unchanged.

Message Explanation

0 Everything OK

A Routine name field is incorrect. Only uppercase letters are accepted.
Result field remains unchanged.

 Examples
How to use the FOLD function from a CSP application:

;
SET KAAWZSTR EMPTY; /* Always initialize WS
;
; /* Setup parameters for FOLD
;
MOVE 'FOLD' TO KAAWZSTR.ROUTINE;
MOVE "KBHSTRP can fold æ ø å to uppercase" TO KAAWZSTR.TEXT1;
;
CALL KBHSTRP KAAWZSTR (NOMAPS,NONCSP;
;
IF KAAWZSTR.RNCODE = '0';

/* KAAWZSTR.RESULT holds the result
END;
;

After the routine call:

Returncode = 0
Result = KBHSTRP CAN FOLD Æ Ø Å TO UPPERCASE

 Chapter 17. Programming APIs and structures for CSP 3270 applications 271

Usage with MESSAGE
In the three text fields three different texts can be written. A text in one of these
fields is read 'from first non-blank to last non-blank character' (including both
characters).

In the length field the current text length is specified.

In the result field the message text from the message table is put. In this text &1,
&2 and &3 will be replaced by text1, text2 and text3. When the routine is
completed, the new text is written in the result field.

Message Explanation

0 Everything OK

7 The new text will exceed the specified length. Result field remains
unchanged.

8 The old text in the result field exceeds the specified length. Result
field is unchanged.

9 The specified text length is either less than 1 or greater than 256.
Result field is unchanged.

A Routine name field is incorrect. Only uppercase letters are accepted.

 Examples
How to use the MESSAGE function from a CSP application:

;
SET KAAWZSTR EMPTY; /* Always initialize WS
;
; /* Setup parameters for MESSAGE
;
MOVE 'MESSAGE' TO KAAWZSTR.ROUTINE;
MOVE '99999' TO KAAWZSTR.TEXT1;
MOVE 'IBM' TO KAAWZSTR.TEXT2;
MOVE 72 TO KAAWZSTR.LENGHT;
MOVE "Employee no.: (&1 at &2) does not exist" TO KAAWZSTR.RESULT;
;
CALL KBHSTRP KAAWZSTR (NOMAPS,NONCSP;
;
IF KAAWZSTR.RNCODE = '0';

/* KAAWZSTR.RESULT holds the result
END;
;

After the routine call:

Returncode = 0
Result = Employee no.: (99999 at IBM) does not exist

272 BTB Application Programming Guide

Usage with SUBSTR
In the sub-parameter field (position,number) is specified.
In the text1 field is put the text string from which the sub-string is to be read.
Blanks are also included.
In the length field the current text length can be specified, and it will be used if valid
(1 <= length <= 256). Otherwise, default length is 256.
When the routine is completed, the sub-string will be in the result field, and the
length field contains the relative position of the last character in the text1 field.

Message Explanation

0 Everything OK

8 A sub-string which will exceed the text1 field as specified by the
length field was attempted. (The length will be 256 if the specified
value was incorrect.) Result field contains a text string starting with
the specified position followed by as many of the following characters
as possible

9 The sub-parameter field is incorrect. Result field is unchanged.

A Routine name field is incorrect. Only uppercase letters are accepted.
Result field is unchanged.

 Examples
How to use the SUBSTR function from a CSP application:

;
SET KAAWZSTR EMPTY; /* Always initialize WS
;
; /* Setup parameters for SUBSTR
;
MOVE 'SUBSTR' TO KAAWZSTR.ROUTINE;
MOVE '3,06' TO KAAWZSTR.SUBPARM;
MOVE "CCUserXXXXXXXX" TO KAAWZSTR.TEXT1;
MOVE 0 TO KAAWZSTR.LENGHT;
;
CALL KBHSTRP KAAWZSTR (NOMAPS,NONCSP;
;
IF KAAWZSTR.RNCODE = '0';

/* KAAWZSTR.RESULT holds the result
END;
;

After the routine call:

Returncode = 0
Result = UserXX
Length = 14

Note: The same result could have been obtained if the sub-parameter field had
contained 003,006 or 3,6 (but at most with three digits per input).

 Chapter 17. Programming APIs and structures for CSP 3270 applications 273

Usage with TRANSLAT
The TRANSLAT function is the same as the TRANSLATE function known from
PL/I. The sub-parameter field is not used. Text1 is the string to be searched for
possible translation of its characters. Text2 is the character expression containing
the translation values of characters. Text3 is the character expression containing
the characters that are to be translated. Length is the length of Text1. Result
would contain the resulting string after a successful call.

Message Explanation

0 Everything OK

9 The specified text length is either less than 1 or greater than 256. The
result field is unchanged.

A Routine name field is incorrect. Only uppercase letters are accepted.
Result field is unchanged.

274 BTB Application Programming Guide

 Examples
How to use the TRANSLAT function from a CSP application to change some
characters in a string:

;
SET KAAWZSTR EMPTY; /* Always initialize WS
;
; /* Setup parameters for TRANSLAT
;
MOVE 'TRANSLAT' TO KAAWZSTR.ROUTINE;
MOVE "This is a test" TO KAAWZSTR.TEXT1; /* String to change
MOVE "z" TO KAAWZSTR.TEXT2;
MOVE "s" TO KAAWZSTR.TEXT3; /* change all s to z
MOVE 15 TO KAAWZSTR.LENGHT;
;
CALL KBHSTRP KAAWZSTR (NOMAPS,NONCSP;
;
IF KAAWZSTR.RNCODE = '0';

/* KAAWZSTR.RESULT holds the result
END;
;

After the routine call:

Return code = 0
Result = Thiz iz a tezt

How to use the TRANSLAT function from a CSP application to reformat a DB2 date
field:

;
SET KAAWZSTR EMPTY; /* Always initialize WS
;
; /* Setup parameters for TRANSLAT
;
MOVE 'TRANSLAT' TO KAAWZSTR.ROUTINE;
MOVE 'GH/EF ABCD' TO KAAWZSTR.TEXT1; /* Output mask
MOVE '1990-09-17' TO KAAWZSTR.TEXT2; /* Input string
MOVE 'ABCD-EF-GH' TO KAAWZSTR.TEXT3; /* Input mask
MOVE 10 TO KAAWZSTR.LENGHT;
;
CALL KBHSTRP KAAWZSTR (NOMAPS,NONCSP;
;
IF KAAWZSTR.RNCODE = '0';

/* KAAWZSTR.RESULT holds the result
END;
;

After the routine call:

Return code = 0
Result = 17/09 1990

 Chapter 17. Programming APIs and structures for CSP 3270 applications 275

Usage with USCORE
The USCORE function is used to set or remove underscore characters in a string
to be displayed on a CSP map. The physical underscore attribute is not supported
on all 3270 terminals/emulators, and as a replacement we could use the
underscore character to illustrate the length of an input field. The USCORE function
is able to set and remove underscore characters and left or right justify the string.
The sub-parameter field contains one of the following parameters:

'1R', '1L', '1�', '2R', '2L' or '2�' ('�' is a blank character).

� '1' gives a translation from blank to underscore.
� '2' gives a translation from underscore to blank.
� 'R' justifies the result to the right.
� 'L' justifies the result to the left.
� '�' (blank) does not justify the result.
� Text1 is the string to be processed.
� Length is the length of Text1.
� Result would contain the resulting string after a successful call.

Message Explanation

0 Everything OK

8 Sub-parameter field cannot be read. Result field is unchanged.

9 The specified text length is either less than 1 or greater than 256. The
result field is unchanged.

A Routine name field is incorrect. Only uppercase letters are accepted.
Result field is unchanged.

 Examples
How to use the USCORE function from a CSP application to right-justify a string
and set underscore characters before displaying on a map:

;
SET KAAWZSTR EMPTY; /* Always initialize WS
;
; /* Setup parameters for USCORE
;
MOVE 'USCORE' TO KAAWZSTR.ROUTINE;
MOVE '1R' TO KAAWZSTR.SUBPARM;
MOVE "This is a test" TO KAAWZSTR.TEXT1;
MOVE 25 TO KAAWZSTR.LENGHT;
;
CALL KBHSTRP KAAWZSTR (NOMAPS,NONCSP;
;
IF KAAWZSTR.RNCODE = '0';

/* KAAWZSTR.RESULT holds the result
END;
;

After the routine call:

Return code = 0
Result = ___________This is a test

276 BTB Application Programming Guide

Appendix A. DB2 tables used by BTB

This appendix contains information about all DB2 tables used by BTB. The internal
relations are shown in schematic form, and then the columns of each table are
listed.

Understanding table relationships
A c on the relation line indicates that this relation is enforced by DB2 Referential
Integrity with cascade delete. An r on the relation line indicates that this relation is
enforced by DB2 Referential Integrity with delete restricted. Other relations are
only enforced by program logic.

 Copyright IBM Corp. 1992, 2002 277

┌──────────┐ ┌──────────┐ ┌──────────┐ ┌──────────┐ ┌──────────┐ ┌──────────┐
│ KAFT01│ │ KBDTAG│ │ KBDTBP│ │ KBDTOP│ │ KBDTSE│ │ KBDTSD│

 │Trading │ │Agreement │ │ │ │ │ │ │ │Scope │
│Partner │ │set │ │BPI │ │Option │ │Service │ │definition│
└┬┬┬┬┬┬──┬─┘ └─┬──┬─┬─┬─┘ └──┬──┬────┘ └─┬──┬─────┘ └─┬──┬──┬──┘ └─┬─────┬──┘
││││││ │ │ │ │ │ │ │ │ │ │ │ │ │ │
││││││ │ │ │ │ └─────────│──│───────────│──│─────┐ ┌─────────┘ │ │ │ │

 ││││││ │ │ │ └───────────│──│────┐ ┌─┘ │ │ │ │ │ │ │
┌──┘│││││ └─┐ ┌─┘ └─────┐ ┌──┘ │ │ │ │ │ │ ┌──────┘ │ ┌───┘ │
│ │││││ │ r c c │ c │ │ c c │ c │ c

┌───────┴──┐│││││ ┌──┴────┴──┐ ┌──┴────┴──┐ │ ┌──┴────┴──┐ │ ┌──┴────┴──┐ │ ┌───────┴──┐ │ ┌───────┴──┐
│ KBDTXT││││││ │ KBDTRA│ │ KBDTAB│ │ │ KBDTAO│ │ │ KBDTAS│ │ │ KBDTSA│ │ │ KBDTSV│
│external ││││││ │TP access │ │BPI in │ │ │Option in │ │ │Service in│ │ │Service │ │ │Scope │
│TP alias ││││││ │agr set │ │agr set │ │ │agr set │ │ │agr set │ │ │attribute │ │ │value │
└──────────┘│││││ └──────────┘ └──────────┘ │ └──────────┘ │ └──────────┘ │ └──────────┘ │ └──────────┘

 │││││ │ │ │ │
 ┌───────────┘│││└───────────────────────────────│──────────────│────────────────│────────────┐ │
 │ ││└────────────────────────────────│──────────────│─────────────┐ │ │ │
 │ │└──────────────┐ │ │ │ │ │ │
 │ │ │ │ │ │ r │ r
┌─────┴────┐ ┌──┴───────┐ ┌──┴───────┐ │ │ ┌──┴──┴────┐ ┌──┴──┴────┐
│ KBDTEA│ │ KBDTUS│ │ KBDTPR│ │ │ │ KBDTBS│ │ KBDTAC│
│Electronic│ │Online │ │Local │ │ │ │TP has │ │TP has │
│addresses │ │userid │ │agr subset│ │ │ │subscript.│ │scope │
└──────────┘ └────────┬─┘ └─┬───┬──┬─┘ │ │ └─────┬────┘ └──┬───────┘
 │ │ │ │ │ │ │ │
 │ │ │ │ │ │ │ │
 │ │ │ └────────────│────┐ ┌────┘ │ │

└─┐ ┌─┘ └────┐ ┌─────┘ │ │ │ │
 c r c c c │ c │

┌──┴────┴──┐ ┌──┴────┴──┐ ┌──┴────┴──┐ ┌─────┴────┐ │
│ KBDTUP│ │ KBDTPB│ │ KBDTPO│ │ KBDTBA│ │
│User has │ │BPI in │ │Option in │ │Subscript.│ │

 │agr subset│ │agr subset│ │agr subset│ │attribute │ │
└───────┬──┘ └──────────┘ └──────────┘ └──────────┘ │

 │ │
 └──┐ ┌──┘
 │ │
 │ │
 c c
 ┌──┴────┴──┐
 │ KBDTUA│
 │User has │
 │scope │
 └──────────┘

 ..
 . .

. ┌──────────┐ ┌──────────┐ ┌──────────┐ ┌──────────┐ ┌──────────┐ ┌──────────┐ .

. │ KBDTMS│ │ KBDTMH│ │ KBDTSUN│ │ KBDTWC│ │ KBDTSH│ │ KBDTRL│ .

. │Message │ │Online │ │ │ │Working │ │Output │ │Routing │ .

. │texts │ │help text │ │Sundry │ │Criteria │ │Schedule │ │Rules │ .

