
White Paper
October 2009

Transparent Application Scaling  
with IBM DB2 pureScale
 



Transparent Application Scaling with IBM DB2 pureScale
2

Contents

 2 Introduction

 4 What does DB2 pureScale look like?

 5 Where Does DB2 pureScale Come 

From?

 7 DB2 pureScale For Transparent 

Application Scalability

 9 DB2 pureScale For Availability

 11 Summary

Introduction

In the middle of a recovering economy, instant access to core business data has 

become a critical component to success, and in some cases survival. As more and 

more dollars make their way into the economy, businesses need to be nimble, with 

highly available and adaptable infrastructures, so that they can grab opportunities 

for renewed growth.

The marketing veneer of most distributed software companies is to associate 

availability levels with terms such as “mainframe-like” or “5 – 9s” availability.

These key phrases try to convey the continuous availability set by the industry 

deemed “gold” standard for high availability: DB2® for z/OS®.

Availability Downtime per Year
99.999% 5 minutes

99.99% 50 minutes

99.9% 8 hours, 20 minutes

99% 3 days, 11 hours, 18 minutes

95% 18 days, 6 hours

90% 34 days, 17 hours, 17 minutes

85% 54 days, 18 hours

Nowadays, availability means more than just surviving component failures and 

resuming normal transaction processing. If your service level agreement (SLA) 

dictates that expected query response times should be in seconds and the server 

is returning queries in a minute; it is an availability issue. To be available, your 

systems not only need to service transactions, they need to service them within the 

time period defined in your SLA.



Transparent Application Scaling with IBM DB2 pureScale
3

For example, if seasonal fluctuations in the business cycle cause availability issues 

from a scaling perspective, a truly available architecture needs to transparently add 

resource without application changes to meet changing performance requirements. 

The word transparent is key: when adding capacity, applications should not need 

to be cluster aware (the application is aware of what data is on what node to avoid 

contention between nodes). Businesses can not afford to invest in building these 

complex applications for decent scaling. Why? First, the obvious: cluster-aware 

applications have to change as your volume of data and distribution changes. 

Cluster-aware applications do not just require code changes as the cluster grows: 

they need to be tested, go through the Quality Assurance (Q/A) process, be 

deployed, certified, and so on. This can cause weeks of coordination efforts across 

the enterprise and inevitably drains the infrastructure from resources that can be 

better used elsewhere.

Other offerings for transactional scale-out databases on distributed platforms 

(non-mainframe) are characterized by outdated architectures that add unwanted 

impediments (such as increased overhead) to scaling which can lead to SLA 

violations.

The IBM DB2 pureScale technology (herein referred to as DB2 pureScale) satisfies 

your current and future business needs for continuous availability with a system 

that combines high availability with true transparent application scaling. The 

DB2 pureScale architecture is further bolstered with an integrated exploitation of 

the IBM® Power™ Systems servers and IBM storage solutions to deliver on this high-

value solution.

Up until now, mainframe-like was a marketing catch phrase. DB2 pureScale marks 

the first time that a true transparent scaling architecture is available for distributed 

platforms. This paper introduces to you the DB2 pureScale technology, what it 

looks like, where it comes from, and how it provides unique advantages from the 

high availability and transparent application scaling perspectives.



What does DB2 pureScale look 
like?

Transparent Application Scaling with IBM DB2 pureScale
4

DB2 pureScale is a new optional DB2 feature that allows you to scale out your 

database on a set of servers in an “active-active” configuration delivering high 

levels of both availability and scalability. In this configuration the copy of DB2 

running on each host (or server) can simultaneously access the same data for both 

read and write.

A collection of one or more DB2 servers that share DB2 data is called a data 
sharing group. A DB2 server that belongs to a data sharing group is a member 

of that group. All members of a data sharing group share the same database. 

Currently, the maximum number of members in a data sharing group is 128.

In addition to the DB2 members, there is also the PowerHA pureScale™ component 

which provides centralized lock management as well as a centralized global cache 

for data pages (known as the group buffer pool).

Each member in the data sharing group can interact directly with the PowerHA 

pureScale component, as shown below, through a very efficient InfiniBand™ 

network which means each member has point-to-point connectivity to the 

centralized locking and caching facility.



Transparent Application Scaling with IBM DB2 pureScale
5

When you hear or read about references to mainframe-class availability, they are 

referring to the gold standard of availability set by DB2 for z/OS. In fact, there is 

no database solution in the world that can match the availability characteristics of a 

System z® server running DB2 for z/OS.

