
Enhancing software development
To support your business objectives

Model driven development—simplifying 
multicore systems deployment.

HighlightsHighlights

Allows developers to visualize and ■■

implement parallelism to verify 

expected performance gains

Automates execution of systems ■■

models to speed trade-off studies

Simplifies mapping of application ■■

components from existing legacy 

systems to multicore devices

Adopting multicore technology can 

accelerate any green initiative. In 

addition to being cost-effective, mul-

ticore systems have a smaller carbon 

footprint and potentially lower green-

house gas emissions than single-core 

systems. Their reduced power con-

sumption and slower clocking speeds 

can significantly improve battery life, 

which translates to fewer disposals into 

landfills. Further, the cooler operating 

temperatures mean that organizations 

can use quieter and more power-

efficient fan-less cooling systems.

However, implementing multicore 

systems is not a simple case of break-

ing and redeploying the single-core 

application onto multiple processors. 

Requirements and architectural analysis 

gain paramount importance when 

developing for a parallel architecture. 

Abstract-level models facilitate archi-

tectural and design studies that would 

otherwise take much longer to perform 

in source code. In addition, the run-time 

platform has to support true parallel-

ism as opposed to the concurrency 

achieved through commonly used 

sequential multitasking.

Unique challenges of multicore software 

development

Creating software for multicore devices 

opens a unique set of challenges. 

These challenges often require novel 

approaches throughout the develop-

ment cycle, from initial requirements 

gathering to final testing and validation 

of the parallel system. While architects 

and developers customarily work with 

concurrent applications, true paral-

lelism in multicore systems mandates 

rethinking task design, inter-task 

messaging and load distribution, as 

well as parallel testing to validate the 

completed systems. These milestones 

may be unchartered territory for single-

core developers.



2

With conventional development, con-

currency or parallelism is not finalized 

until later in the development cycle, 

during the optimization stage. Such a 

delay in finalization is logical because 

concurrency in single-core systems is 

implemented by the multitasking run-

time platform. However, with multicore 

systems, parallelism is not a logical 

abstraction but a physical reality. There-

fore, this architectural difference must 

be considered early in the development 

cycle because it can affect both the 

application and platform architectures.

For example, consider a company 

developing a multicore handheld 

device to stream video and receive 

satellite radio simultaneously. The first 

steps are deciding how many cores to 

specify for the product and selecting 

the clock speed for each core. Assume 

two 32-bit cores are required, running 

at 1GHz each. Additionally, two spare 

cores are needed for offloading peak 

usage. Validating the minimum, average 

and peak usage scenarios plays a vital 

role in the development cycle. Perform-

ing a use case analysis could reveal 

spare cores or excess clock speeds. 

Both factors can affect the total product 

cost. More importantly, decisions about 

how to deal with these factors can also 

affect operational quality issues, such 

as the useful life and environmental 

impact of the device.

Number of active objects (tasks)

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0
1            2            3            4            5             6

10%

50%

80%

90%

Increase in speed

Figure 1: Applying Amdahl’s law to predict the extent of speed gain as a function of parallel threads in 
a system

Simplify multicore development  

using models

Model driven development solutions 

from IBM can help organizations 

migrate successfully to multicore 

systems. By enabling a higher level 

of system abstraction, models allow 

developers to visualize and imple-

ment parallelism.

Helping to achieve predicted perfor- 

mance gains

One of the major motivations for 

deployment of multicore technology is 

to improve the underlying performance 

of the server and client machines. Most 

single-core applications today, includ-

ing embedded and real-time systems, 

are implemented as concurrent tasks. 

Once the logically parallel tasks are 

executed on a physically parallel plat-

form, significant performance gains can 

result (see figure 1).

In a model-based system, a collec-

tion of active objects represents these 

system tasks. Amdahl’s law predicts 

that in a system with six active objects, 

a four-fold performance gain can 

be achieved when 90 percent of the 

objects are parallelized. An example 

of a model-defined concurrent system 

is provided in figure 2 using a UML 

class diagram. The diagram is used for 

automated code generation.

