
IBM Technical Summit 2013

Agility in a Relational Database World -
Dynamic Schema with JSON and DB2

Presented By : Mario Briggs

Slide courtesy : Bill Bireley

IBM Information Management

mabriggs@in.ibm.com

© 2013 IBM Corporation

mailto:bireley@us.ibm.com

2

Please note the following

IBM’s statements regarding its plans, directions, and intent are subject to change or

withdrawal without notice at IBM’s sole discretion.

Information regarding potential future products is intended to outline our general product

direction and it should not be relied on in making a purchasing decision.

The information mentioned regarding potential future products is not a commitment,

promise, or legal obligation to deliver any material, code or functionality. Information

about potential future products may not be incorporated into any contract. The

development, release, and timing of any future features or functionality described for our

products remains at our sole discretion.

Performance is based on measurements and projections using standard IBM

benchmarks in a controlled environment. The actual throughput or performance that any

user will experience will vary depending upon many factors, including considerations

such as the amount of multiprogramming in the user’s job stream, the I/O configuration,

the storage configuration, and the workload processed. Therefore, no assurance can be

given that an individual user will achieve results similar to those stated here.

3

Agenda

 New Era Applications

 NoSQL and JSON Data Store Overview

 Details for DB2 as a JSON Data Store

 Positioning JSON Data Stores in the Enterprise

4

A New Era of Engaging Applications…

From transactions to interactions
Complement systems of record with systems of engagement

Can you plz

book me on

the 8pm

flight?

5

…Needs New Capabilities…

1. Add new offerings from business partners rapidly, and enhance

applications quickly in response to user feedback

2. Handle dramatically increased and widely varying load, driven by

expanded stakeholder engagement and mobile access

3. Handle transactions across multiple interactions reliably, and provide

secure querying and reporting capabilities to the business and

partners

Add a “call a taxi when

you land” service provided

by a partner cab company

in days, not weeks!

Add a list of alternative

flights, when displaying

delays, in a day!

A hurricane causes flight

cancellations, and a surge

in usage of web site and

apps

Book an alternative flight,

only if hotel is available

Live chat with agent when

alternative flight needs to be

booked due to delay. Instant

restaurant e-coupon delivery from

business partner.

Which day did coupons provide most revenue?

(requires joins across JSON and Relational

data) What discount did we offer on that day?

(requires time travel query)

6

…Leading to New Technology Requirements

1. Schema Flexibility & Developer Agility

2. Consistent Low Latency & Scalability

3. With Security, Transactions, Joins, and
Operational Tooling

Traditional relational model is not Agile.

 Need schema flexibility to support rapid iterative changes.
 Process involved to change relational schema and app code around it is slow

7

Comparing Relational VS NoSQL JSON for evolving applications

 Relational

– Database Object definition changes

– Develop Migration Scripts

– Change Data objects in code

– Change ORM Mapping

– Update Data Access layer code

– Update Service Interface code

– Update UI code

• NoSQL JSON store

• Update UI code

JSON

Store

JSON : Javascript Object Notation.
Object representation format of javascript, the UI Dev langauge.

Lightweight, flexible.

Eliminates mapping and transformation code in application if database can store JSON
natively

8

What is NoSQL?

 Key Value Stores

– Hash table of keys, where the data part of key-value is in

a binary object

– Examples pure key-value stores: MemcacheD, REDIS,

WebSphere eXtreme Scale

 Document Stores

– Stores documents made up of tagged elements, which

have keys and document-like objects

– Examples. MongoDB, couchDB

 Column Family

– Each storage block contains data from only one

column/column set

– Examples. Hbase, Cassandra

 Graph Store

– Key-values are related through graph structure

– Common Model : RDF

– Examples : Jena, Sesame

122+ NoSQL Database
Offerings Today!

