
Name: Dharmesh Jain and Shrinivas S
Kulkarni
Title:Introduction to Hadoop and BigInsights
Programming Overview

Agenda

• Hadoop Overview
• Why Hadoop?
• Hadoop distributed file system
• Map Reduce engine

• JAQL Overview
• Need for high level languages
• Core JAQL operators

• BigInsights programming
• BigInsights Apps

• Application catalog
• Develop your own BigInsights Applications

• Development tools
• BigSheets

Hardware improvements through the years...

• CPU Speeds:
• 1990 - 44 MIPS at 40 MHz

• 2000 - 3,561 MIPS at 1.2 GHz

• 2010 - 147,600 MIPS at 3.3 GHz

• RAM Memory
• 1990 – 640K conventional memory (256K extended memory

recommended)

• 2000 – 64MB memory

• 2010 - 8-32GB (and more)

• Disk Capacity
• 1990 – 20MB

• 2000 - 1GB

• 2010 – 1TB

• Disk Latency (speed of reads and writes) – not much improvement in
last 7-10 years, currently around 70 – 80MB / sec

How long it will take to read 1TB of data?

• 1TB (at 80Mb / sec):

• 1 disk - 3.4 hours

• 10 disks - 20 min

• 100 disks - 2 min

• 1000 disks - 12 sec

• Parallel Data Processing is the answer!

Parallel computing is not new

• HPC and Grid computing
• Move data to computation- Network bandwidth becomes a

bottleneck; compute nodes idle
• Good for compute intensive jobs
• Exchanging data requires synchronization– very tricky
• Scalability is programmer’s responsibility

• Will require change in job implementation

• Hadoop approach
• Move computation to data- conserves network bandwidth
• Shared nothing Architecture- no dependencies between tasks
• Communication between nodes in frameworks responsibility
• Designed for scalability

• Adding increased load to a system should not cause outright
failure, but a graceful decline

• Increasing resources should support a proportional increase in
load capacity

• Without modifying the job implementation

Apache

• A scalable fault-tolerant distributed system for data storage and
processing (open source under the Apache license).

• Inspired by Google technologies
• MapReduce

• Google file system

• Originally built to address scalability problems of Nutch, an open source
Web search technology

• Developed by Douglass Read Cutting (Doug cutting)

• Core Hadoop has two main systems:
• Hadoop Distributed File System: self-healing high-bandwidth clustered

storage.

• MapReduce: distributed fault-tolerant resource management and scheduling
coupled with a scalable data programming abstraction.

HDFS Architecture – Master/Slaves

NameNode

• Manages the file system namespace
• Maintains file system tree and meta data for all files/directories in the tree

• Single point of failure. Name node loss renders file system inaccessible

• Centralizes and manages file system metadata in memory
• Maps blocks to DataNodes, filenames, etc

• Metadata size limited to available RAM of NameNode.

• Bias toward modest number of large files, not large number of small files
(where metadata can grow too sizeable)

• NameNode will crash if it runs out of RAM

• Runs on a master node
• Coordinates access to DataNodes but data never goes on NameNode

• Hadoop V1 has no built-in failover mechanism for NameNode

Master node
NameNode

DataNode (Slave)

• Files on HDFS are chopped into blocks and stored on

DataNodes

• Size of blocks is configurable

• Different blocks from the same file are stored on different

DataNodes if possible

• Serves read and write requests to clients

• Performs block creation, deletions, and replication as

instructed by NameNode

• Replication factor is configurable

• One instance of DataNode per slave node is recommended in

real deployment

DataNode

Blocks

• Much larger than traditional file system blocks

• 64MB by default. Increase to 128MB for very large files.

• If chunk of file is smaller than HDFS block size, only needed space is used

• Trade-off: block size and MapReduce parallelism
• Map tasks in MapReduce normally operate on one block at a time

• so if you have too few tasks (fewer than nodes in the cluster), your jobs will run
slower than they could otherwise

• Minimize the cost of seeks

• Advantages of HDFS’s data block approach
• Simplifies replication, providing fault tolerance and reliability

• Each block replicated across 3 DataNodes (by default)
• 1st replica placed on same node as client

• 2nd replica placed on different rack from 1st rack

• 3rd replica placed on same rack as 2nd rack, but on a different node

HDFS Data Blocks

Map Reduce 101
• Originated in functional programming but common in many languages

• Example of Map function:
• square x = x * x

• map square [1,2,3,4,5] will return [1,4,9,16.25]

• Notice that I can process “map square” in parallel:
• map square [1,2,3] -> [1,4,9]

• map square [4,5] -> [16,25]

• Example of Reduce function:
• MAX (1, 2, 3, 10,15, 20) -> 20

• SUM (1, 7, 10) -> 18

• In Hadoop REDUCE function always takes MAP function as an input
• REDUCE phase is optional, for some jobs no reducing is required

Hadoop MapReduce engine
• Framework which enables writing applications to process multi-terabyte

of data in-parallel on large clusters (thousands of nodes) of commodity
hardware

• A clean abstraction for programmers
• No need to deal with internals of large scale computing
• Implement just Mapper and Reducer functions- most of the times
• Implement in the language you comfortable with

– Java (assembly language for Hadoop)
– With hadoop streaming, you can run any shell utility as mapper and reducer
– Hadoop pipes to support implementation of mapper and reducer in C++.