. └──────────┘ └──────────┘ └──────────┘ └──────────┘ └──────────┘ └────┬─────┘ .
 . │ .
 . │ .
 . │ .
 . │ .
 . c .
 . ┌──────────┐ ┌──────────┐ ┌────┴─────┐ .

. │ KBDTSX│ │ KBDTXM│ │ KBDTRV│ .

. │Source │ │XML │ │Rule │ .
 . │Exits │ │Documents │ │Values │ .
 . └──────────┘ └──────────┘ └──────────┘ .
 . .

...Reference information tables...

. ┌──────────┐ ┌──────────┐ . . ┌──────────┐ ┌──────────┐ ┌──────────┐ .

. │ KBDTNA│ │ KBDTBN│ . . │ KBDTER│ │ KBDTAL│ │ KBDTES│ .

. │Menu │ │BPI │ . . │Common │ │Administr │ │File xmit │ .

. │navigation│ │access │ . . │Errorlog │ │log │ │log │ .

. └──────────┘ └──────────┘ . . └──────────┘ └──────────┘ └──────────┘ .

...Work navigation tables......... ...Various logging tables.........................

Figure 66. BTB DB2 tables for various registrations.

278 BTB Application Programming Guide

 ┌──────────┐
 │ KAFT35│
 │ │
 │Country │
 └─┬──┬─┬─┬─┘

│ │ │ └────────────────────────────┐
 ┌───────────┘ │ └──────────────┐ │
 r r r r
┌─────┴────┐ ┌────┴─────┐ ┌─────┴────┐ ┌─────┴────┐
│ KAFT09│ │ KAFT01│ │ KAFT06│ │ KAFT13│
│CSdb │ │Trading │ │ │ │Person │
│access ctl│ │Partner │ │Person │ │use type │
└────────┬─┘ └─┬──────┬─┘ └─┬──────┬─┘ └─────┬────┘
 │ │ │ │ │ │
 └─┐ ┌─┘ └─┐ ┌─┘ └─┐ ┌─────┘
 │ r │ r r │

┌──┴────┴──┐ ┌──┴────┴──┐ ┌──┴────┴──┐
│ KAFT20│ │ KAFT39│ │ KAFT25│

 │TP │ │TP own │ │Person │
│reserve │ │person │ │reserve │
└──────────┘ └──────────┘ └──────────┘

Figure 67. BTB tables for Trading Partners and persons.

..

. ┌──────────┐ . . ┌──────────┐ . . ┌──────────┐ .
 . │ KBDTTG│ . . │ KBDTEN│ . . │ KBDTMG│ .
. │Transport │ . . │ │ . . │MailRoom │ .
. │Group │ . . │Envelope │ . . │Group cmd │ .
. └────┬─────┘ . . └────┬─────┘ . . └──────────┘ .
 . │ . . │ . . .
 . │ . . │MailRoom Group.
. │ . . ┌────┴─────┐ .
 . │ . . │ KBDTRQ│ .
 . │ . . │ │
. ┌────┴─────┐ . . │Request │ . . .
. │ KBDTTC│ . . └────┬─────┘ . . ┌──────────┐ .
 . │Transport │ . . │ . . │ KBDTIS│ .
 . │Control │ . . │ . . │Input │ .
. └─┬───┬──┬─┘ . . ┌────┴─────┐ . . │Schedule │ .
. │ │ │ . . │ KBDTEV│ . . └──────────┘ .
 . │ │ │ . . │ │ . . .
 . ┌─────────┘ │ └─────────┐ . . │Event │Input Schedule.
. │ │ │ . . └────┬─────┘ .
 . │ │ │ . . │
 . │ │ │ . . │ . . .
. ┌───────┴──┐ ┌─────┴────┐ ┌──┴───────┐ . . ┌────┴─────┐ . . ┌──────────┐ .
. │ KBDTTA│ │ KBDTTR│ │ KBDTTI│ . . │ KBDTET│ . . │ KBDTAR│ .
 . │Transport │ │Transport │ │Transport │ . . │ │ . . │Archiving │ .
 . │uniq appl │ │Data │ │Index │ . . │Event text│ . . │control │ .
. └──────────┘ └──────────┘ └──────────┘ . . └──────────┘ . . └──────────┘ .

 ...MailRoom transport tables...................... ...Status tables.. ...Archiving Ctl..

 ..
 . .
. ┌──────────┐ ┌──────────┐ ┌──────────┐ ┌──────────┐ .
. │ KBDTAE│ │ KBDTAX│ │ KBDTDI│ │ KBDTLK│ .
 . │ASCA │ │ASCA │ │ASCA │ │ASCA │ .
. │envelope │ │Expedite │ │DI log │ │Last key │ .
. └──────────┘ └──────────┘ └──────────┘ └──────────┘ .
 . .
 ...MailRoom ASCA control tables ..

Figure 68. BTB DB2 tables used for the MailRoom.

 ┌──────────┐
 │ KBBTDTY│
 │Destinatio│
 │type │
 └────┬─────┘
 │
 │
 │
 │
 │
 ┌────┴─────┐ ┌──────────┐
 │ KBBTAPL│ │ KBBTERR│

│ │ │BEC error │
 │BEC appl │ │messages │
 └──────────┘ └──────────┘

Figure 69. BTB DB2 tables used for back-end communication.

 Appendix A. DB2 tables used by BTB 279

 ┌──────────┐
 │ KBDTMT│
 │TIE-MQ │
 │Remote def│
 └──────────┘

Figure 70. BTB DB2 tables used to control MailRoom TIE-MQ in remote systems.

280 BTB Application Programming Guide

 Table descriptions
TABLE. . . . : KBDTAB
DATABASE . . : KBDD001
DESCRIPTION. : AGREEMENT SET BPI RELATIONS

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --
KBDTAB IKAAAPR CHAR 8 AGREEMENT OPTION/SERVICE SET ID

 ISYSIDY CHAR 4 APPLICATION SYSTEM ID
 IBPIGRP CHAR 8 IMB BPI GROUP NAME
 IBPIFNC CHAR 8 IMB BPI FUNCTION NAME
 IUSRUUL CHAR 8 USERID OF LATEST UPDATE
 DSYSRPT TIMESTMP 10 TIMESTAMP OF LATEST UPDATE (DB2 FORMAT)

TABLE. . . . : KBDTAC
DATABASE . . : KBDD001
DESCRIPTION. : TRADING PARTNER SCOPE

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --

 KBDTAC IOPUCTY CHAR 3 COUNTRY CODE
 ICUSPRM CHAR 9 TRADING PARTNER NUMBER
 ISCOIDY CHAR 16 SCOPE KEY
 ISCOVAL CHAR 24 RESTRICTION FILTER
 CSCOPRI CHAR 4 PRIVILLIGE
 IUSRUUL CHAR 8 USERID OF LATEST UPDATE
 DSYSRPT TIMESTMP 10 TIMESTAMP OF LATEST UPDATE (DB2 FORMAT)

TABLE. . . . : KBDTAE
DATABASE . . : KBDD001
DESCRIPTION. : ASCA ENVELOPE TABLE

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --
KBDTAE SKBA_ENV_SRC CHAR 12 MR ENVELOPE KEY

SKBA_STATUS CHAR 10 PROCESSING STATUS CODE FOR THE ENVELOPE
SKBA_MSGID CHAR 10 MESSAGENO
SKBA_LOG_TMSTP TIMESTMP 10 TIMESTP. WHEN LOGGED VSAM
SKBA_TASK CHAR 7 CICS TASK NUMBER
SKBA_TRANS CHAR 4 CICS TRANSACTION ID
SKBA_APPLID CHAR 8 CICS APPLICATION ID

 SKBA_TYPE_SRC CHAR 8 TYPE SOURCE
SKBA_IOPUCTY CHAR 3 TRADING PARTNER COUNTRY
SKBA_TPID_TO CHAR 35 TO TRADING PARTNER (EXTERNAL)
SKBA_TPID_FROM CHAR 35 FROM TRADING PARTNER (EXTERNAL)
SKBA_LAYOUT CHAR 16 MR LAYOUT (MIXED IF MANY)
SKBA_TOTDOC INTEGER 4 TOTAL NO OF DOC-S IN ENVELOPE

 SKBA_GL_ACC01 CHAR 31 GLOBAL ACCUMULATOR
 SKBA_GL_ACC02 CHAR 31 GLOBAL ACCUMULATOR
 SKBA_GL_ACC03 CHAR 31 GLOBAL ACCUMULATOR
 SKBA_GL_ACC04 CHAR 31 GLOBAL ACCUMULATOR
 SKBA_GL_ACC05 CHAR 31 GLOBAL ACCUMULATOR
 SKBA_GL_ACC06 CHAR 31 GLOBAL ACCUMULATOR
 SKBA_GL_ACC07 CHAR 31 GLOBAL ACCUMULATOR
 SKBA_GL_ACC08 CHAR 31 GLOBAL ACCUMULATOR
 SKBA_GL_ACC09 CHAR 31 GLOBAL ACCUMULATOR
 SKBA_GL_ACC10 CHAR 31 GLOBAL ACCUMULATOR

SKBA_EF_ACCNTNO CHAR 8 IE ACCOUNT ID - RECEIVER
SKBA_EF_USERID CHAR 8 IE USER ID - RECEIVER
SKBA_EF_DESTACCT CHAR 8 IE ACCOUNT ID - SENDER
SKBA_EF_DESTUID CHAR 8 IE USER ID - SENDER
SKBA_EF_MSGSEQN CHAR 5 IE MESSAGE SEQUENCE NUMBER
SKBA_EF_MSGUCLS CHAR 8 IE MESSAGE USER CLASS
SKBA_EF_MSGDATE CHAR 6 IE MSG DATE
SKBA_EF_MSGTIME CHAR 6 IE MSG TIME
SKBA_EF_UNIQUE CHAR 8 UNIQUEID CDH, ASSGN.BY SENDER
SKBA_DI_EDISENDR CHAR 35 DI ID OF EDI SENDER (LAND,KUNDE)
SKBA_DI_EDIRECVR CHAR 35 DI ID OF EDI RECEIVER (LAND,KUNDE)
SKBA_DI_EDICNTLN CHAR 14 DI INTERCHANGE CONTROL NUMBER
SKBA_DI_CACCT CHAR 8 IE RECEIVER ACCOUNT (POSTKASSE)
SKBA_DI_CUSER CHAR 8 IE RECEIVER IE USERID (POSTKASSE)

 SKBA_DI_CDACCT CHAR 8 IE SENDER ACCOUNT (POSTKASSE)
 SKBA_DI_CDUSER CHAR 8 IE SENDER USERID (POSTKASSE)

SKBA_PARENT CHAR 1 DOES REC HAVE ANY PARENTS? Y/N
SKBA_FLOG_TMSTP TIMESTMP 10 FINAL LOGTIMESTMP FROM IMB
SKBA_ACK_OK INTEGER 4 NO OF DOC-S THAT ACKNOWLEGDED OK
SKBA_ACK_NOK INTEGER 4 NO OF DOC-S THAT NOT ACKNOWLEGDED OK

 IUSRUUL CHAR 8 USERID THAT UPDATED LAST TIME
 DSYSRPT TIMESTMP 10 TIME FOR LATEST UPDATE

 Appendix A. DB2 tables used by BTB 281

TABLE. . . . : KBDTAG
DATABASE . . : KBDD001
DESCRIPTION. : IMB AGREEMENT SET

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --
KBDTAG IKAAAPR CHAR 8 AGREEMENT OPTION/SERVICE SET ID

 CKAAPRT CHAR 1 AGREEMENT SET TYPE (IBM ADM ONLY)
 TKAAAPR CHAR 40 AGREEMENT OPTION/SERVICE SET NAME
 IUSRUUL CHAR 8 USERID OF LATEST UPDATE
 DSYSRPT TIMESTMP 10 TIMESTAMP OF LATEST UPDATE (DB2 FORMAT)

TABLE. . . . : KBDTAL
DATABASE . . : KBDD001
DESCRIPTION. : IMB ADMINISTRATION LOG TABLE

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --
KBDTAL KBD_TABLE CHAR 8 NAME OF TABLE AFFECTED (UPDATED)

 REQUEST CHAR 6 INSERT/MODIFY/DELETE
USERID CHAR 8 USER PERFORMING REQUEST ON TABLE
ADMLOG_DATA CHAR 100 KEY OF ROW IN THE TABLE AFFECTED (UPDATED)

 DSYSRPT TIMESTMP 10 WHEN DID THE TABLE UPDATE OCCUR

TABLE. . . . : KBDTAO
DATABASE . . : KBDD001
DESCRIPTION. : AGREEMENT SET OPTIONS RELATIONS

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --
KBDTAO IKAAAPR CHAR 8 AGREEMENT OPTION/SERVICE SET ID

 IKAAOPT CHAR 6 IMB OPTION
 IUSRUUL CHAR 8 USERID OF LATEST UPDATE
 DSYSRPT TIMESTMP 10 TIMESTAMP OF LATEST UPDATE (DB2 FORMAT)

TABLE. . . . : KBDTAR
DATABASE . . : KBDD001
DESCRIPTION. : ENVELOPE ARCHIVING CONTROL

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --
KBDTAR SKBA_ENVKEY CHAR 12 MR ENVELOPE KEY

SKBA_TYPE_ENV CHAR 3 TYPE OF ENVELOPE
SKBA_ENV_SRC CHAR 12 MR ENVELOPE KEY - SOURCE
SKBA_DEL_TYPE CHAR 1 A(RCHIVE) OR D(ELETE)

 DSYSRPT TIMESTMP 10 TIME FOR LATEST UPDATE

TABLE. . . . : KBDTAS
DATABASE . . : KBDD001
DESCRIPTION. : SERVICE IN AGREEMENT SET

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --
KBDTAS IKAAAPR CHAR 8 AGREEMENT SET NAME

 IOPUCTY CHAR 3 COUNTRY CODE
 IPRAIDY CHAR 8 SERVICE-ID
 IUSRUUL CHAR 8 LATEST UPDATER USER
 DSYSRPT TIMESTMP 10 TIMESTAMP FOR LATEST UPD.