Dominant Flavors

• Many apps need fewer database features

(simplicity)

• Need rapid application evolution/deployment, with

minimal interaction with DBA

• Some apps need extremely high scale (e.g. Twitter)

• Need for a low-latency, low-overhead API to access

data

• Increasing use of distributed analytics

Motivation

9

Quick RDF/Linked Data/Semantic web Introduction

 Problem Statement :

 Lots of datasets exists on the web, but requires a human to manually link them to get integrated value.

Is there a way machines can do it without human intervention ?

 Semantic Web solution

– A single universal schema (RDF) which allows machines to link datasets

– a common query language for the data model (SPARQL)

– an knowledge representation language (OWL) using which machines can do deductive reasoning on the

data.

 Same architecture being adopted by Applications for data integration

Subject
predicate

Subject

10

RDF Use-case

 Data Integration

Integrate multiple independently developed, evolving Applications and data schemas.

Benefit : More flexible than brittle point-2-point API integrations.

 Two possible architectures

Move the Data Keep the data where it is

11

DB2RDF Features

 Released in DB2 10.1

– Supported SPARQL 1.0 and Subquery / Aggregates from SPARQL 1.1

– Supported FGAC with RDF/SPARQL

 In DB2 10.1 FP2

– SPARQL 1.1 (minus Property Paths, Negation, BIND)

– SPARQL 1.1 UPDATE

– SPARQL 1.1 GRAPH STORE HTTP PROTOCOL

– Support for querying versioned RDF Graphs

– Number of performance enhancements

SPARQL-2-SQL Cache

Single recursive SQL for Describe Queries

Streaming bulk loaders

 In DB2 10.5

– Support for SPARQL 1.1 Property Paths.

12

Relational Approaches to Schema Flexibility

Two Significant Trends in Data Representation and Storage

– Both driven by the Web

- Both enabling new applications of data

3rd Normal Form

(1) De-normalized or Not-normalized

(2) Highly Normalized

See “Data Normalization Reconsidered” –

http://www.ibm.com/developerworks/data/library/techarticle/dm-1112normalization/

http://www.ibm.com/developerworks/data/library/techarticle/dm-1201normalizationpart2/

RDF (Resource

Definition Framework)

Triples and Ontologies

Intact Data :

LOBs, XML, JSON,

Documents etc

Variant on row

based stores is

column based

stores

Relational Tables

http://www.ibm.com/developerworks/data/library/techarticle/dm-1112normalization/
http://www.ibm.com/developerworks/data/library/techarticle/dm-1112normalization/
http://www.ibm.com/developerworks/data/library/techarticle/dm-1112normalization/
http://www.ibm.com/developerworks/data/library/techarticle/dm-1201normalizationpart2/
http://www.ibm.com/developerworks/data/library/techarticle/dm-1201normalizationpart2/
http://www.ibm.com/developerworks/data/library/techarticle/dm-1201normalizationpart2/

13

Why is JSON Important?

 Helps enable a new era of applications

– Mobile, Cloud, Social

 JavaScript everywhere

– Data interchange format for JavaScript

 JSON becoming the language of the web

 JSON support in the database tier

– Schema Flexibility -> Development Agility

– Eliminate mapping and data transformation through the
tiers

– Becoming predominant technology leveraged by NoSQL
document stores

Data

Repository

“Less is better: less we need to agree upon to interoperate, the more easily we interoperate”

JavaScript: The Good Parts, O’Reilly

14

New Era Application Characteristics

 Applications evolve rapidly as the needs for mobile and Web presence try to keep pace with

internet user needs

 Application developers are increasingly looking for solutions that allow nearly continuous

integration of application changes

– Amazon.com allows 1000’s of their developers to check in product code changes daily…

– Developers resist solutions that require delays to sync up with DBA change windows

 NoSQL JSON stores are appealing to these developers:

– JSON schema can be evolved rapidly without intervention by DBAs or data modelers.

– Objects like “shopping cart” in these applications really aren’t used outside the Web application, so there is no need to

interlock closely with the rest of the enterprise data model.

– JSON offers a very simple and elegant model for persisting Java or JavaScript objects, without needing a heavy-weight

persistence solution like OpenJPA or Hibernate.