The technology behind the DB2 for z/OS data sharing implementation allows the 

servers using it to continuously deliver on SLAs due to the Coupling Facility with 

centralized locking and global cache coherency which enable quick recover from 

failure. In fact, DB2 for z/OS offers true 5-9s availability and is well known for its 

ability to seamlessly scale workloads linearly.

When you read or hear about DB2 for z/OS, you probably think about massive 

scalability and ultra high availability. This reputation is not marketing fluff – it is 

derived from those systems consistently leading the industry for having database 

workloads available for a very long time. Perhaps the best tribute to the power of 

DB2 for z/OS is from Oracle’s co-founder and CEO Larry Ellison who notes1: 

What is so special about DB2 for z/OS that lead Mr. Ellison to make this kind of 

statement? Users of DB2 for z/OS are very familiar with its data sharing ‘secret 

sauce’: the Coupling Facility. The Coupling Facility allows DB2 for z/OS to scale-

out linearly, provides a centralized facility to manage locks, acts as a global shared 

buffer pool for dirty pages (which can assist with both scalability and recoverability 

operations), and more.

Where Does DB2 pureScale Come 
From?

Transparent Application Scaling with IBM DB2 pureScale
5



Transparent Application Scaling with IBM DB2 pureScale
6
Transparent Application Scaling with IBM DB2 pureScale
6

DB2 pureScale technology has direct lineage from the DB2 for z/OS Coupling 

Facility and therefore accrues many of the benefits which have lead DB2 for z/

OS to have the ‘gold’ standard label for availability and scalability. How so? DB2 

pureScale comes with the IBM powerHA pureScale component which delivers the 

same centralized locking and true global shared buffer pool architecture.

Other vendors have implemented shared-disk architected databases, most notably 

Oracle Real Application Clusters (Oracle RAC). However, at the time Oracle RAC 

was developed, distributed platform technology did not allow for efficient access 

to a centralized shared cache. As a result, the Oracle RAC design is an attempt 

to emulate the technology found in DB2 for z/OS; this resulted in Oracle RAC’s 

distributed lock management technology and distributed caching architecture. The 

Oracle RAC architecture missed the succinct value of the DB2 for z/OS solution 

when it introduced its scale-out shared-disk architecture. On the other hand, 

both DB2 for z/OS and DB2 pureScale deliver the same centralized resource 

management which solves these scalability and availability complexities which we 

explain later in this paper.

The bottom line is that there is only one architecture on the market that delivers 

true transparent application scalability and ultra high availability. With modern 

hardware interconnects available on distributed platforms and the ability to deliver 

deep exploitation of interrupt free Remote Direct Memory Access (RDMA) over 

InfiniBand, it is now finally possible to leverage the same centralized locking and 

buffer caching algorithms found in DB2 for z/OS. DB2 pureScale is an evolution 

in the IBM family that extends the reach of this industry-proven technology to 

distributed platforms.



Transparent Application Scaling with IBM DB2 pureScale
7

DB2 pureScale For Transparent 
Application Scalability

The key to real cost savings in a scale-out database environment is the delivery of 

true transparent application scaling. Transparent scaling means that the database 

engine can deliver increased throughput and efficient response times for OLTP 

applications without requiring locality of data. 

Locality of data means that the data that an application needs is on the server that 

the application is connected to and that there is little contention between nodes for 

the same page of data. Locality of data is essential for scale-out architectures that 

have a heavy network-based messaging infrastructure for sharing data in a cluster.

Scale-out architectures that rely on locality for effective scaling require developers 

building sophisticated transactional applications make their applications cluster 
aware. Cluster-aware applications are more complex and costly to develop and 

deploy, and also require application rework when the cluster changes. Some 

vendors might claim that their architectures can run any application without 

modification; however, they don’t always scale any application without being 

designed with some form of cluster awareness.

Transparent application scaling means that applications do not have to be cluster 

aware in order to take advantage of the scale-out architecture. DB2 pureScale is 

unique on distributed platforms and derives its efficiency from the exploitation of 

modern day network and hardware architectures, and the pureScale centralized 

locking and caching.

In order to reduce communication between nodes in the cluster for lock 

management and global caching services, DB2 pureScale uses the powerHA 

pureScale cluster acceleration facility (here-in referred to simply as the CF) along 

with RDMA technology to deliver transparent application scalability.