282 BTB Application Programming Guide

TABLE. . . . : KBDTAX
DATABASE . . : KBDD001
DESCRIPTION. : ASCA EXPEDITE LOG TABLE

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ ---

 KBDTAX SKBA_CESORCIM CHAR 6 MICROSEC REVERSED
SKBA_TIMESTAMP TIMESTMP 10 TIMESTAMP WHEN INSERTED
SKBA_STATUS CHAR 10 PROCESSING STATUS CODE
SKBA_MSGID CHAR 10 CURRENT MESSAGE CODE
SKBA_LOG_TMSTP TIMESTMP 10 TIMESTP. WHEN LOGGED VSAM (EXPEDITE)
SKBA_TASK CHAR 7 CICS TASK NUMBER EXPEDITE
SKBA_TRANS CHAR 4 CICS TRANSACTION EXPEDITE
SKBA_APPLID CHAR 8 CICS APPLID EXPEDITE
SKBA_RESP CHAR 5 COMPL. CODE FOR SEND/REC REQUESTS
SKBA_UXTYPE CHAR 8 TYPE OF USER EXIT
SKBA_DIRECTION CHAR 1 SENT(S) OR RECEIVED(R)
SKBA_EDISQUAL CHAR 4 ID QUALIFIER FOR EDI SENDER
SKBA_EDISENDR CHAR 35 ID OF EDI SENDER
SKBA_EDIRQUAL CHAR 4 ID QUALIFIER FOR EDI RECEIVER
SKBA_EDIRECVR CHAR 35 ID OF EDI RECEIVER
SKBA_EDICNTLN CHAR 14 INTERCHANGE CONTROL NUMBER
SKBA_CACCT CHAR 8 RECEIVER IE ACCOUNT
SKBA_CUSER CHAR 8 RECEIVER IE USERID
SKBA_CLTYP CHAR 1 SENDERS ALIAS TABLE TYPE
SKBA_CLID CHAR 3 SENDERS ALIAS TABLE ID
SKBA_CDACCT CHAR 8 SENDERS IE ACCOUNT
SKBA_CDUSER CHAR 8 SENDERS IE USERID
SKBA_CDTYPE CHAR 1 SENDERS DESTINATION TYPE
SKBA_MSGUCLS CHAR 8 MESSAGE USER CLASS E)
SKBA_UNIQUE CHAR 8 UNIQUEID FROM CDH, ASSGN.BY SENDER
SKBA_UXDATE CHAR 8 CICS DATE IN FORMAT YYYYMMDD
SKBA_UXTIME CHAR 6 CICS TIME IN FORMAT TTMMSS

 SKBA_ENVSIZE CHAR 11 ENVELOPE SIZE
SKBA_NEDITRN CHAR 11 NUMBER OF EDI TRANS.IN ENVELOPE
SKBA_IESIZE CHAR 11 IE MESSAGE SIZE, INCL.IE HEADERS
SKBA_APPREF CHAR 14 ASSIGNED DI APPLICATION REFERENCE
SKBA_USERAREA CHAR 14 WHEN SENDING,USER APPL.CAN PASS INFO
SKBA_CONTROL CHAR 8 1 BYTE + UNIQUE NUMERIC ID
SKBA_TYPE_SRC CHAR 8 SOURCE SCENARIO TYPE
SKBA_ENV_SRC CHAR 12 SOURCE ENVELOPE KEY
SKBA_MATCH_DI CHAR 1 MATCH EXPEDITE WITH DI

 IUSRUUL CHAR 8 USERID THAT UPDATED LAST TIME
 DSYSRPT TIMESTMP 10 TIME FOR LATEST UPDATE

TABLE. . . . : KBDTBA
DATABASE . . : KBDD001
DESCRIPTION. : SERVICE TABLE ATTRIBUTE VALUES

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --

 KBDTBA IOPUCTY CHAR 3 COUNTRY CODE
 ICUSPRM CHAR 9 TRADING PARTNER NUMBER
 IPRAIDY CHAR 8 SERVICE-ID

SKBA_SUBP CHAR 1 PART OF 1/2 SUBSCRIPTION S/D
 SKBH_ATTR CHAR 16 ATTRIBUTE NAME

SKBH_VALUE CHAR 40 ATTRIBUTE VALUE

TABLE. . . . : KBDTBC
DATABASE . . : KBDD001
DESCRIPTION. : SUBSCRIPTION CONNECTION TABLE

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --

 KBDTBC IOPUCTY CHAR 3 COUNTRY CODE
ICUSPRM_TO CHAR 9 TO TRADING PARTNER NUMBER
ICUSPRM_FROM CHAR 9 FROM TRADING PARTNER NUMBER

 IPRAIDY CHAR 8 SERVICE-ID
SKBA_SUBP_TO CHAR 1 PART OF 1/2 SUBSCRIPTION S
SKBA_SUBP_FROM CHAR 1 PART OF 1/2 SUBSCRIPTION D

 SKBH_ATTR CHAR 16 ATTRIBUTE NAME
SKBH_VALUE CHAR 40 ATTRIBURE VALUE

 IUSRUUL CHAR 8 LATEST UPDATER USER
 DSYSRPT TIMESTMP 10 TIMESTAMP FOR LATEST UPD.

 Appendix A. DB2 tables used by BTB 283

TABLE. . . . : KBDTBN
DATABASE . . : KBDD001
DESCRIPTION. : IMB BPI ACCESS LIST - NAVIGATION

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --

 KBDTBN IUSRIDY CHAR 8 IMB USERID
 ISYSIDY CHAR 4 APPLICATION-SYSTEM ID
 IBPIGRP CHAR 8 IMB BPI GROUP NAME
 IBPIFNC CHAR 8 IMB BPI FUNCTION NAME
 NBPITXT CHAR 50 IMB BPI DESCRIPTIVE TEXT
 CBPITYP CHAR 4 BEC OR OTHER TYPE
 NBPIPGM CHAR 8 BPI PROGRAM
 CBPISCE CHAR 1 BPI SECURITY
 NBPIXIT CHAR 8 BPI DATA CONVERSION EXIT
 CBPIENA CHAR 1 BPI ENABLE-DISABLE SWITCH
 CBPIPM1 CHAR 20 BPI PARAMETER NO. 1
 CBPIPM2 CHAR 20 BPI PARAMETER NO. 2
 CBPIPM3 CHAR 20 BPI PARAMETER NO. 3

TABLE. . . . : KBDTBP
DATABASE . . : KBDD001
DESCRIPTION. : IMB BUSINESS PROCESS INTERFACE

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --

 KBDTBP ISYSIDY CHAR 4 APPLICATION-SYSTEM ID
 IBPIGRP CHAR 8 IMB BPI GROUP NAME
 IBPIFNC CHAR 8 IMB BPI FUNCTION NAME
 NBPITXT CHAR 50 IMB BPI DESCRIPTIVE TEXT
 CBPITYP CHAR 4 BEC OR OTHER TYPE
 NBPIPGM CHAR 8 BPI PROGRAM
 CBPISCE CHAR 1 BPI SECURITY
 NBPIXIT CHAR 8 BPI DATA CONVERSION EXIT
 CBPIENA CHAR 1 BPI ENABLE-DISABLE SWITCH
 CBPIPM1 CHAR 20 BPI PARAMETER NO. 1
 CBPIPM2 CHAR 20 BPI PARAMETER NO. 2
 CBPIPM3 CHAR 20 BPI PARAMETER NO. 3
 IUSRUUL CHAR 8 USERID OF LATEST UPDATE
 DSYSRPT TIMESTMP 10 TIMESTAMP OF LATEST UPDATE (DB2 FORMAT)

TABLE. . . . : KBDTBS
DATABASE . . : KBDD001
DESCRIPTION. : TRADING PARTNER SUBSCRIPTION TABLE

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --

 KBDTBS IOPUCTY CHAR 3 COUNTRY CODE
 ICUSPRM CHAR 9 TRADING PARTNER NUMBER
 IPRAIDY CHAR 8 SERVICE-ID

SKBA_SUBP CHAR 1 PART OF 1/2 SUBSCRIPTION S/D
 SKBA_NSUBENA CHAR 1 STATUS (EN-/DIS-ABLED)
 IUSRUUL CHAR 8 LATEST UPDATER USER
 DSYSRPT TIMESTMP 10 TIMESTAMP FOR LATEST UPD.

TABLE. . . . : KBDTDI
DATABASE . . : KBDD001
DESCRIPTION. : ASCA DI LOG TABLE

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --

 KBDTDI SKBA_CESORCIM CHAR 6 MICROSEC REVERSED
SKBA_TIMESTAMP TIMESTMP 10 TIMESTAMP WHEN INSERTED
SKBA_STATUS CHAR 10 PROCESSING STATUS CODE
SKBA_MSGID CHAR 10 CURRENT MESSAGE CODE
SKBA_LOG_TMSTP TIMESTMP 10 TIMESTP. WHEN LOGGED VSAM (EXPEDITE)
SKBA_TASK CHAR 7 CICS TASK NUMBER EXPEDITE
SKBA_TRANS CHAR 4 CICS TRANSACTION EXPEDITE
SKBA_APPLID CHAR 8 CICS APPLID EXPEDITE
SKBA_RESP CHAR 5 COMPL. CODE FOR SEND/REC REQUESTS
SKBA_EDISQUAL CHAR 4 ID QUALIFIER FOR EDI SENDER
SKBA_EDISENDR CHAR 35 ID OF EDI SENDER
SKBA_EDIRQUAL CHAR 4 ID QUALIFIER FOR EDI RECEIVER
SKBA_EDIRECVR CHAR 35 ID OF EDI RECEIVER
SKBA_EDICNTLN CHAR 14 INTERCHANGE CONTROL NUMBER
SKBA_DE_CESORCIM CHAR 6 MICROSEC REVERSED (FKEY TO KBDVDE)
SKBA_DE_TMSTP TIMESTMP 10 TIMESTAMP WHEN INSERTED (FKEY TO KBDVDE)
SKBA_ENV_SRC CHAR 12 SOURCE ENVKEY (FKEY TO KBDVAE)

 IUSRUUL CHAR 8 USERID THAT UPDATED LAST TIME
 DSYSRPT TIMESTMP 10 TIME FOR LATEST UPDATE

284 BTB Application Programming Guide

TABLE. . . . : KBDTEA
DATABASE . . : KBDD001
DESCRIPTION. : IMB ELECTRONIC ADDRESS TABLE

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ ---

 KBDTEA IOPUCTY CHAR 3 COUNTRY CODE
SKBH_MAILKEY INTEGER 4 ELECTRONIC ADDRESS KEY
SKBH_MAILSCOPE CHAR 1 USAGE SCOPE OF THIS ADDRESS

 ICUSPRM CHAR 9 TRADING PARTNER NUMBER
SKBH_MAILTYPE CHAR 2 TYPE OF ELECTRONIC ADDRESS

 SKBH_MAILADR CHAR 80 ADDRESS (LONG)
SKBH_MAILADR1 CHAR 16 ADDRESS (SHORT) PART1 - USERID
SKBH_MAILADR2 CHAR 16 ADDRESS (SHORT) PART2 - NODEID
SKBH_MAILADR3 CHAR 16 ADDRESS (SHORT) PART3 - NETWORK
SKBH_MAILADR4 CHAR 16 ADDRESS (SHORT) PART4 - OPT
SKBH_MAILADR5 CHAR 16 ADDRESS (SHORT) PART5 - OPT

 IUSRUUL CHAR 8 USERID OF LATEST UPDATE
 DSYSRPT TIMESTMP 10 TIMESTAMP OF LATEST UPDATE (DB2 FORMAT)

TABLE. . . . : KBDTEN
DATABASE . . : KBDD001

 DESCRIPTION. :

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --

 KBDTEN IOPUCTY CHAR 3 COUNTRY CODE
SKBA_ENVKEY CHAR 12 MR ENVELOPE KEY
SKBA_LAYOUT CHAR 16 FORMAT OF THE DOCUMENT
SKBA_STATUS CHAR 10 PROCESSING STATUS CODE FOR THE ENVELOPE