 Performance and scalability is very good for JSON

Store a single JSON document representing the object

versus

Store “n” rows in relational as a “normalized” object.

15

Data access example using Javascript and JSON

 Relational representation

 JSON representation

JSON_string = ‘{“Lastname”:”Jones”,”Firstname”:”Billy”,”Street”:”123 Maple Drive”}’;

 Javascript data access

var JSONelems = JSON.parse(JSON_string);

l_name = JSONelems.Lastname;

f_name = JSONelems.Firstname;

l_street = JSONelems.Street;

Lastname Firstname Street

Jones Billy 123 Maple Drive

16

Simple Database API for JSON

Insert a record, a blog post by Joe:

db.posts.insert({author:"Joe", date:"2012-04-20", post:"..."})

Find all posts by Joe:

db.posts.find({author:"Joe"})

Delete all posts of Joe:

db.posts.remove({author:"Joe"})

17

Typical JSON Open Source Datastore Attributes

 Logging is often turned off to improve performance

 By default, no return code on insert (a.k.a. “fire and forget”)

– App must verify update was performed

 Data is sharded for scalability

 Shards are replicated asynchronously for availability

– Queries to replica nodes can return back-level data sometimes…

 No concept of commit or rollback

– Each JSON update is independent

– Applications have to implement compensation logic to update multiple documents with ACID
properties

 JSON documents are stored in collections

– But no “join” across collections

 No document-level locking

– App must manage a “revision” tag to detect document update conflicts

 No document-level or tag-level security

 No built-in temporal or geo-spatial query support

18

IBM NoSQL : Delivering the Best of Both Worlds

JSON Agility with a Trusted Foundation

 IBM

Database
JSON

{

“Product”: {

 “SKU”: 11213,

 “Name”: “Glass”,

 “Category”: {

},

 “Size”: [“S”, “M”, “L”]

 }

}

Relatio
nal

• Interoperate seamlessly with modern
 applications

o Flexible schemas allow rapid delivery
of applications

• Preserve traditional DBMS Capabilities,
 leverage existing skills and tools:

o Multi-statement Transactions

o Management/Operations

o Security

o Scale, performance,high availability

• Extend with Advanced features (future)
o Temporal semantics

o Full Text search

o Multi-collection joins

o Combine with Enterprise RDBMS data

19

JSON API Details
address New Era Application Development

 IBM DB2 10.5 FP1 debuted a JSON Document Store API consisting of the following contents:

– IBM provided Java Driver for JSON API

– Java Driver supporting JSON API for data access layer

– Transactions

– Parametric SQL statements (Delete, select)

– Temporal tables

– CLP-Like Command Shell

– Ad-hoc updates / queries

– Administration commands

– Open Source Driver Wire Listener

– Leverage NoSQL community drivers for data access layer

– DB2 enablement:

– Index on Expression

– allows indexing of JSON document fields

– Scalar function and UDF extensions

– Start to form the base for official SQL/JSON support

20

DB2 JSON API

 Supports Transactions

 Batches insertions

 Fire-forget inserts (fast)

 Indexing

 Time travel query

 Smart Query re-write

 Good performance with Inline LOBS

 Java command line

JSON API JSON

Command Shell

JDBC Driver

 DB2 Engine
JSON_VAL()

 - builtin, supports

extraction of (SQL)

values from BSON

DRDA

IoE w/ BLOB in the

expression

Java Apps

JSON_TABLE()

JSON_UPDATE()

JSON

UDFs

…

Java Driver that translates API calls to SQL + function invocations

21

22

CREATE TABLE customers (_id VARBIN(12) data BLOB(16M))

2) Insert all your customers as JSON documents. For example, one insert might contain this

document:

 { name:"Joe", age:25, phone:["555-666-7777", "444-789-1234"],

 address: { street:"ABC st",

 zipcode:"95141“ } }

1) Create a customer collection / table.

3) Look for customers in zipcode 95141.