When the source code for multicore 

systems is generated from a model 

driven approach, it is possible to 

arbitrarily assign tasks to different 

cores and execute the system virtu-

ally to achieve the performance gains 

predicted by Amdahl’s law. This quick 

form of trade-off study becomes a vital 

component in the multicore develop-

ment workflow.



3

Figure 2: Concurrent task structure of a video player modeled in IBM Rational Rhapsody® software

Figure 3: A legacy, single-core system redeployed on a multicore platform

Automating tradeoff analysis

A model-based trade-off study is only 

possible when the underlying model-

ing tool is capable of executing the 

modeled system. To illustrate this, the 

architecture and behavioral semantics 

of the system shown in figure 2, once 

captured, must be able to compile and 

execute before generating the run-

time data needed for trade-off study. 

Therefore, model execution capability 

or automation provided by the modeling 

tool is critical for realizing the full value 

of using a model driven approach.

Evolving legacy systems with ease

Rarely does a new project start with a 

clean canvas. In case of an organiza-

tion standardized on a model driven 

approach, a new project typically 

borrows components from existing 

models. If modeled components 

are largely platform independent, 

as is the case with unified modeling 

language (UML) 2.0–based compo-

nents, mapping existing components 

to a multicore platform is a trivial task. 

In figure 3, the original legacy system 

is redeployed on a multicore system by 

simply specifying “Video_Task_3” to 

run on a parallel platform, leaving intact 

the overall functionality of the system. 

In other words, core awareness can be 

introduced into legacy systems without 

drastically altering the overall architec-

ture and the design of the application, 

and, at the same time, clearly capturing 

the new architecture. Through a simple 

change in the annotation of the class, 

followed by studying the execution of 

the complete system as a simulation, 

the refactored model can be quickly 

verified and incrementally evolve into a 

multicore system.



Enabling successful multicore 

development

Successfully migrating to multicore 

development requires modification of 

the software development workflow. 

Physical parallelism provided by the 

hardware platform affects all levels 

of the underlying system. Through 

modeling, parallelism can be easily 

abstracted, making it easy to refactor 

a legacy, single-core application into 

its multicore counterpart. At the same 

time, through model execution and 

subsequent trade-off study, it is also 

possible to optimize core usage.

For more information

To learn more about how the IBM 

Rational® solution for model driven 

development can simplify multicore 

systems deployment, contact your 

IBM representative or IBM Business 

Partner, or visit:

ibm.com/software/awdtools/ 

rhapsody/

© Copyright IBM Corporation 2009

IBM Corporation 
Software Group 
Route 100 
Somers, NY 10589 
U.S.A.

Produced in the United States of America 
October 2009 
All Rights Reserved

IBM, the IBM logo, ibm.com, and Rational are 
trademarks or registered trademarks of International 
Business Machines Corporation in the United States, 
other countries, or both. If these and other IBM 
trademarked terms are marked on their first occur-
rence in this information with a trademark symbol 
(® or ™), these symbols indicate U.S. registered or 
common law trademarks owned by IBM at the time 
this information was published. Such trademarks 
may also be registered or common law trademarks 
in other countries. A current list of IBM trademarks is 
available on the Web at “Copyright and trademark 
information” at ibm.com/legal/copytrade.shtml

Other company, product, or service names may 
be trademarks or registered trademarks or service 
marks of others.

References in this publication to IBM products or 
services do not imply that IBM intends to make them 
available in all countries in which IBM operates.

The information contained in this documentation 
is provided for informational purposes only. While 
efforts were made to verify the completeness and 
accuracy of the information contained in this docu-
mentation, it is provided “as is” without warranty of 
any kind, express or implied. In addition, this infor-
mation is based on IBM’s current product plans and 
strategy, which are subject to change by IBM without 
notice. IBM shall not be responsible for any dam-
ages arising out of the use of, or otherwise related 
to, this documentation or any other documentation. 
Nothing contained in this documentation is intended 
to, nor shall have the effect of, creating any warran-
ties or representations from IBM (or its suppliers or 
licensors), or altering the terms and conditions of the 
applicable license agreement governing the use of 
IBM software.

RAS14039-USEN-00

http://www.ibm.com/software/awdtools/rhapsody/
http://www.ibm.com/software/awdtools/rhapsody/
http://www.ibm.com/legal/copytrade.shtml