 ISYSIDY CHAR 4 APPLICATION PROJECT ID
 IPRAIDY CHAR 8 SERVICE-ID

ICUSPRM_TO CHAR 9 TO TRADING PARTNER ID
ICUSPRM_FROM CHAR 9 FROM TRADING PARTNER ID
SKBA_TYPE_ENV CHAR 3 TYPE OF ENVELOPE
SKBA_TYPE_SRC CHAR 8 SOURCE SCENARIO TYPE
SKBA_TYPE_DST CHAR 8 DESTINATION SCENARIO TYPE
SKBA_ENV_SRC CHAR 12 MR ENVELOPE KEY - SOURCE
SKBA_ENV_DST CHAR 12 MR ENVELOPE KEY - DESTINATION
SKBA_ORIGINATOR CHAR 80 - ASSIGNED BY SOURCE API
SKBA_TOTDOC INTEGER 4 TOTAL NUMBER OF DOCUMENTS IN ENVELOPE
SKBA_SEC_OK INTEGER 4 NO OF DOC-S WITH SEQURITY CHECK OK
SKBA_SEC_NOK INTEGER 4 NO OF DOC-S WITH SEQURITY CHECK NOT OK
SKBA_PRP_OK INTEGER 4 NO OF DOC-S THAT PREPROCESSED OK
SKBA_PRP_NOK INTEGER 4 NO OF DOC-S THAT NOT PREPROCESSED OK
SKBA_SNT_OK INTEGER 4 NO OF DOC-S THAT SENT OK
SKBA_SNT_NOK INTEGER 4 NO OF DOC-S THAT NOT SENT OK
SKBA_ACK_OK INTEGER 4 NO OF DOC-S THAT ACKNOWLEGDED OK
SKBA_ACK_NOK INTEGER 4 NO OF DOC-S THAT NOT ACKNOWLEGDED OK

 IUSRUUL CHAR 8 USERID THAT UPDATED LAST TIME
SKBA_DATE DATE 4 DATE WHEN REQUEST WAS INSERTED
SKBA_TMSTAMP TIMESTMP 10 TIME WHEN REQUEST WAS INSERTED

 DSYSRPT TIMESTMP 10 TIME FOR LATEST UPDATE

TABLE. . . . : KBDTER
DATABASE . . : KBDD001
DESCRIPTION. : COMMON ERRORLOG TABLE

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --

 KBDTER SKBH_ELOG_SYS CHAR 8 SYSTEM ID
SKBH_ELOG_TIME TIMESTMP 10 TIMESTAMP (ERROR TIME)

 SKBH_ELOG_LBNO INTEGER 4 SEQ NUMBER
 SKBH_ELOG_TRX CHAR 8 TRANSACTION
 SKBH_ELOG_TASK CHAR 7 TASK NUMBER
 SKBH_ELOG_TERM CHAR 8 TERMINAL ID
 SKBH_ELOG_USER CHAR 8 RACF USERID
 SKBH_ELOG_PROG CHAR 8 PROGRAM
 SKBH_ELOG_SUBRUT CHAR 18 PROCESS

SKBH_ELOG_CFROM CHAR 8 CALLED FROM PGM
SKBH_ELOG_OBJECT CHAR 16 OBJECT / TABLE

 SKBH_ELOG_SUBSYS CHAR 8 SUBSYSTEM
 SKBH_ELOG_ALERT CHAR 1 ALERT SWITCH

SKBH_MSGID CHAR 10 MESSAGE ID
 SKBH_MSGSEVR CHAR 1 SEVERITY

SKBH_ELOG_TEXT1 CHAR 80 ERROR TEXT LINE 1
SKBH_ELOG_TEXT2 CHAR 80 ERROR TEXT LINE 2
SKBH_ELOG_TEXT3 CHAR 80 ERROR TEXT LINE 3
SKBH_ELOG_TEXT4 CHAR 80 ERROR TEXT LINE 4
SKBH_ELOG_TEXT5 CHAR 80 ERROR TEXT LINE 5
SKBH_ELOG_TEXT6 CHAR 80 ERROR TEXT LINE 6
SKBH_ELOG_TEXT7 CHAR 80 ERROR TEXT LINE 7

 Appendix A. DB2 tables used by BTB 285

TABLE. . . . : KBDTES
DATABASE . . : KBDD001
DESCRIPTION. : MAILROOM EXPORT STATUS TABLE

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --
KBDTES KAAILUSR CHAR 8 USERID/SERVER OWNER OF A EXPORT

KAAILDAT DATE 4 THE DATE OF THE EXPORT
KAAILTOK CHAR 4 THE TOKEN (SERIAL NO ON DAY)
KAAILTYP CHAR 2 EXPORT TYPE COMMUNICATION SYSTEM
KAAILSTA CHAR 9 CURRENT STATUS OF THE EXPORT
KAAILSHO CHAR 3 HAS THE MESSAGE BEEN SHOWN

 KAAILHLN CHAR 8 DESTINATION NODE
 KAAILUSL CHAR 8 DESTINATION USERID

KAAILR CHAR 13 LAST RETURN CODE
 IUSRUUL CHAR 8 RECORD LAST UPDATE USERID
 DSYSRPT TIMESTMP 10 TIME FOR LATEST UPDATE

TABLE. . . . : KBDTET
DATABASE . . : KBDD001
DESCRIPTION. : MAILROOM EVENT TEXT TABLE

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --

 KBDTET IOPUCTY CHAR 3 COUNTRY CODE
SKBA_ENVKEY CHAR 12 ENVELOPE KEY FOR DERIVED ENVELOPE
SKBA_DOCSEQNO INTEGER 4 DOCUMENT SEQUENCE NUMBER IN ENVELOPE
SKBA_STATUS CHAR 10 PROCESSING STATUS CODE FOR THE REQUEST

 DSYSRPT TIMESTMP 10 TIME FOR LATEST UPDATE
 SKBA_LINNO INTEGER 4 LINE NUMBER

SKBA_EVTEXT VARCHAR 255 ADDITIONAL EVENT TEXT

TABLE. . . . : KBDTEV
DATABASE . . : KBDD001
DESCRIPTION. : MAILROOM EVENT STATUS TABLE

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --

 KBDTEV IOPUCTY CHAR 3 COUNTRY CODE
SKBA_ENVKEY CHAR 12 ENVELOPE KEY FOR DERIVED ENVELOPE
SKBA_DOCSEQNO INTEGER 4 DOCUMENT SEQUENCE NUMBER IN ENVELOPE
SKBA_STATUS CHAR 10 PROCESSING STATUS CODE FOR THE REQUEST
SKBH_MSGID CHAR 10 MESSAGE NUMBER

 SKBA_MSG_VAR CHAR 75 MESSAGE TEXT
 IUSRUUL CHAR 8 USERID THAT UPDATED LAST TIME
 DSYSRPT TIMESTMP 10 TIME FOR LATEST UPDATE

TABLE. . . . : KBDTIS
DATABASE . . : KBDD001
DESCRIPTION. : INPUT SCHEDULE CONTROL TABLE

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --

 KBDTIS IOPUCTY CHAR 3 COUNTRY CODE
 ICUSPRM CHAR 9 TRADING PARTNER NUMBER
 IPRAIDY CHAR 8 SERVICE ID
 SKBA_ACT_ARR TIMESTMP 10 ACTUAL ARRIVAL

SKBA_ENVKEY CHAR 12 MR ENVELOPE KEY
SKBA_E_NEXT_ARR TIMESTMP 10 EARLIEST NEXT ARRIVAL

 SKBA_NEXT_ALERT TIMESTMP 10 NEXT ALERT

TABLE. . . . : KBDTLK
DATABASE . . : KBDD001
DESCRIPTION. : ASCA LAST KEY USED

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --
KBDTLK SKBA_LAST_KEY TIMESTMP 10 KEY USED LAST TIME (TIMESTAMP)

SKBA_LAST_KEY1 TIMESTMP 10 KEY USED LAST TIME 1ST GENERATION
SKBA_LAST_KEY2 TIMESTMP 10 KEY USED LAST TIME 2ND GENERATION
SKBA_LAST_KEY3 TIMESTMP 10 KEY USED LAST TIME 3TH GENERATION

 IUSRUUL CHAR 8 USERID THAT UPDATED LAST TIME
 DSYSRPT TIMESTMP 10 TIMESTAMP FOR LATEST UPDATE

286 BTB Application Programming Guide

TABLE. . . . : KBDTMG
DATABASE . . : KBDD001
DESCRIPTION. : IMB MAILROOM GROUP COMMAND

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --

 KBDTMG IUSRUUL CHAR 8 USERID
SKBA_ENVKEY CHAR 12 ENVELOPE KEY FOR DERIVED ENVELOPE

 IOPUCTY CHAR 3 COUNTRY CODE
SKBA_DOCSEQNO INTEGER 4 DOCUMENT SEQUENCE NUMBER IN INVELOPE
SKBA_LAYOUT CHAR 16 FORMAT OF THE DOCUMENT
SKBA_STATUS CHAR 10 PROCESSING STATUS CODE FOR THE ENVELOPE
ICUSPRM_TO CHAR 9 TO TRADING PARTNER ID
ICUSPRM_FROM CHAR 9 FROM TRADING PARTNER ID
SKBA_TYPE_ENV CHAR 3 TYPE OF ENVELOPE
SKBA_TYPE_DST CHAR 8 DESTINATION SCENARIO TYPE
SKBA_TMSTAMP TIMESTMP 10 TIME WHEN REQUEST WAS INSERTED

 SKBA_PROCESSED CHAR 10 ACTION PROCESSED
SKBH_MSGID CHAR 10 MESSAGE NUMBER

 SKBA_MSG_VAR CHAR 75 MESSAGE TEXT
 DSYSRPT TIMESTMP 10 TIMESTAMP OF INSERT TIME

TABLE. . . . : KBDTMH
DATABASE . . : KBDD001
DESCRIPTION. : IMB HELP PANEL TEXT TABLE

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --

 KBDTMH ISYSIDY CHAR 4 IDENTIFIER APPLICATION-SYSTEM
 CUSRLAN CHAR 2 LANGUAGE CODE

SKBH_HLPTYP CHAR 3 HELP TEXT TYPE (PAN,FLD,..)
SKBH_HLPID CHAR 16 HELP IDENTIFICATION (PANELID)

 SKBH_LINENO SMALLINT 2 LINE NUMBER
 SKBH_LINEATT CHAR 1 LINE ATTRIBUTES
 SKBH_HLPTEXT CHAR 72 HELP TEXT
 IUSRUUL CHAR 8 USERID OF LATEST UPDATE
 DSYSRPT TIMESTMP 10 TIMESTAMP OF LATEST UPDATE

TABLE. . . . : KBDTMS
DATABASE . . : KBDD001
DESCRIPTION. : IMB MESSAGE TABLE

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --
KBDTMS SKBH_MSGID CHAR 10 MESSAGE NUMBER

 SKBH_MSGLANG CHAR 2 MESSAGE LANGUAGE
 SKBH_MSGSEVR CHAR 1 MESSAGE SEVERITY
 SKBH_MSGTEXT CHAR 80 MESSAGE TEXT

TABLE. . . . : KBDTMT
DATABASE . . : KBDD002
DESCRIPTION. : LOCAL TIE-MQ TABLE

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ ---

 KBDTMT IOPUCTY CHAR 3 COUNTRY CODE
 ISYSIDY CHAR 4 TIE APPLICATION
 ITRNRCP CHAR 10 TIE RECIPIENT

SKBA_MQQNAME CHAR 48 MQ QUEUE FOR MESSAGE
SKBA_MQQERR CHAR 48 MQ QUEUE FOR ERRORS

 SKBA_MQMNAME CHAR 48 MQ MANAGER
 SKBA_RES1 CHAR 10 RESERVED

TABLE. . . . : KBDTNA
DATABASE . . : KBDD001
DESCRIPTION. : IMB NAVIGATOR WORK TABLE

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --

 KBDTNA IUSRIDY CHAR 8 IMB USERID
 IKAAOPT CHAR 6 IMB OPTION
 IKAAPOP CHAR 6 IMB NAVIGATION WORK FIELD
 NKAAMNE CHAR 6 IMB OPTION NAME
 CKAAFNK CHAR 2 IMB OPTION FUNCTION CODE
 NKAATXT CHAR 50 IMB OPTION DESCRIPTIVE TEXT
 NKAAHDR CHAR 60 IMB OPTION HEADER
 NKAAAPL CHAR 7 IMB OPTION (CSP)APPLICATION
 NKAAALF CHAR 7 IMB OPTION (CSP)ALF WITH NKAAAPL
 NKAATRX CHAR 4 IMB OPTION CICS TRANSACTION
 CKAAIAS CHAR 3 IMB OPTION CLASSIFICATION CODE
 CKAALVL CHAR 3 IMB OPTION LEVEL
 CKAALAN CHAR 2 IMB OPTION LANGUAGE