SELECT DATA FROM customers

WHERE JSON_VAL

 (json_data,'address.zipcode','s:5')

 ='95141'

db.createCollection(“customers")

4) Improve performance by creating index on zipcode.

CREATE INDEX idx1

ON customers

 (JSON_VAL(json_data,'address.zipcode','s:5')

db.customers.insert({name:”Joe”…)

db.customers.ensureIndex

 ({“address.zipcode"});

INSERT INTO customers

 VALUES (<binary JSON>)

db.customers.find(

 {“address.zipcode”:’95141’})

NoSQL JSON API and equivalent SQL

23

DB2 NoSQL/JSON API from Java

/*Set up Conn. and Database handle*/

Context ctx = new InitialContext();

DataSource ds =

 (DataSource)ctx.lookup(“jdbc/myDB2”);

Connection conn = ds.getConnection();

Database db = new Database(conn);

DBCollection shop =

db.getCollection(“shop”);

/*Create JSON objects and insert*/

BasicDBObject cart = new
BasicDBObject();

BasicDBObject amtDue = new
BasicDBObject();

cart.put(“sid”, “176”);

cart.put(“customer”, "Bill“)’;

amtDue.put(“subtotal”, 50.07);

amtDue.put(“tax”, 4.26);

amtDue.put(“total”, 54.33)

cart.put(“amtDue”, amtDue);

shop.insert(cart);

/* Use cursor to fetch back the JSON */

DBCursor cursor = shop.find(new

BasicDBObject(“customer”, “Bill”));

try {

 while(cursor.hasNext()) {

 DBObject obj = cursor.next();

 doSomething(obj);

 }

} finally{

 cursor.close(); //close the cursor

no matter what.

}

24
Community Provided Drivers

IBM extension to enable DB2 features

NoSQL JSON Wire Listener

Applications
Java PHP NodeJS

JSON API JSON CLP

JDBC Driver

AIM Developed MongoDB Wire Protocol
NoSQL JSON Wire Listener

 DB2 Engine
JSON_VAL()

 - builtin, supports

extraction of (SQL)

values from BSON

 DB2 JSON_TABLE()

JSON_UPDATE()

JSON

UDFs

…

BSON Wire

Protocol

DRDA

IoE w/ BLOB in the

expression

•Built on JSON API

•Leverage community

•Immediate reach to more

applications and developers

•Presence in “New style apps”

•(Future) Extend existing

community drivers with DB

specific features:

• Mulit-statement commit

scope

• Temporal

• Geo-spatial

25

Node.js code sample

var databaseUrl = “shop”

var collections = [“cart”]

var db = require(“mongojs”).connect(databaseUrl, collections);

…

Db.users.save({sid: “176”, customer: “shopper99@yahoo.com”,

 amtDue: {subtotal: 50.07, tax: 4.26, total: 54.33}},

 function(err, saved) {

 if (err || !saved)

 console.log(“cart not saved”);

 else

 console.log(“cart saved”); });

…

Db.cart.find({customer: “shopper99@yahoo.com”},

 function(err. carts) {

 if (err || !carts)

 console.log(“No carts found”);

 else carts.forEach(function(iCart) {

 console.log(iCart);});});

26

Technical Preview – Demo Components and Architecture

Applications - using

community JSON drivers

Java

PHP

node.js

 NoSQL

JSON API
JDBC

Driver

NoSQL JSON

Wire Listener

DB2

BSON

Wire

Protocol

DRDA

Native Java

Applications

…

JSON

Command Shell

Client

Browser

27

What’s behind the API?

 1 to 1 mapping between collection and DB2 table

– Table contains a BLOB column

– Each row contains single document

– (table name – collection name)

– Side column for primary ID field

 Possible additional side columns for optional features

– Bi-temporal (future)

– Fine grained access control (future)

 User-defined Functions, scalar function to operate on fields inside

the JSON document

28

Indexes

 Simple Index
db.collection.ensureIndex({sid:{1, "$int"}}); //create ascending integer index on ‘sid'.

db.collection.ensureIndex({“customer":1}}); //create ascending varchar(50) (default type)

index on ‘customer' field.