• Automatic parallelization & distribution
• Divides the job into tasks (map and reduce task)
• Schedules submitted jobs
• Schedules tasks as close to data as possible
• Monitors task progress

• Fault-tolerance
• Re-execute failed or slow task instances.

Data flow in a map reduce job

MapReduce Architecture- master/slave
• Single master (JobTracker) controls job execution on multiple

slaves (TaskTrackers).

• JobTracker
• Accepts MapReduce jobs submitted by clients

• Pushes map and reduce tasks out to TaskTracker nodes

• Keeps the work as physically close to data as possible

• Monitors tasks and TaskTracker status

• TaskTracker
• Runs map and reduce tasks; Reports status to JobTracker

• Manages storage and transmission of intermediate output

cluster

JobTracker

Master node

TaskTracker

Slave node 1 Slave node 2

TaskTracker

Slave node 3

TaskTracker

Slave node 4

TaskTracker

Word count Mapper
public static class WordCountMapper extends MapReduceBase

 implements Mapper<LongWritable, Text, Text, IntWritable> {

 private final static IntWritable one = new IntWritable(1);

 private Text word = new Text();

 public void map(LongWritable key, Text value,

 OutputCollector<Text, IntWritable> output,

 Reporter reporter) throws IOException {

 String line = value.toString();

 StringTokenizer itr = new StringTokenizer(line);

 while (itr.hasMoreTokens()) {

 word.set(itr.nextToken());

 output.collect(word, one);

 } } }

Word count Reducer

public static class WordCountReducer extends MapReduceBase

 implements Reducer<Text, IntWritable, Text, IntWritable> {

 public void reduce(Text key, Iterator<IntWritable> values,

 OutputCollector<Text, IntWritable> output,

 Reporter reporter) throws IOException {

 int sum = 0;

 while (values.hasNext()) {

 sum += values.next().get();

 }

 output.collect(key, new IntWritable(sum));

 } }

Prepare and Submit job
public class WordCountJob {

public static void main(String[] args) throws Exception{
 JobConf conf = new JobConf(WordCount.class);

 // specify input and output dirs
FileInputFormat.addInputPath(conf, new Path("input"));
FileOutputFormat.addOutputPath(conf, new Path("output"));
// specify output types
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);
//InputFormat and OutputFormat
conf.setInputFormat(TextInputFormat.class);

 conf.setOutputFormat(TextOutputFormat.class);

 conf.setMapperClass(WordCountMapper.class); // specify a mapper

 conf.setReducerClass(WordCountReducer.class); // specify a reducer
conf.setCombinerClass(WordCountReducer.class);

 conf.setNumberOfReducer(2); //Number of reducer

 JobClient.runJob(conf); // Submit the job to Job Tracker

}}

Need for higher level languages

• Although the Hadoop framework is implemented in Java,
MapReduce applications do not need to be written in Java

• To abstract complexities of Hadoop programming model, a few
application development languages have emerged that build on
top of Hadoop:

• Pig

• Hive

• Jaql

Jaql

Word count in JAQL

• read(lines("/WordCount/input")) -> expand tokenizer($)

 -> group by w = $ into { word:w ,frequency: count($)}

 -> sort by [$.frequency]

 -> write(file("/WordCount/output/wordcount_result"));

• Anatomy of Word count
• $doc = read(lines("/jaqlsession/data/file1"));

• $alltokens = $doc -> expand tokenizer($);

• $unsortedresult = $alltokens -> group by w = $ into { word:w , frequency:
count($)};

• $sortedresult = $unsortedresult -> sort by [$.frequency] ;

• $sortedresult -> filter $.frequency > 5;

• $stopWordList = ["the", "Hello","Work"];

• $sortedresult -> filter not ($.word in $stopWordList);

• $unsortedresult -> top 3 by [$.frequency desc];

• $sortedresult -> write(file("/opt/ibm/JaqlSession/sortedWordCount"));

Core operators – TRANSFORM

• The transform operator allows you to manipulate the values in an array ("project"
in DBMS vernacular)

• An expression is applied to each element in the array

• The result of the expression is the next element in the output array

• The each clause can be applied if you don't like $

jaql> recs = [{a: 1, b: 4}, {a: 2, b: 5}, {a: -1, b: 4}];
jaql> recs -> transform $.a + $.b;
[5, 7, 3]

jaql> recs -> transform { sum: $.a + $.b };
[{ sum: 5 }, { sum: 7 }, { sum: 3 }]

jaql> recs -> transform each rec { sum: rec.a + rec.b };
[{ sum: 5 }, { sum: 7 }, { sum: 3 }]

Other important core operators

• EXPAND
• The expand operator flattens nested arrays

• FILTER
• filter allows you to selectively filter out array entries

• GROUP
• Performs SQL-style GROUP BY against a single input

• JOIN
• The join operator joins two or more arrays

• SORT and TOP
• The sort operator allows sorting of arrays

• The top operator returns the first k rows of its input array

Why I love JAQL?