 Appendix A. DB2 tables used by BTB 287

TABLE. . . . : KBDTOP
DATABASE . . : KBDD001
DESCRIPTION. : IMB OPTIONS

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --

 KBDTOP IKAAOPT CHAR 6 IMB OPTION
 NKAAMNE CHAR 6 IMB OPTION NAME
 CKAAFNK CHAR 2 IMB OPTION FUNCTION CODE
 NKAATXT CHAR 50 IMB OPTION DESCRIPTIVE TEXT
 NKAAHDR CHAR 60 IMB OPTION HEADER
 NKAAAPL CHAR 7 IMB OPTION (CSP)APPLICATION
 NKAAALF CHAR 7 IMB OPTION (CSP)ALF WITH NKAAAPL
 NKAATRX CHAR 4 IMB OPTION CICS TRANSACTION
 CKAALAN CHAR 2 IMB OPTION LANGUAGE
 CKAAIAS CHAR 3 IMB OPTION CLASSIFICATION CODE
 CKAALVL CHAR 3 IMB OPTION LEVEL
 IUSRUUL CHAR 8 USERID OF LATEST UPDATE
 DSYSRPT TIMESTMP 10 TIMESTAMP OF LATEST UPDATE (DB2 FORMAT)

TABLE. . . . : KBDTPB
DATABASE . . : KBDD001
DESCRIPTION. : BPIS IN LOCAL OPTION SET

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --

 KBDTPB IOPUCTY CHAR 3 COUNTRY CODE
 ICUSPRM CHAR 9 TRADING PARTNER NUMBER
 IKAAPRF CHAR 8 LOCAL OPTION SET ID
 ISYSIDY CHAR 4 APPLICATION SYSTEM ID
 IBPIGRP CHAR 8 IMB BPI GROUP NAME
 IBPIFNC CHAR 8 IMB BPI FUNCTION NAME
 IUSRUUL CHAR 8 USERID OF LATEST UPDATE
 DSYSRPT TIMESTMP 10 TIMESTAMP OF LATEST UPDATE

TABLE. . . . : KBDTPO
DATABASE . . : KBDD001
DESCRIPTION. : TRADING PARTNER LOCAL OPTION SET CONTENTS

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --

 KBDTPO IOPUCTY CHAR 3 COUNTRY CODE
 ICUSPRM CHAR 9 TRADING PARTNER NUMBER
 IKAAPRF CHAR 8 LOCAL OPTION SET ID
 IKAAOPT CHAR 6 IMB OPTION
 IUSRUUL CHAR 8 USERID OF LATEST UPDATE
 DSYSRPT TIMESTMP 10 TIMESTAMP OF LATEST UPDATE (NEW FORMAT)

TABLE. . . . : KBDTPR
DATABASE . . : KBDD001
DESCRIPTION. : TRADING PARTNER LOCAL OPTION SET HEADER

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --

 KBDTPR IOPUCTY CHAR 3 COUNTRY CODE
 ICUSPRM CHAR 9 TRADING PARTNER NUMBER
 IKAAPRF CHAR 8 LOCAL OPTION SET ID
 TKAAPRF CHAR 40 LOCAL OPTION SET DESCRIPTION
 IUSRUUL CHAR 8 USERID OF LATEST UPDATE
 DSYSRPT TIMESTMP 10 TIMESTAMP OF LATEST UPDATE (DB2 FORMAT)

TABLE. . . . : KBDTRA
DATABASE . . : KBDD001
DESCRIPTION. : TRADING PARTNER ACCESS TO AGREEMENT SET

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --

 KBDTRA IOPUCTY CHAR 3 COUNTRY CODE
 ICUSPRM CHAR 9 TRADING PARTNER NUMBER
 IKAAAPR CHAR 8 AGREEMENT OPTION/SERVICE SET ID
 IUSRUUL CHAR 8 USERID OF LATEST UPDATE
 DSYSRPT TIMESTMP 10 TIMESTAMP OF LATEST UPDATE (DB2 FORMAT)

288 BTB Application Programming Guide

TABLE. . . . : KBDTRL
DATABASE . . : KBDD001
DESCRIPTION. : ROUTING RULE TABLE

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --

 KBDTRL IOPUCTY CHAR 3 COUNTRY CODE
 ISYSIDY CHAR 4 APPLICATION ID

SKBA_RULESET CHAR 16 RULESET NAME (RULEKEY)
SKBA_RULENO CHAR 3 RULENUMBER WITHIN RULESET

 SKBA_RULETP CHAR 2 RULETYPE
 SKBA_RULEDET VARCHAR 300 RULE DETAIL

SKBA_RULEDEST CHAR 35 REF. TO TP OR DISTRIBUTION LIST
 IUSRUUL CHAR 8 USERID OF LATEST UPDATE
 DSYSRPT TIMESTMP 10 TIMESTAMP OF LATEST UPDATE (DB2 FORMAT)

TABLE. . . . : KBDTRQ
DATABASE . . : KBDD001
DESCRIPTION. : MAILROOM REQUEST TABLE

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --

 KBDTRQ IOPUCTY CHAR 3 COUNTRY CODE
SKBA_ENVKEY CHAR 12 ENVELOPE KEY FOR DERIVED ENVELOPE
SKBA_DOCSEQNO INTEGER 4 DOCUMENT SEQUENCE NUMBER IN INVELOPE
SKBA_TMSTAMP TIMESTMP 10 TIME WHEN REQUEST WAS INSERTED
SKBA_STATUS CHAR 10 PROCESSING STATUS CODE FOR THE REQUEST
SKBA_STAT_SEC CHAR 1 SECURITY CHECHED: BLANK,0,1 OR S
SKBA_STAT_PRP CHAR 1 PREPROCESSED : BLANK,0,1 OR S
SKBA_STAT_SNT CHAR 1 SENT : BLANK,0,1 OR S
SKBA_STAT_ACK CHAR 1 ACKNOWLEDGED : BLANK,0,1 OR S

 SKBA_REF_DATA CHAR 40 REFERENCE DATA
SKBA_REF_DATA2 CHAR 40 REFERENCE DATA (FROM DEST APPL)
SKBA_SRC_INF1 CHAR 50 SOURCE SPECIFIC INFORMATION
SKBA_SRC_INF2 CHAR 50 SOURCE SPECIFIC INFORMATION
SKBA_SRC_INF3 CHAR 50 SOURCE SPECIFIC INFORMATION
SKBA_SRC_INF4 CHAR 50 SOURCE SPECIFIC INFORMATION
SKBA_DST_INF1 CHAR 50 DESTINATION SPECIFIC INFORMATION
SKBA_DST_INF2 CHAR 50 DESTINATION SPECIFIC INFORMATION
SKBA_DST_INF3 CHAR 50 DESTINATION SPECIFIC INFORMATION
SKBA_DST_INF4 CHAR 50 DESTINATION SPECIFIC INFORMATION
SKBA_SYA_INF1 CHAR 120 SYSTEM ACK CONTROL INFO
SKBA_PROC_CNTL CHAR 50 INTERNAL PROCESSING CONTROL
SKBA_ACKLVL CHAR 1 WANTED ACKNOWLEDGMENT LEVEL
SKBA_ACKLVL_RCH CHAR 1 REACHED ACKNOWLEDGMENT LEVEL

 IUSRUUL CHAR 8 USERID THAT UPDATED LAST TIME
 DSYSRPT TIMESTMP 10 TIME FOR LATEST UPDATE

TABLE. . . . : KBDTRV
DATABASE . . : KBDD001
DESCRIPTION. : ROUTING RULE VALUESETS

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ ---

 KBDTRV IOPUCTY CHAR 3 COUNTRY CODE
 ISYSIDY CHAR 4 APPLICATION ID

SKBA_RULESET CHAR 16 RULESET NAME (RULEKEY)
SKBA_RULENO CHAR 3 RULENUMBER WITHIN RULESET

 SKBA_RULEVSET CHAR 8 RULE VALUESET
 SKBA_RULEVAL CHAR 75 RULE VALUE
 IUSRUUL CHAR 8 USERID OF LATEST UPDATE
 DSYSRPT TIMESTMP 10 TIMESTAMP OF LATEST UPDATE (DB2 FORMAT)

TABLE. . . . : KBDTSA
DATABASE . . : KBDD001
DESCRIPTION. : SERVICE TABLE ATTRIBUTE VALUES

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --

 KBDTSA IOPUCTY CHAR 3 COUNTRY CODE
 IPRAIDY CHAR 8 SERVICE-ID
 SKBH_ATTR CHAR 16 ATTRIBUTE NAME

SKBH_VALUE CHAR 40 ATTRIBUTE VALUE

 Appendix A. DB2 tables used by BTB 289

TABLE. . . . : KBDTSD
DATABASE . . : KBDD001
DESCRIPTION. : IMB SCOPE DEFINITION TABLE

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --

 KBDTSD IOPUCTY CHAR 3 COUNTRY CODE
 ISCOIDY CHAR 16 SCOPE KEY
 NSCOTXT CHAR 40 DESCRIPTIVE TEXT
 CSCOINV CHAR 1 INDICATOR FOR VALIDATE AND PROMPT
 CSCOPR1 CHAR 4 PRIVILEGE 1
 CSCOPR2 CHAR 4 PRIVILEGE 2
 CSCOPR3 CHAR 4 PRIVILEGE 3
 CSCOPR4 CHAR 4 PRIVILEGE 4
 CSCOPR5 CHAR 4 PRIVILEGE 5
 CSCOINL CHAR 2 MAX LENGTH OF SCOPE VALUE
 IUSRUUL CHAR 8 USERID OF LATEST UPDATE
 DSYSRPT TIMESTMP 10 TIMESTAMP OF LATEST UPDATE (DB2 FORMAT)

TABLE. . . . : KBDTSE
DATABASE . . : KBDD001
DESCRIPTION. : SERVICE MAIN TABLE

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --

 KBDTSE IOPUCTY CHAR 3 COUNTRY CODE
 IPRAIDY CHAR 8 SERVICE-ID
 ISYSIDY CHAR 4 IDENTIFIER APPLICATION-SYSTEM

SKBA_LAYOUT CHAR 16 FORMAT OF THE DOCUMENT
 SKBA_NPRADSC CHAR 40 SERVICE DESCRIPTION
 SKBA_TYPE_SUB CHAR 1 SUBSCRIPTION TYPE

SKBA_TYPE_SRC CHAR 8 SOURCE SCENARIO TYPE
SKBA_TYPE_DST CHAR 8 DESTINATION SCENARIO TYPE

 IUSRUUL CHAR 8 USERID FOR LATEST UPDATE
 DSYSRPT TIMESTMP 10 TIME FOR LATEST UPDATE

TABLE. . . . : KBDTSH
DATABASE . . : KBDD001
DESCRIPTION. : SCHEDULE TABLE

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --

 KBDTSH ISYSIDY CHAR 4 APPLICATION ID
 IOPUCTY CHAR 3 COUNTRY CODE
 SKBH_SCHKEY CHAR 8 SCHEDULE ID
 SKBH_SCHTXT CHAR 50 SCHEDULE DESCRIPTION
 SKBH_SCHSTAT CHAR 1 SCHEDULE STATE

SKBH_MSGID CHAR 10 MESSAGE TO BE ISSUED TO USER
SKBH_MSGSUB1 CHAR 25 MESSAGE VARIABLE 1
SKBH_MSGSUB2 CHAR 25 MESSAGE VARIABLE 1
SKBH_SCHCOMM CHAR 50 COMMENT ABOUT CLOSE

 SKBH_SCHDATA VARCHAR 480 SCHEDULE DATA
 IUSRUUL CHAR 8 USERID FOR LAST UPDATE
 DSYSRPT TIMESTMP 10 TIME FOR LAST UPDATE

TABLE. . . . : KBDTSUN
DATABASE . . : KBDD001
DESCRIPTION. : SUNDRY TEXT TABLE

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --

 KBDTSUN ISYSIDY CHAR 4 APPLICATION ID
 IOPUCTY CHAR 3 COUNTRY CODE
 CUSRLAN CHAR 2 LANGUAGE CODE

SKBH_SUNITEM CHAR 8 SUNDRY ITEM NAME
SKBH_SUNVALUE CHAR 16 SUNDRY ITEM VALUE
SKBH_SUNVAL_I INTEGER 4 SUNDRY ITEM VALUE INTEGER
SKBH_SUNVAL_D DECIMAL 15 SUNDRY ITEM VALUE DECIMAL
SKBH_SUNTEXT VARCHAR 80 SUNDRY ITEM TEXT

 IUSRUUL CHAR 8 USERID FOR LAST UPDATE
 DSYSRPT TIMESTMP 10 TIME FOR LAST UPDATE

TABLE. . . . : KBDTSV
DATABASE . . : KBDD001
DESCRIPTION. : IMB SCOPE VALUE TABLE

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --

 KBDTSV IOPUCTY CHAR 3 COUNTRY CODE
 ISCOIDY CHAR 16 SCOPE KEY
 ISCOVAL CHAR 24 SCOPE VALUE
 NSCOTXT CHAR 40 DESCRIPTIVE TEXT
 IUSRUUL CHAR 8 USERID OF LATEST UPDATE
 DSYSRPT TIMESTMP 10 TIMESTAMP OF LATEST UPDATE (DB2 FORMAT)