 Composite index containing multiple fields

db.collection.ensureIndex({customer:[1, "$string", 20], total:{-1, "$int"}});

//create compound index with two fields: customer ascending with type varchar(20), and total

descending as integer.

 Index on nested object

db.collection.ensureIndex({amtDue.total:{1, "$int”});

 How does JSON field indexing work?

– Indexes are created on fields within the JSON document

CREATE INDEX CUSTNDX ON JSON_VAL(JSONBLOB, “customer”, “:i”)

– Subsequent queries searching on customer will use same functional expression in a predicate

29

What is JSON’s Role in the Enterprise?

 Flexible Schema is agile, liberating for application developers

 But will we abandon years of expertise in data modeling / normalization theory?

– How to maintain control in an enterprise, mission critical DBMS?

 Identification of appropriate applications is critical

 Application deployment procedures need to adapt

– New controls to prevent schema chaos

– Application Development Groups need to implement controls

 When combining with application that uses relational schema

– Identify portions that need to remain dynamic

– Allocate / accommodate space for that as JSON

– Future – combination of SQL and JSON will make this easier

“If I have seen further, it is by standing on the shoulders of giants”

 - Sir Isaac Newton

30

What data store format makes sense for your application?

 Consider NoSQL JSON when:

– Application and schema subject to frequent changes

– Prototyping, early stages of application development

– De-normalized data has advantages

Entity / document is in the form you want to save

– Read efficiency – return in one fetch without sorting, grouping or ORM mapping

– “Systems of Engagement”

Less stringent “CAP” requirements in favor of speed

– Eventual consistency is good enough

Social media

 Relational still best suited when these are critical

– Data Normalization to

Eliminate redundancy

Ensure master data consistency

– Database enforced constraints

– Database-server JOINs on secondary indexes

31

Data Normalization - choose the right solution

Relational

Simple normalized schema (DB2 sample)
with relational constraints:

NoSQL JSON - Two approaches:

embedded (de-normalized)

Using references

{dept: “A10”,
 deptname:”Shipping”,
 manager:”Samuel”,
 emp:[
 {empno:”000999”,
 lastname:”Harrison”,
 edlevel:”16”},
 {empno:”370001”,
 lastname:”Davis”,
 edlevel:”12”}
]
 proj:[
 {projno:”397”,
 projname:”Site Renovation”,
 respemp:”370001” },
 {projno:”397”,
 projname:”Site Renovation”,
 respemp:”370001”} …
]
}

If you need normalization and database-enforced constraints, JSON may not be best choice

{_id
 dept
…
)

{_id
 emp
 dept ref
…
}

{_id
 dept
 emp ref
…
)

Requires
application-

side join

Chance for
data

redundancy

32

JSON use case – Inheritance of common fields

 Documents share a common

structure but may have unique

variations

 Example:

– website stores product descriptions in

single collection

– All have product number, price, supplier,

name, description

– Different product types have unique

fields

– As new products are introduced they

need no database schema change

 Common fields are indexed, others

are queryable but not indexed

{prodnum:”CR2549”,
name:”Gulliver’s Travels”,
type:book,
price:15.97,
description:”Classic novel”,
supplier: “Penguin Group”

details : {author:”Jonathan Swift”,
 categories:
 [adventure,
 travel,
 fantasy]
 publish_date: 1726
 }
}

products

{prodnum:”BA9444”,
name:”Mahogany Desk”,
type:furniture,
price:349.00,
description:”Small Writing Desk”,
supplier: “Elegant Wood Designs”

details : {construction:”veneer”,
 weight:80,
 units: pounds
 dimensions:
 {height:29,
 width:48,
 depth: 28,
 units:”inches”
 }
 }
}

33

Applications
Java PHP NodeJS

JSON API JSON CLP

JDBC Driver

AIM Developed MongoDB Wire Protocol
NoSQL JSON Wire Listener

 DB2 Engine
JSON_VAL()