Transparent Application Scaling with IBM DB2 pureScale
8

RDMA allows each member in the cluster to directly access memory in the CF and 

for the CF to directly access the memory of each member. For example, assume 

that a member in a cluster (Member 1) wants to read a data page that is not in its 

local buffer pool. DB2 assigns an agent (or thread) to perform this transaction; the 

agent then uses RDMA to directly write into the memory of the CF to indicate that 

it has interest in a given page. If the page that Member 1 wants to read is already in 

the CF’s global centralized buffer pool, the CF will push that page directly into the 

memory of Member 1 instead of having the agent on that member perform the I/O 

operation to read it from disk. The use of RDMA allows Member 1’s agent to simply 

make a memcopy (memory copy) call to a remote server without the need for costly 

process-to-process communication calls, processor interrupts, IP stack calls, and so 

on. Quite simply, pureScale allows a member’s agent to perform what appears to be 

a local memory copy operation when in fact the target is the memory address of a 

remote machine.

These lightweight remote memory calls, along with a centralized buffer pool and 

lock management facilities, means that an application does not have to connect to the 

member where the data already resides. It is just as efficient for any member in the 

cluster to receive a data page from the global buffer pool regardless of the size of the 

cluster. Most RDMA calls are so fast that the DB2 process making the call does not 

need to yield the CPU while waiting for the response from the CF and does not have 

to be rescheduled to complete the task. For example, to notify the CF that a row is 

about to be updated (and therefore an X lock is required) a member’s agent performs 

a Set Lock State (SLS) request by writing the lock information directly into memory 

on the CF. The CF confirms that there are no other members in the cluster that 

already have this row X locked and will directly write into the requesting member’s 

memory to grant the lock. The entire round trip for this SLS can take as little as  

15 microseconds and therefore the agent does not need to yield the CPU. The agent 

can continue to be productive rather than waiting on an IP interrupt (avoiding 

unnecessary context switches) as is the case with other scale-out architectures. If 

for a specific operation, such as long running batch transactions, it would make 

more sense for the DB2 agent to yield the CPU, DB2 will make an autonomic 

decision to dynamically yield the CPU.



Transparent Application Scaling with IBM DB2 pureScale
9

Another important DB2 scalability feature that goes hand-in-hand with transparent 

application scaling includes the DB2 pureScale built-in load balancing across 

the members of a cluster. Applications do not need to be cluster aware to take 

advantage of the load balancing. The same client-side drivers that DB2 for z/

OS data sharing customers use today work with DB2 pureScale for cluster load 

balancing.

DB2 pureScale For Availability

A scale-out architecture is not solely reserved for capacity increases. This type of 

architecture delivers improved availability by creating systems that can continue to 

process transactions in the event of a component failure. 

DB2 pureScale takes availability to a new level when compared to other offerings 

available on distributed platforms. DB2 pureScale provides full access to every 

page of data that does not need recovery and is aware at all times of which 

specific pages need recovery without having to perform a single I/O operation. 

This is yet another important innovation made possible through the unique 

capabilities of a centralized CF.

Every time that a member reads a page into its buffer pool, the CF becomes 

aware of it and keeps track of that fact. Anytime a member wants to update a row 

on a page, the CF is aware of that as well. Whenever an application commits a 

transaction, dirty pages are written directly into the CF’s memory by that member. 

This process allows any other member in the cluster that want to read this 

changed page to get the updates directly from the CF’s. More importantly, from a 

recovery perspective, if any member fails the CF has a list of pages that the failed 

member was in the process of updating as well as the pages that were updated and 

committed by the failed member but were not yet written to disk.



Transparent Application Scaling with IBM DB2 pureScale
10

The recovery process for any relational database management system (RDBMS) 

involves first redoing any transactions that were committed to ensure the pages on 

disk for those transactions are up-to-date on disk (this process is known as redo 
recovery). In addition, any database server must also undo any in-flight transactions 

which made changes to data that were flushed to disk but had not yet been 

committed prior to the failure (this process is known as undo recovery).

In a shared disk cluster, it is critical that no other node in the cluster reads or 

updates any pages from disk that might not have been recovered as yet (the 

recovery of those pages must take place before any new transactions can be 

performed on those rows). Here is where the CF really shines: because the CF 

knows which pages were in the process of being updated by the failed node, and 

the CF already has the dirty committed pages from that node in its centralized 

buffer pool, DB2 pureScale does not need to block other members from continuing 

to process transactions while it determines what pages need recovery. Other 

architectures require what may be significant processing time to determine what 

must be recovered due to their distribution of locking information (more on that 

subject later).