290 BTB Application Programming Guide

TABLE. . . . : KBDTSX
DATABASE . . : KBDD001
DESCRIPTION. : IMB MAILROOM SOURCE EXIT

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --
KBDTSX SKBA_TYPE_SRC CHAR 8 SOURCE SCENARIO TYPE

SKBA_SENDER_ID1 CHAR 64 SENDER IDENTITY PART 1
SKBA_SENDER_ID2 CHAR 64 SENDER IDENTITY PART 2

 SKBA_UNPACK_EXIT CHAR 8 UNPACK EXIT
 SKBA_UNPACK_PARM CHAR 40 UNPACK PARAMETER
 SKBA_SOURCE_EXIT CHAR 8 SOURCE EXIT
 SKBA_SOURCE_PARM CHAR 40 SOURCE PARAMETER
 IOPUCTY CHAR 3 COUNTRY CODE

SKBA_TPID_TO CHAR 35 TO TRADING PARTNER (EXTERNAL)
SKBA_TPID_FROM CHAR 35 FROM TRADING PARTNER (EXTERNAL)
SKBA_LAYOUT CHAR 16 FORMAT OF THE DOCUMENT

 SKBA_REF_DATA CHAR 40 REFERENCE DATA
 IUSRUUL CHAR 8 USERID
 DSYSRPT TIMESTMP 10 TIMESTAMP OF INSERT TIME

TABLE. . . . : KBDTTA
DATABASE . . : KBDD001
DESCRIPTION. : MAILROOM TRANSPORT APPLDATA UNIQUE TABLE

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --
KBDTTA IOPUCTY CHAR 3 TRADING PARTNER COUNTRY

SKBA_ENVKEY CHAR 12 MR ENVELOPE KEY
SKBA_DOCSEQNO INTEGER 4 DOCUMENT SEQUENCE NUMBER IN ENVELOPE
SKBA_TYPE_SRC CHAR 8 SOURCE SCENARIO TYPE
SKBA_REF_DATA CHAR 40 APPLICATION REFERENCE DATA

TABLE. . . . : KBDTTC
DATABASE . . : KBDD001
DESCRIPTION. : MAILROOM TRANSPORT TABLE CONTROL

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --
KBDTTC IOPUCTY CHAR 3 TRADING PARTNER COUNTRY

SKBA_ENVKEY CHAR 12 MR ENVELOPE KEY
SKBA_DOCSEQNO INTEGER 4 DOCUMENT SEQUENCE NUMBER IN ENVELOPE
ICUSPRM_TO CHAR 9 TO TRADING PARTNER NUMBER
ICUSPRM_FROM CHAR 9 FROM TRADING PARTNER NUMBER
SKBA_TPID_TO CHAR 35 TO TRADING PARTNER (EXTERNAL)
SKBA_TPID_FROM CHAR 35 FROM TRADING PARTNER (EXTERNAL)

 SKBA_TYPE_SUB CHAR 1 SUBSCRIPTION TYPE
 SKBA_LAYOUT CHAR 16 DOCUMENT LAYOUT

SKBA_REF_DATA CHAR 40 APPLICATION REFERENCE DATA
SKBA_TOTLIN INTEGER 4 TOTAL NUMBER OF LINES IN DOCUMENT
SKBA_MAXLNG INTEGER 4 MAX LENGTH OF DATA RECORD
SKBA_DOCSEQ_NEW INTEGER 4 NEW DOCUMENT SEQUENCE NUMBER
SKBA_DOCSEQ_OLD INTEGER 4 OLD DOCUMENT SEQUENCE NUMBER

 SKBA_DOCVERSION CHAR 30 DOCUMENT VERSION
 DSYSRPT TIMESTMP 10 DATE, WHEN ENVELOPE WAS INS/UPD

TABLE. . . . : KBDTTG
DATABASE . . : KBDD001
DESCRIPTION. : MAILROOM TOTAL TRANSPORT TABLE CONTROL

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --
KBDTTG IOPUCTY CHAR 3 TRADING PARTNER COUNTRY

SKBA_ENVKEY CHAR 12 MR ENVELOPE KEY
SKBA_TOTDOC INTEGER 4 TOTAL NUMBER OF DOCUMENTS IN ENV.
SKBA_TOTIMG INTEGER 4 TOTAL LMAGES OF DOCUMENT
SKBA_TOTLOG INTEGER 4 TOTAL LOGICAL DOCUMENTS
SKBA_TYPE_SRC CHAR 8 SOURCE SCENARIO TYPE
SKBA_ORIGINATOR CHAR 80 -ASSIGNED BY SOURCE API

 DSYSRPT TIMESTMP 10 DATE, WHEN ENVELOPE WAS INSERTED

 Appendix A. DB2 tables used by BTB 291

TABLE. . . . : KBDTTI
DATABASE . . : KBDD001
DESCRIPTION. : MAILROOM TRANSPORT TABLE INDEX

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --
KBDTTI IOPUCTY CHAR 3 TRADING PARTNER COUNTRY

SKBA_ENVKEY CHAR 12 MR ENVELOPE KEY
SKBA_DOCSEQNO INTEGER 4 DOCUMENT SEQUENCE NUMBER IN ENVELOPE
SKBA_STATUS CHAR 10 PROCESSING STATUS OF THE DOCUMENT
SKBA_PROCTIME TIMESTMP 10 PROCESS TIME FOR THE DOCUMENT

 SKBH_SCHKEY CHAR 8 SCHEDULE ID
SKBA_LAYOUT CHAR 16 FORMAT OF THE DOCUMENT

 ISYSIDY CHAR 4 APPLICATION PROJECT ID
 ICUSPRM CHAR 9 TRADING PARTNER NUMBER

SKBA_TYPE_DST CHAR 8 DESTINATION SCENARIO TYPE
SKBA_ENV_DST CHAR 12 MR ENVELOPE KEY - DESTINATION
SKBA_REQ_KEY CHAR 40 MAILROOM REF.KEY (TO REQUEST TABLE)

TABLE. . . . : KBDTTR
DATABASE . . : KBDD001
DESCRIPTION. : MAILROOM TRANSPORT TABLE DOCUMENT DATA

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --
KBDTTR IOPUCTY CHAR 3 TRADING PARTNER COUNTRY

SKBA_ENVKEY CHAR 12 MR ENVELOPE KEY
SKBA_DOCSEQNO INTEGER 4 DOCUMENT SEQUENCE NUMBER IN ENVELOPE
SKBA_LINNO INTEGER 4 LINE NUMBER IN DOCUMENT

 SKBA_DATAREC VARCHAR 2000 DATA RECORD

TABLE. . . . : KBDTUA
DATABASE . . : KBDD001
DESCRIPTION. : USER ACCESS TO SCOPE

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --

 KBDTUA IOPUCTY CHAR 3 COUNTRY CODE
 ICUSPRM CHAR 9 TRADING PARTNER NUMBER
 IUSRIDY CHAR 8 IMB USERID
 IKAAPRF CHAR 8 LOCAL OPTION SET ID
 ISCOIDY CHAR 16 SCOPE KEY
 ISCOVAL CHAR 24 RESTRICTION FILTER
 CSCOPRI CHAR 4 PRIVILEGE
 IUSRUUL CHAR 8 USERID OF LATEST UPDATE
 DSYSRPT TIMESTMP 10 TIMESTAMP OF LATEST UPDATE (DB2 FORMAT)

TABLE. . . . : KBDTUP
DATABASE . . : KBDD001
DESCRIPTION. : USER ACCESS TO LOCAL AGREEMENT SET

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --

 KBDTUP IOPUCTY CHAR 3 COUNTRY CODE
 ICUSPRM CHAR 9 TRADING PARTNER NUMBER
 IUSRIDY CHAR 8 IMB USERID
 IKAAPRF CHAR 8 LOCAL OPTION SET ID
 IUSRUUL CHAR 8 USERID OF LATEST UPDATE
 DSYSRPT TIMESTMP 10 TIMESTAMP OF LATEST UPDATE (DB2 FORMAT)

292 BTB Application Programming Guide

TABLE. . . . : KBDTUS
DATABASE . . : KBDD001
DESCRIPTION. : IMB USER TABLE

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --

 KBDTUS IOPUCTY CHAR 3 COUNTRY CODE
 ICUSPRM CHAR 9 TRADING PARTNER NUMBER
 IUSRIDY CHAR 8 IMB USERID
 IPRSIDY INTEGER 4 PERSON ID (F.KEY TO CS-DB)
 IKAAPRF CHAR 8 LOCAL OPTION SET ID (F.KEY TO KBDTPR)
 CUSRSEC CHAR 1 LOCAL USER ADMINISTRATOR BIT
 CUSRLAN CHAR 2 PREFERRED LANGUAGE
 CUSRDLM CHAR 1 DELIMITER
 CUSRCSR CHAR 1 CURSOR POSITION
 CUSRPOC CHAR 1 PANEL-ID DISPLAY INDICATOR
 FUSRFID CHAR 1 F-KEY DISPLAY CODE (NOT USED YET)
 IUSRPRM CHAR 7 TEMP TRADING PARTNER NO. (NOT USED YET)
 CUSRIAS CHAR 3 CLASSIFICATION CODE (NOT USED YET)
 CUSRCTG CHAR 1 USER CATEGORY (AGENT/DEALER.) (NOT USED YET)
 CUSRLVL CHAR 3 LEVEL (NOT USED YET)
 IUSRHLN CHAR 8 HOME NODE ID (NOT USED YET)
 IUSRHLT CHAR 8 HOME TERMINAL ID (NOT USED YET)
 IUSRHLP CHAR 8 HOME PRINTER ID (NOT USED YET)

IUSRIDY_DIAL CHAR 9 DIAL IBM USERID
 IUSRIDY_SAC CHAR 9 SAC USERID
 IUSRIDY_ENG CHAR 9 ENGINE USERID
 IUSRIDY_IMS CHAR 9 IMS USERID
 NCUSDEPT CHAR 30 DEPARTMENT
 IUSRUUL CHAR 8 USERID OF LATEST UPDATE
 DSYSRPT TIMESTMP 10 TIMESTAMP OF LATEST UPDATE (DB2 FORMAT)

TABLE. . . . : KBDTWC
DATABASE . . : KBDD001
DESCRIPTION. : WORKING CRITERIA TABLE

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --

 KBDTWC IOPUCTY CHAR 3 COUNTRY CODE
SKBH_WCKEY CHAR 16 KEY FOR INFORMATION
SKBH_WCDATA CHAR 32 INFORMATION TO BE HELD

 SKBH_WCTEXT CHAR 78 SHORT DESCRIPTION
 IUSRUUL CHAR 8 USERID FOR LAST UPDATE
 DSYSRPT TIMESTMP 10 TIME FOR LAST UPDATE

TABLE. . . . : KBDTXM
DATABASE . . : KBDD001
DESCRIPTION. : MAILROOM XML DOCUMENT DEFS

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --
KBDTXM SKBA_XML_ROOT CHAR 64 NAME OF XML ROOT ELEMENT

SKBA_XML_DESCRIPT CHAR 64 DESCRIPTION OF XML DOCUMENT TYPE
SKBA_XML_IOPUCTY CHAR 64 XML PATH TO COUNTRY CODE
SKBA_XML_TPID_TO CHAR 64 XML PATH TO TRADING PARTNER, TO
SKBA_XML_TPID_FROM CHAR 64 XML PATH TO TRADING PARTNER, FROM
SKBA_XML_LAYOUT CHAR 64 XML PATH TO LAYOUT
SKBA_XML_REF_DATA CHAR 64 XML PATH TO REFERENCE DATA

 IOPUCTY CHAR 3 FIXED VALUE COUNTRY CODE
SKBA_TPID_TO CHAR 35 FIXED VALUE TRADING PARTNER, TO
SKBA_TPID_FROM CHAR 35 FIXED VALUE TRADING PARTNER, FROM
SKBA_LAYOUT CHAR 16 FIXED VALUE LAYOUT
SKBA_REF_DATA CHAR 40 FIXED VALUE REFERENCE DATA

 IUSRUUL CHAR 8 USERID OF LATEST UPDATE
 DSYSRPT TIMESTMP 10 TIMESTAMP OF LATEST UPDATE (DB2 FORMAT)

TABLE. . . . : KBDTXT
DATABASE . . : KBDD001
DESCRIPTION. : IMB EXTERNAL TRADING PARTNER TABLE

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --

 KBDTXT IOPUCTY CHAR 3 COUNTRY CODE
 ICUSPRM CHAR 9 TRADING PARTNER NUMBER
 ICUSEXT CHAR 35 EXTERNAL TRADING PARTNER ID
 ICUSDES CHAR 35 EXTERNAL TRADING PARTNER DESCRIPTION
 IUSRUUL CHAR 8 USERID OF LATEST UPDATE
 DSYSRPT TIMESTMP 10 TIMESTAMP OF LATEST UPDATE (DB2 FORMAT)

 Appendix A. DB2 tables used by BTB 293

TABLE. . . . : KBBTAPL
DATABASE . . : KBBD001
DESCRIPTION. : BEC APPLICATION TABLE

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --

 KBBTAPL APPLCODE CHAR 16 APPLICATION CODE (K)
LOCATION CHAR 8 LOCATION OF THE PGM (CTY CODE) (K)

 IAPLIDY CHAR 4 APPLICATION ID, PROJECT
DESTTYPE CHAR 12 TYPE OF DESTINATION (FK)
SYSID CHAR 20 CONNECTION NAME / LU / IP ADR
TRAN CHAR 20 TRANSACTION/TP PGM TO ATTACH
TRANPARM CHAR 20 PARM TO TRX