 - builtin, supports

extraction of (SQL)

values from BSON

BSON Wire

Protocol

DRDA

IoE w/ BLOB in the

expression

Summary of Expected Features and Roadmap

MongoDB Wire Listener
• Leverage NoSQL community drivers for data access
layer

IBM provided Java Driver for JSON API
• Java Driver supporting JSON API for data access
layer
• Transactions
• Parametric SQL statements(Delete, select)
• Temporal tables

Insert, Update, Delete, Select support
• Select projection list
• Batching, order by, paging queries (API only)
• Fire and forget inserts
• Limited aggregate functions (group-by / having)

Indexing support in API
• Primary index and secondary single value index

Import/Export
• Import/Export from/to MongoDB export JS-files

Command line tools
• Execute JSON queries and display results

Install
• Files and scripts that are part of server and DS Driver

DB2 Server Capabilities
• JSON_VAL Built-in function
• Index on Expression with BLOB input

Expected Platforms:
Tech Preview: Serial on Windows&RedHat
GA: Expand to all platforms

JSON_TABLE()

JSON_UPDATE()

JSON

UDFs

…

JSON Data Store in DB2 10.5 FP1: Summary

34

35

Acknowledgements and disclaimers

© Copyright IBM Corporation 2013. All rights reserved.

– U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

IBM, the IBM logo, ibm.com, Rational, the Rational logo, Telelogic, the Telelogic logo, Green Hat, the Green Hat logo, and other IBM products

and services are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or

both. If these and other IBM trademarked terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these

symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information was published. Such trademarks may

also be registered or common law trademarks in other countries. A current list of IBM trademarks is available on the Web at “Copyright and

trademark information” at www.ibm.com/legal/copytrade.shtml

Other company, product, or service names may be trademarks or service marks of others.

Javascript, CouchDB, MongoDB, HBase, Cassandra, MemcacheD, REDIS Jena, Sesame

Availability: References in this presentation to IBM products, programs, or services do not imply that they will be available in all countries

in which IBM operates.

The workshops, sessions and materials have been prepared by IBM or the session speakers and reflect their own views. They are provided

for informational purposes only, and are neither intended to, nor shall have the effect of being, legal or other guidance or advice to any

participant. While efforts were made to verify the completeness and accuracy of the information contained in this presentation, it is provided

AS-IS without warranty of any kind, express or implied. IBM shall not be responsible for any damages arising out of the use of, or otherwise

related to, this presentation or any other materials. Nothing contained in this presentation is intended to, nor shall have the effect of, creating

any warranties or representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license

agreement governing the use of IBM software.

All customer examples described are presented as illustrations of how those customers have used IBM products and the results they may

have achieved. Actual environmental costs and performance characteristics may vary by customer. Nothing contained in these materials is

intended to, nor shall have the effect of, stating or implying that any activities undertaken by you will result in any specific sales, revenue

growth or other results.

http://www.ibm.com/legal/copytrade.shtml

36

© Copyright IBM Corporation 2013. All rights reserved. The information
contained in these materials is provided for informational purposes only, and is
provided AS IS without warranty of any kind, express or implied. IBM shall not be
responsible for any damages arising out of the use of, or otherwise related to,
these materials. Nothing contained in these materials is intended to, nor shall
have the effect of, creating any warranties or representations from IBM or its
suppliers or licensors, or altering the terms and conditions of the applicable license
agreement governing the use of IBM software. References in these materials to
IBM products, programs, or services do not imply that they will be available in all
countries in which IBM operates. Product release dates and/or capabilities
referenced in these materials may change at any time at IBM’s sole discretion
based on market opportunities or other factors, and are not intended to be a
commitment to future product or feature availability in any way. IBM, the IBM logo,
Rational, the Rational logo, Telelogic, the Telelogic logo, and other IBM products
and services are trademarks of the International Business Machines Corporation,
in the United States, other countries or both. Other company, product, or service
names may be trademarks or service marks of others.