This process of recovery in DB2 pureScale environments is easy to explain at a 

high-level. Each member has processes that are sitting idle, but ready in the event 

of a failure. Should a member fail, one of these recovery processes is activated; 

since these processes already exist, there is no need for the operating system to 

waste valuable system time to create a process, allocate memory to it, and so on . 

This recovery process instantly begins to prefetch dirty pages from the CF into its 

own local buffer pool. The vast majority of recovery will require no I/O operations 

because the pages that need recovery are already in the CF’s centralized buffer 

pool. Furthermore, this page prefetching is using lightweight RDMA for very fast 

and efficient transfer between the CF and the recovery member. During this time, 

all other applications on all other members continue to process requests. If they 

need any data from any page that does not need recovery, they can continue to 



Transparent Application Scaling with IBM DB2 pureScale
11

perform their transactions. As well, they can continue to read pages from disk 

because the CF already knows exactly which pages on disk are clean and which 

need recovery. The recovery process then reads the failed member’s log file in order 

to replay the necessary transactions to redo and undo the updates made by the 

failed member.

For typical transactional workloads, the time from the member failure until the 

time the pages that were being updated in-flight on the failed node are available to 

another transaction is typically 20 seconds or less. Note that this also includes the 

failure detection times which some vendors may exclude when referring to recovery 

times. All other pages in the database are fully available at all times even after a 
member fails.

In addition, components in the system like the PowerHA pureScale cluster 

accelerator are redundant. DB2 pureScale allows for duplexing of the CF capability 

such that locking and shared cache information is stored in two separate locations 

in the event the primary CF fails.

Summary

By leveraging modern hardware architectures, DB2 pureScale is able to bring to 

the distributed platform the centralized locking and caching capabilities previously 

only available on DB2 for z/OS. This hardware and network exploitation allows 

for greater levels of concurrency and significantly reduced overhead which in turn 

delivers higher levels of scalability. In addition, the centralized locking and page 

caching allows DB2 pureScale to continuously be in a state of awareness as to what 

pages would need recovery should any member fail. Thus, in the event of a failure, 

all data that does not need recovery is continuously available to other applications 

while the page that were in process of being updated by the failed node are already 

known to the system and are recovered more quickly.

For applications that need high levels of availability and for which horizontal 

growth delivers a cost benefit, DB2 pureScale brings to the table a solution that is 

tailored to meet these needs and has the lineage which has already proven itself in 

the marketplace.



For more information 

To learn more about how IBM DB2 is lowering the cost of managing data, contact 

your IBM representative or visit ibm.com/db2 

IMW14253-USEN-01

© Copyright IBM Corporation 2009

IBM Canada Ltd. 
8200 Warden Avenue 
Markham, ON, Canada L6G 1C7

Produced in Canada 
October 2009 
All Rights Reserved.

IBM, the IBM logo and ibm.com are 
trademarks or registered trademarks of 
International Business Machines Corporation 
in the United States, other countries, or both. 
If these and other IBM trademarked terms 
are marked on their first occurrence in this 
information with a trademark symbol (® or ™), 
these symbols indicate U.S. registered or 
common law trademarks owned by IBM 
at the time this information was published. 
Such trademarks may also be registered or 
common law trademarks in other countries. 
A current list of IBM trademarks is available 
on the Web at “Copyright and trademark 
information” at www.ibm.com/legal/
copytrade.shtml.

Microsoft, Windows, Windows NT, and the 
Windows logo are trademarks of Microsoft 
Corporation in the United States, other 
countries, or both.

Java and all Java-based trademarks and logos 
are trademarks of Sun Microsystems, Inc. in 
the United States, other countries, or both.

References in this publication to IBM products 
or services do not imply that IBM intends to 
make them available in all countries in which 
IBM operates.

Any reference in this information to non-IBM 
Web sites are provided for convenience 
only and do not in any manner serve as an 
endorsement of those Web sites. The materials 
at those Web sites are not part of the materials 
for this IBM product and use of those Web sites 
is at your own risk.

Endnotes

1 http://www.eweek.com/c/a/Database/
In-Larrys-Own-Words/2/