 SERVMOD CHAR 8 SERVICE MODULE IN BACK-END
 EXTAPPL CHAR 16 BEC TO BEC REMOTE APPLCODE

EXTLOC CHAR 8 BEC TO BEC REMOTE LOCATION
 UIDSRCE CHAR 1 TYPE OF USERID IN PROT
 UIDAPPL CHAR 8 HARDCODE USERID
 CODEPAGE CHAR 8 CODEPAGE CONV

MEMALLOC CHAR 1 MEMORY ALLOCATION MODE
SCHECTRY CHAR 3 SCHEDULE COUNTRYCODE ((FK))

 SCHEDUL CHAR 8 SCHEDULE KEY ((FK))
SPLITMOD CHAR 1 SPLITMODE (2 TRX)
ALTLOCAT CHAR 8 ALTERNATIVE LOCATION - REROUTING

 IUSRUUL CHAR 8 USERID LATEST UPDATE
 DSYSRPT TIMESTMP 10 TIMESTAMP LATEST UPDATE

TABLE. . . . : KBBTDTY
DATABASE . . : KBBD001
DESCRIPTION. : BEC DESTINATION TYPE TABLE

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --

 KBBTDTY DESTTYPE CHAR 12 TYPE OF DESTINATION (K)
DESTDESC CHAR 40 DESCRIPTION OF THIS ENTRY

 PROTMOD CHAR 8 NAME OF PROTOCOL MODULE
 COMMMOD CHAR 8 NAME OF COMMUNICATION MODULE

COMMQMOD CHAR 8 NAME OF QUERY MODULE
COMMOPTS CHAR 8 COMMUNICATION OPTION KEY
COMMPRM1 CHAR 8 COMMUNICATION PARAMETER 1
COMMPRM2 CHAR 8 COMMUNICATION PARAMETER 2
COMMPRM3 CHAR 40 COMMUNICATION PARAMETER 3
COMMPRM4 CHAR 40 COMMUNICATION PARAMETER 4
PROTPRM1 CHAR 8 PROTOCOL PARAMETER 1
PROTPRM2 CHAR 40 PROTOCOL PARAMETER 2

 IUSRUUL CHAR 8 USERID LATEST UPDATE
 DSYSRPT TIMESTMP 10 TIMESTAMP LATEST UPDATE

TABLE. . . . : KBBTERR
DATABASE . . : KBBD001
DESCRIPTION. : BEC MESSAGE TABLE

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --

 KBBTERR MSGID CHAR 6 MESSAGE ID
 MSGSEV CHAR 1 SEVERITY
 RETURNCD SMALLINT 2 RETURNCODE
 REASONCD INTEGER 4 REASON CODE
 MSGTEXT CHAR 55 MESSAGETEXT

TABLE. . . . : KAFT01
DATABASE . . : KAFD001
DESCRIPTION. : In this table the trading partners are maintained.

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --

 KAFT01 COPUMCO CHAR 3 Country code.
 ICUSIDY INTEGER 4 Trading partner identifier.
 ICUSCID CHAR 9 trading partner number.
 NCUSNME CHAR 60 trading partner legal name.
 CCUSIAC CHAR 1 Indication for activity.
 IUSRUUL CHAR 8 Record latest updated by user-id or program-id.
 DSYSRPT TIMESTMP 10 Time of latest update of record.

294 BTB Application Programming Guide

TABLE. . . . : KAFT06
DATABASE . . : KAFD001
DESCRIPTION. : In this table the person information is maintained.

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --

 KAFT06 COPUMCO CHAR 3 Coyntry code.
 IPRSIDY INTEGER 4 Person identifier.
 NPRSNOP CHAR 30 The persons surname.
 NPRSFOP CHAR 30 The persons firstname.
 NPRSGEN CHAR 5 Title (Mr., Miss., etc.)
 NPRSJBT CHAR 30 Job title.
 NPRSTLE CHAR 12 Professional title.
 IPRSMLP CHAR 6 Mail point.
 ITLCEXT CHAR 8 Telephone extension number.
 ITLCALT CHAR 8 Alternative telephone extension number.
 CCUSIAC CHAR 1 Indicator for activity.
 IUSRUUL CHAR 8 record latest updated by user-id or program-id.
 DSYSRPT TIMESTMP 10 Time of latest update of record.

TABLE. . . . : KAFT09
DATABASE . . : KAFD001
DESCRIPTION. : In this table the information about the applications which has insert update-access to CS db

 is maintained.

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --

 KAFT09 COPUMCO CHAR 3 Country code.
 IAPLIDY CHAR 3 Application identifier.
 TAPLIDY CHAR 20 Short description of application.
 IUSRUUL CHAR 8 Record latest updated by user-id or program-id.
 DSYSRPT TIMESTMP 10 Time of latest update of record.

TABLE. . . . : KAFT13
DATABASE . . : KAFD001
DESCRIPTION. : In this table the person-use description is maintained.

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --

 KAFT13 COPUMCO CHAR 3 Country code.
 CPRSUS1 CHAR 6 Code for use of person.
 TPRSUS1 CHAR 40 Description of code for use of person.
 IUSRUUL CHAR 8 Record latest updated by user-id or program-id.
 DSYSRPT TIMESTMP 10 Time of latest update of record.

TABLE. . . . : KAFT20
DATABASE . . : KAFD001
DESCRIPTION. : In this table the different application which is using keys on Tra. P in CS db, can make a

 reservation.

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --

 KAFT20 COPUMCO CHAR 3 Country code
 ICUSIDY INTEGER 4 Trading partner identifier.
 IAPLIDY CHAR 3 Application identifier.
 ICUSCNT INTEGER 4 Reservation counter.
 IUSRUUL CHAR 8 Record latest updated by user-id or program-id.
 DSYSRPT TIMESTMP 10 Time of latest update of record.

TABLE. . . . : KAFT25
DATABASE . . : KAFD001
DESCRIPTION. : In this table the different applications which is using keys on persons in CS db, can reserve

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --

 KAFT25 COPUMCO CHAR 3 Country code.
 IPRSIDY INTEGER 4 Person identifier.
 IAPLIDY CHAR 3 Application identifier.
 IPRSCNT INTEGER 4 Reservation counter.
 CPRSUS1 CHAR 6 Code for use of person.
 IUSRUUL CHAR 8 Record latest updated by user-id or program-id.
 DSYSRPT TIMESTMP 10 Time of latest update.

 Appendix A. DB2 tables used by BTB 295

TABLE. . . . : KAFT35
DATABASE . . : KAFD001
DESCRIPTION. : In this table the country information is maintained.

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --

 KAFT35 COPUMCO CHAR 3 Country code.
 IOPUISC CHAR 2 Identifier of a country as defined by the ISO.
 NOPUCNL CHAR 25 Country name in national language.
 NOPUCNM CHAR 25 Country name in English.
 COPUCAN CHAR 5 Abbreviated country name.
 CCINCUA CHAR 3 Currency.
 IUSRUUL CHAR 8 Record latest updated by user-id or program-id.
 DSYSRPT TIMESTMP 10 Time of latest update of record.

TABLE. . . . : KAFT39
DATABASE . . : KAFD001
DESCRIPTION. : In this table the relation between the trading partner and the person is maintained.

 TABLE COLUMN TYPE LENGTH DESCRIPTION
-------- ------------------ -------- ------ --

 KAFT39 COPUMCO CHAR 3 Country code.
 IPRSIDY INTEGER 4 Person identifier..
 ICUSIDY INTEGER 4 Trading partner identifier.
 IUSRUUL CHAR 8 Record latest updated by user-id or program-id.
 DSYSRPT TIMESTMP 10 Time of latest update of record.

296 BTB Application Programming Guide

Appendix B. Recommended naming standards for CSP
objects

Table 17. CSP naming standard

Object Name Maximum
length

CSP Application sssaaAP 7

CSP Browser-module sssnnAP 7

CSP Update-module sssyzAP 7

(DB2 Table) (sssPROD.sssTyz)

Map Group sssaaM 6

Map sssaaMxx 8

Help Map sssaaHxx 8

Process sssaaP_x..x 18

Statement Group sssaaS_x..x 18

CSP Table sssaaTx 7

Working Storage sssaaWx 18

Redefined Working Storage sssaaWxy 18

CSP file - DL/I record sssaaFxx 8

CSP SQL record sssaaRxx 8

CSP Global Item xxxxxxx (data dict. items)
sssaaIx..x (other)

32

CSP Local Item sssaaIx..x or xxxxxx..x 32

 Examples
CSP-APPLICATION

 sss => SYSTEM ID => KBA
aa => APPLICATIONS ID => KBAYY
AP => CSP OBJECT TYPE => KBAYYAP

CSP-BROWSER MODULE

 sss => SYSTEM ID => KBA
nn => APPLICATIONS ID => KBA01
AP => CSP OBJECT TYPE => KBA01AP

CSP-UPDATE MODULE (DB2TABLE: D123PROD.KBDTPR)

 sss => SYSTEM ID => KBD
 yz => TABEL suffix => KBDPR

AP => CSP OBJECT TYPE => KBDPRAP

 Copyright IBM Corp. 1992, 2002 297

CSP-PROCESS

 sss => SYSTEM ID => KBA
aa => APPLICATIONS ID => KBAYY
P => CSP OBJECT TYPE => KBAYYP

 _x..x => SUFFIX => KBAYYP_MAIN

CSP-WORKING STORAGE

 sss => SYSTEM ID => KBA
aa => APPLICATIONS ID => KBAYY
W => CSP OBJECT TYPE => KBAYYW

 x => SUFFIX => KBAYYWA

298 BTB Application Programming Guide

 Index

Numerics
3270 applications 161

A
A2F 137
AIX

MailRoom APPC programs 135, 136, 137
MailRoom TCP/IP programs 127, 128, 129
scanner program 127, 131

APIs
CICS 71—90
CICS acknowledgment 84
CICS Document Browser API 87
CICS read API 77
CICS write API 72
generic 197
KBAXACP 84
KBAXDBP 87
KBAXREP 77
KBAXWRP 72
KBHDATE 218
KBHFTXP 222
KBHSMTP 232
KBHUQNP 239
KBHUVSP 241
KBHXMLM 243
structures for CSP 3270 applications 251

APPC programs 135
application programming interfaces

See APIs
AS&slah.400 213
ASCA 72, 142
ASCII

data conversion 104, 213

B
back-end programming 183—193
batch utility programs

KBADBRX 94
KBADMGX 100
KBASBWX 92
KBASMPX 96
read 94, 100
write 92, 96

bibliography xv—xvi
BPI Navigator 141
BTB

See Business Transaction Broker
business acknowledgment 84, 107, 130, 138

Business Transaction Broker
changes in the release xvii
enhancements xvii

C
changes in this release xvii
CICS

acknowledgment API 84
application structure concepts 161
back-end programming guidelines 188, 190
Distributed Program Link 48
documement handling 21
Document Browser API 87
DPL 48, 141, 149
EIBRESP 203
EIBRESP2 203
KBAXACP API 84
KBAXDBP API 87
KBAXREP API 77
KBAXWRP API 72
KBHLTSQ 22
LTSQ 21, 22, 41, 47, 57
MQSeries connection 110
multiple TS queue 21
read API 77
syncpointing 76
TD queue 71, 77
temporary storage 21, 41, 47, 57
temporary storage table 74
transient data 71, 77
TS queue 21, 41, 47, 57
TST 74

CICS TS
See CICS

CICS/ESA
See CICS

CIS-CSCS 151
client/server

access to DB2 142
access using CIS-CSCS 151
access using LU6.2 149
access using TCP/IP 152
BPI Navigator 141
gateway support 141
LAN server 141
midlayer server 153
programming guidelines 149
remote server 157
security 142
standard receive structure 143
standard send structure 143

 Copyright IBM Corp. 1992, 2002 299

client/server (continued)
using DPL 149

codepage 213
codepage exit 60
conversational applications 161, 162
CSP

3270 applications 251
and IMB online help 252
application modules 167
application structure concepts 161
BPI modules 155
KAAAMSG 166
KBBECWA 184
KBHECAP 265
KBHPFKP 263
KBHSFAP 231
messages 210
naming standard 297
sundry texts 197
working storage 184

D
data conversion 104, 213
DataInterchange

DI to SAP exit 60
SAP to DI exit 60
source exit 59
translation exit 61

DB2
access 142
Common DB2 Resource Types - Help panel 212
DBRM 83, 89
DSNTIAR 203
plan 48, 76
reason codes 211
tables used by BTB 277—296

DBCS 215
DBRM 83, 89
defining MQSeries processes 110
defining MQSeries queues 110, 112
destination exit 29
DI-EDI source exit 59
display exit 30, 69, 70
documement handling in CICS 21
document exit 29
double-byte character set 215
DPL 48, 141, 149
DSNTIAR 203