• There are other well-known languages (Hive, Pig, etc.) Why another?

• Hive
• Good for "flat", structured data

• Has Java UDF/UDA's

• Familiar SQL syntax

• Pig
• Better for moderately complex, nested data

• Has Java UDF/UDA's

• Used for simple scripts

• JAQL: A JSON Query Language
• Elegantly handles deeply nested data (e.g. text analytics).

• Has Java UDF/UDA's

• Native Jaql functions and aggregates

• Modules and functions allow for larger, more complex projects

• Seamlessly integrates Jaql and SQL syntax

Developing and sharing jobs is not easy!

• Typical Workflow
• Import data into the cluster

• Analyze the imported data

• Java MR jobs ; JAQL; Hive; Pig

• Write back the analysis result in cluster

• Optionally, export the results out

• Some jobs needs to be run periodically
• Indexing

• Big data jobs are long running
• You have to monitor them; to track progress

• Packaging the workflow
• So that it is consumable

 23

Applications Catalog (Web Console)

• Browse available applications

• Deploy published applications (administrators only)

• Launch (or schedule for launch) a deployed application

• Monitor job (application) execution status

24

• Import & Export Data
• Database & Files

• Web and Social

• Analyze and Query
• Predictive Analytics

• Text Analytics

• SQL/Hive, Jaql, Pig, HBase

Running Applications

25

Quickly drag and drop to create new Apps

26

Overview of Application Development
Lifecycle

• Configure your Eclipse environment (one-time set up)

• Develop your application using InfoSphere BigInsights tools

• Test your application

• Package and publish your application

• Deploy your application on the cluster

27

Develop your application – Scripting example

• Open the BigInsights perspective in Eclipse

• Create a BigInsights project

28

Develop your application – Scripting example
(cont’d)

• Create a Jaql file within your BigInsights project

29

Test your application

• Create a BigInsights server connection

• Define a configuration for running your application

• Run your application from Eclipse

30

Publish your application to the console App
catalog

• Package and publish your application using the InfoSphere BigInsights
Eclipse Task Launcher

• Specify application name, input parms, workflow requirements, etc.

31

Deploy your application on the cluster

• Access the Applications tab of the Web console

• Locate your new app and click “deploy”

• Optionally, “run” the application after it’s been deployed

32

Workflow development leveraging

33

Develop, run, and test SQL

34

Develop, run, and test Pig

35

Develop, run, and test HBase

36

Develop, run, and test Jaql
• Features

• Syntax highlighting

• Execute all or selected pieces

• Explain output

• Launch Jaqlshell

• Publish as Application to BI server Jaql execution/explain is not yet
supported on Windows

BigSheets - Spreadsheet-style Analytic Tool

• Model “big data” collected
from various sources as
collections (tabular
structures)

• Filter and enrich content
with built-in functions

• Combine data in different
collections

• Visualize results through
spreadsheets, charts

• Export data into common
formats (if desired)

Sheets

No programming knowledge needed!

38

Spreadsheet-style Data Analysis and Discovery

39

Visualize results in the customizable
dashboard

40

Getting Started

• In the Class Room
• IBM Education

• Big Data University

• https://bigdatauniversity.com

• On Your Cluster
• BigInsights 2.1 QuickStart Edition VM

• BigInsights 2.1 Basic Edition

• Stay current
• BigData on developerWorks

• http://ibm.co/bigdatadev

• http://tinyurl.com/biginsights

• Links to demos, papers, forum, downloads,
etc.

• Stay connected with IBM Big Data
• http://ibmbigdatahub.com

https://bigdatauniversity.com/
http://ibm.co/bigdatadev
http://tinyurl.com/biginsights
http://ibmbigdatahub.com/

JAQL Resources

• IBM Big Data Youtbje Channel – JAQL playlist
• Youtube.com/ibmBigData

• developerWorks articles
• “Query social media and structured data with InfoSphere BigInsights”

• “Developing, publishing, and deploying your first Big Data application with
InfoSphere BigInsights”

• BigInsights 2.1 QuickStart Edition VM
• JAQL Tutorail

• Big Data University
• Learn core Hadoop

• Let me know if you are interested in helping?

• Information Center JAQL Docs

http://www.youtube.com/user/ibmbigdata/videos?query=JAQL
http://www.ibm.com/developerworks/data/library/techarticle/dm-1207querysocialmedia/index.html
http://www.ibm.com/developerworks/data/library/techarticle/dm-1209bigdatabiginsights/
http://www.ibm.com/developerworks/data/library/techarticle/dm-1209bigdatabiginsights/
http://pic.dhe.ibm.com/infocenter/bigins/v1r4/index.jsp?topic=/com.ibm.swg.im.infosphere.biginsights.analyze.doc/doc/t_analyze_bd_jaql.html

IBM big data • IBM big data • IBM big data

IBM big data • IBM big data • IBM big data

IB
M

 b
ig

 d
a

ta

•

IB

M
 b

ig
 d

a
ta

IB

M
 b

ig
 d

a
ta

 • IB
M

 b
ig

 d
a

ta

THINK