E
EBCDIC

data conversion 104, 213
EIBRESP 203

EIBRESP2 203
enhancements to BTB xvii
exits 29

codepage 60
DataInterchange 61
destination 29, 42
DI to SAP 60
DI-EDI source 59
display 30, 42, 69, 70
document 29, 42
EXP-FILE source 59
KBADXDP 60
KBADXSP 60
KBAGXCP 60
KBAGXDP 61
KBAGXQP 62
KBAGXSP 64
KBAGXXP 64
KBAMRCP 65
KBASUMP 58
KBASXDP 59
KBASXFP 59
KBASXMP 59
KBASXSP 59
KBGXIDP 69
KBGXIRP 70
KBGXOTP 69
KBGXSXP 60
kernel 29, 42
kernel processing 56
MailRoom-supplied 60
MailRoom-supplied source 58
Mercator 65
MQ Unpack 58
MQSI 62
OTMA 69
parameters 33, 37, 43, 56
PL/1 link syntax 56
record length 70
routing 30, 56
Sample source 60
SAP naming 30, 55
SAP source 59
SAP to DI 60
source 29, 31
super 64
translation 61
unpack 29
XML 64
XML source 59

EXP-FILE source exit 59
expEDIte source exit 59
extended M-record 9

300 BTB Application Programming Guide

F
F2A 136
F2T 128
FILE2TCP 132
Function key string builder 263

G
gateway client/server support 141

I
IDOC 60
IMB xiv
IMS

ISCLINK 119, 120
KBAXMR0 transaction 116
KBAXTR0 transaction 116
trigger 122

Intelligent Message Broker xiv
ISCLINK 119, 120
ISERROR 75, 86

K
KAAWCOM 260
Katakana 216
KBADXDP 60
KBADXSP 60
KBAGXCP 60
KBAGXDP 61
KBAGXQP 62
KBAGXSP 64
KBAGXXP 64
KBAMRCP 65
KBASSXP 55
KBASUMP 58
KBASXDP 59
KBASXFP 59
KBASXMP 59
KBASXSP 59
KBAUSCAN 131
KBAXACP 84
KBAXDBP 87
KBAXMR0 116
KBAXREP 77
KBAXTR0 116
KBAXWRP 72
KBGXIDP 69
KBGXIRP 70
KBGXOTP 69
KBGXSXP 60
KBHECAP 265
KBHLTSQ 22
KBHPFKP 263

KBHSFAP 229
KBHSTRP 269
kernel exit 29

L
LAN server 141
large documents 24, 241
layer 3
LTERM 119, 120
LTSQ 21, 22, 41, 47, 57

M
M-record 8, 105
MailRoom

A2F 137
AIX scanner program 131
APIs 24
APPC business acknowledgment 138
APPC programs 135
APPC read/receive program 137
APPC write/send program 136
batch MQSeries read utility 100
batch read utility 94
batch utility programs 91
batch write utility 92
batch write via MQSeries utility 96
CICS acknowledgment API 84
CICS APIs 71
CICS Document Browser API 87
CICS read API 77
CICS TS queue 21
CICS write API 72
codepage conversion exit 60
components 2
data conversion 108
destination exit 29, 42
DI to SAP exit 60
DI translation exit 61
DI-EDI source exit 59
display exit 30, 42, 69, 70
documement handling in CICS 21
document exit 29
document exits 42
document formats 5
exit parameters 33, 37, 43, 56
exit PL/1 link syntax 56
exits 29—71
EXP-FILE source exit 59
F2A 136
F2T 128
FILE2TCP 132
KBADBRX 94
KBADMGX 100
KBADXDP 60

 Index 301

MailRoom (continued)
KBADXSP 60
KBAGXCP 60
KBAGXDP 61
KBAGXQP 62
KBAGXSP 64
KBAGXXP 64
KBAMRCP 65
KBASBWX 92
KBASMPX 96
KBASUMP 58
KBASXDP 59
KBASXFP 59
KBASXMP 59
KBASXSP 59
KBAUSCAN 131
KBAXACP 84
KBAXDBP 87
KBAXREP 77
KBAXWRP 72
KBGXIDP 69
KBGXIRP 70
KBGXOTP 69
KBGXSXP 60
kernel exit 29, 42
kernel processing 56
layer 3
linking envelopes 24
List of Events panel 25
LTSQ 21, 22, 24
M-record 8
MailRoom-supplied exits 60
MailRoom-supplied source exits 58
Mercator exit 65
MQ Unpack Exit 58
MQSeries definitions 110, 112
MQSeries support 103—114
MQSI exit 62
multiple TS queue 21
OS/2 read/receive program 133
OS/2 write/send program 132
OTMA exit 69
overview 2
receiving documents using MQSeries 106
receiving documents using TIE 117
routing exits 30, 56
Sample source exit 60
SAP naming exit 30
SAP naming exits 55
SAP R/3 IDOC support 12
SAP source exit 59
SAP to DI exit 60
sending a business acknowledgment using

MQSeries 107
sending a business acknowledgment using TIE 118
sending documents using MQSeries 104

MailRoom (continued)
sending documents using TIE 116
service attributes 48
source exit 29
source exits 31
subscription attributes 48
super exit 64
T2F 129
TCP/IP business acknowledgment 130
TCP/IP programs 127—134
TCP/IP read/receive program 129
TCP/IP write/send program 128
TCP2FILE 133
TIE-IMS 120
TIE-MQ 121, 123
TIE/IMS support 115—127
TIEERR 124
transport data table 76
unpack exit 29
utility programs 91
write API 72
XML 15
XML exit 64
XML source exit 59

MBCS 216
MCO 198, 262
Mercator exit 65
midlayer server 153
mixed-byte character set 216
MLS 162, 173
MQ Unpack Exit 58
MQSeries

ASCII 104
CICS connection 110
data conversion 104
defining a queue 110, 112
defining processes 110
defining resources 110, 112
EBCDIC 104
MQGET 106
MQPUT 104, 107
queue manager 110
receiving documents 106, 117
sending a business acknowledgment 107
sending documents 104, 116
TIE 116, 117
TIE-MQ 123
trigger 122
trigger options 110

MQSI 62
multi country operation

See MCO
multi language support

See MLS
multiple TS queue 21

302 BTB Application Programming Guide

N
national language support

See NLS
NLS 198
non-conversational applications 161
NPT applications 161

O
OS/2

MailRoom APPC programs 135, 136, 137
MailRoom TCP/IP programs 127, 128, 129

OTMA exit 69
overview 2

P
P455A001 269
P455A002 269
programs

A2F 137
F2A 136
F2T 128
FILE2TCP 132
KBADBRX 94
KBADMGX 100
KBASBWX 92
KBASMPX 96
KBAUSCAN 131
KBAXACP 84
KBAXDBP 87
KBAXREP 77
KBAXWRP 72
send business acknowledgment 130, 138
T2F 129
TCP/IP 127
TCP2FILE 133

pseudo-conversational applications 161, 162

R
RACF 142
remote server 157
routing exit 30
RWYREAP 117

S
Sample source exit 60
SAP

DI to SAP exit 60
IDOC 60
KBASSXP 55
M-record 105
naming exit 30, 55
SAP to DI exit 60

SAP (continued)
Source Scenario Global Naming exit 55

SAP naming exit 30
SAP R/3

See SAP
SAP source exit 59
SBCS 215
Send File to user panel 229
sending comments xvi
simple M-record 11
single-byte character set 214, 215
source exit 29
super exit 64
syncpointing 76

T
T2F 129
TCP2FILE 133
TD queue 71, 77
temporary storage 21, 41, 47, 57
temporary storage table 74
terminals

3270 276
3270 applications 161, 197
conversational mode 161
emulators 276
non-programmable 161
NPT applications 161, 197

terminology xiii
TIE

BTX 116, 117, 118
converting transmissions 115
input errors 115
KBAXMR0 123
KBAXTR0 123
READ 117
receiving documents from MailRoom 115
RIF 116, 117, 118
RWYREAP call 117
sending a business acknowledgment 115, 118
sending documents from MailRoom 115
TIE/IMS support 115—127
with MQSeries 115
WRITE 116

Transaction Interface Environment
See TIE

Transaction Server
See CICS

transient data 71, 77
translation 213
translation exit 61
TS queue 21, 41, 47, 57
TST 74

 Index 303

U
unpack exit 29
utility programs 91

V
VSAM

API to allocate a data set 241
ASCA 142
ASCA logging 72
large documents 24, 241
pool 24, 241

W
Windows

MailRoom APPC programs 135, 136, 137
MailRoom TCP/IP programs 127, 128, 129

X
XML 59, 64, 243

304 BTB Application Programming Guide

IBM

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC27-1583-01

	Figures
	Tables
	Notices
	Trademarks and service marks

	Preface
	About this book
	Who should read this book
	Conventions and terminology used in this book
	Note about version and release numbering
	Bibliography
	Books from related libraries
	How to send your comments

	Summary of changes
	Part 1. The MailRoom
	Chapter 1. MailRoom infrastructure
	Document formats
	Understanding the M-record
	SAP R/3 IDOC support
	XML document support
	Document handling in CICS
	Linking envelopes

	Chapter 2. MailRoom exits
	Source exits
	Document exits
	MailRoom Service and Subscription attributes
	SAP Naming exits
	Routing exits
	MailRoom supplied source exits
	MailRoom supplied document exits

	Chapter 3. MailRoom CICS APIs
	CICS MailRoom write API—KBAXWRP
	CICS MailRoom read API—KBAXREP
	CICS MailRoom acknowledgment API—KBAXACP
	CICS MailRoom Document Browser API—KBAXDBP

	Chapter 4. MailRoom Batch utility programs
	Sample JCL for batch write utility—KBASBWX
	Sample JCL for batch read utility—KBADBRX
	Sample JCL for batch write via MQSeries utility—KBASMPX
	Sample JCL for batch MQSeries read utility—KBADMGX

	Chapter 5. MailRoom MQSeries support
	Using MQSeries MQPUT to send documents to MailRoom
	Using MQSeries MQGET to receive documents from MailRoom
	Sending a Business Acknowledgment to MailRoom using MQSeries
	Data conversion and MQSeries
	MQSeries definitions to access the MailRoom
	MQSeries definitions to receive technical acknowledgement

	Chapter 6. MailRoom TIE/IMS support
	Using TIE-Write to send documents to MailRoom
	Using TIE-Read to receive documents from MailRoom
	Sending a Business Acknowledgment to MailRoom using TIE
	TIE-IMS Scenario using ISClink
	TIE-MQ Scenario
	TIE or TIE-MQ?
	Understanding error situations

	Chapter 7. MailRoom TCP/IP programs
	TCP/IP MailRoom write/send program—F2T
	TCP/IP MailRoom read/receive program—T2F
	Sending a Business Acknowledgment to MailRoom using TCP/IP
	AIX MailRoom scanner program—KBAUSCAN
	OS/2 MailRoom write/send program—FILE2TCP
	OS/2 MailRoom read/receive program—TCP2FILE

	Chapter 8. MailRoom APPC programs
	APPC MailRoom write/send program—F2A
	APPC MailRoom read/receive program—A2F
	Sending a Business Acknowledgment to MailRoom using APPC

	Part 2. Gateway client/server support
	Chapter 9. Client/server infrastructure
	Overview of Gateway support
	Access to DB2
	Security
	Standard BTB Profiling query support
	Standard send structure
	Standard receive structure
	BPI Navigator error messages
	User profile BPI
	Access list BPI
	Optional BPI Navigator logging facility
	Limit the availability of a BPI

	Chapter 10. Client programming guidelines
	Introduction
	Access using CICS DPL
	Access using native LU6.2
	Access using CIS-CSCS
	Access using TCP/IP

	Chapter 11. Midlayer server programming guidelines
	Standard BPI input and output structures
	Standard error message server
	Super BPI exits
	BPI CSP modules

	Chapter 12. Remote server programming guidelines
	CICS DPL
	Link to application server via the generic BEC-BPI

	Part 3. NPT application design and development
	Chapter 13. NPT/3270 applications under BTB
	CICS and CSP concepts
	Multi Language Support implementation
	Transaction change
	Internal navigation

	Chapter 14. Business Transaction Broker CSP application modules
	Stub applications
	List applications
	Browse applications
	Detail applications
	Referential Integrity

	Chapter 15. Back-end programming
	Calling BEC
	CICS to CICS programming guidelines
	CICS to IMS programming guidelines

	Part 4. Common programming APIs
	Chapter 16. Generic BTB programming APIs
	Sundry texts, prompt and validation
	System Errorlog
	Codepage translation services
	Validating and calculating dates—KBHDATE
	Mail and Fax API—KBHFTXP
	Send File to user panel—KBHSFAP
	Internet e-mail API—KBHSMTP
	Generate unique TS queue names—KBHUQNP
	Allocate a VSAM data set from a pool—KBHUVSP
	XML Text Scanner, primitive XML Parser—KBHXMLM

	Chapter 17. Programming APIs and structures for CSP 3270 applications
	BTB online help system
	Application data in KAAWCOM
	Common work area—KAAWCOM
	F-keys string builder—KBHPFKP
	Extended scope API—KBHECAP
	String handler—KBHSTRP

	Appendix A. DB2 tables used by BTB
	Understanding table relationships
	Table descriptions

	Appendix B. Recommended naming standards for CSP objects
	Examples

	Index

