
August 9-11, Bangalore | August 11, Delhi 

Leveraging Rational Team 
Concert's build capabilities for 
Continuous Integration

Krishna Kishore
Senior Engineer, RTC
IBM
Krishna.kishore@in.ibm.com



The Premier Event for Software and Systems Innovation 

© 2011 IBM Corporation

Agenda

�What Is Continuous Integration

�Overview of Rational Team Concert Components

�Overview of Jazz Build System

�Jazz Build Engine

�Jazz Build Definition

�Jazz Build Process

�Continuous Integration Key Practices with Rational Team Concert

�Demo

�Questions and Answers

�Please feel free to ask questions during the presentation



The Premier Event for Software and Systems Innovation 

© 2011 IBM Corporation

What is Continuous Integration

Continuous integration is a software development best practice that 
distributed teams use more and more as a way to mitigate integration 
problems and to facilitate development of cohesive software more
rapidly.

Continuous Integration Key Practices

The effort required to integrate a system increases exponentially with 
time. Continuous integration is a software development practice that 
promotes frequent team integrations and automatic builds. By integrating 
the system more frequently, integration issues are identified earlier, when 
they are easier to fix, and the overall integration effort is reduced. The 
result is a higher-quality product and more predictable delivery 
schedules. 

(referencing Martin Fowler "Continuous Integration" white paper )



The Premier Event for Software and Systems Innovation 

© 2011 IBM Corporation

Benefits of Continuous Integration

�Improved feedback: Continuous integration shows constant and demonstrable progress.

�Improved bug detection: Continuous integration enables you to detect and remove errors
early, often minutes after they've been injected into the product.

�Improved collaboration: Continuous integration enables team members to work together 
safely. They know that they can make a change to their code, integrate the system, and 
determine very quickly whether or not their change conflicts with others.

�Improved system integration: By integrating continuously throughout your product, you know 
that you can actually build the system, thereby mitigating integration surprises at the end of the 
lifecycle.



The Premier Event for Software and Systems Innovation 

© 2011 IBM Corporation

Benefits of Continuous Integration - Continued

�Reduced number of parallel changes that need to be merged and tested.

�Reduced number of errors found during system testing: All conflicts are resolved before 
making new change sets available and by the person who is in the best position to resolve them.

�Reduced technical risk: You always have an up-to-date system to test against.

�Reduced management risk: By continuously integrating your system, you know exactly how 
much functionality that you have built to date, thereby improving your ability to predict when and 
if you are actually going to be able to deliver the necessary functionality.



The Premier Event for Software and Systems Innovation 

© 2011 IBM Corporation

Rational Team Concert Components



The Premier Event for Software and Systems Innovation 

© 2011 IBM Corporation

Overview of Jazz Build System

IBM Rational Software



The Premier Event for Software and Systems Innovation 

© 2011 IBM Corporation

Jazz Build System

� A Build is a first-class object

� Associated build results, tests or any artifact

� Full navigability to all artifacts contributing to a 
build

� Automatically schedule and maintain history of 
builds

� Supports personal builds

� Build engine is “pluggable”

� Cruise Control

� Build Forge

� Build terms

� Build definition

� Build engine

� Build Requests



The Premier Event for Software and Systems Innovation 

© 2011 IBM Corporation

� Easy to use wizards help create:

� Build Engines

� Build Definitions

� Scheduled

� Continuous, at specified intervals

� On demand by team members

� Changes delivered for builds are easily seen by interested parties.

� Able to see who requested a build.

� Easy to compare 2 builds to see the differences between them.

� Easy to identify who delivered code to a build.

� Can use any method for builds

� MSBuild, ant, batch files, Perl scripts, Maven, COBOL compilers, etc…

� Cruise Control, Build Forge, and other Automation tools

� Very good integration with Ant and the Build Toolkit.  

Jazz Build System - Continued



The Premier Event for Software and Systems Innovation 

© 2011 IBM Corporation

The Jazz Build Environment

Continuous 
Integration 
Engines

Enterprise 
Build 

Management

Jazz Build Engine

Cruise Control

Build Forge

Tools & 
Builders

Ant, Make, 
Perl, PDE 
Build, Maven, 
MSBuild

Jazz 
Build 

Toolkit

Rational Team Concert 

Eclipse, Visual Studio, Web 
Clients

Jazz Build UI

Jazz 
Repository

Jazz Build 
Data Model



The Premier Event for Software and Systems Innovation 

© 2011 IBM Corporation

� Represents a build system running on a build server.

� To begin using Team Concert builds you need to create a “Build 
Engine”.  A Build Engine is used by one or more Build Definition(s).

� Easy to use wizards help create Build Engines

�Most steps are contained in the wizard.

�There are some steps that have to be done separately.

� Can have Build Engines for each project

�Able to assign a specific Build Engine to a particular project.

� If you have a lot of projects, hard to maintain.

� Can use one Build Engine for multiple projects

�Build Engines are run serially, so you can use the same one to run several 
builds.

Jazz Build Engine



The Premier Event for Software and Systems Innovation 

© 2011 IBM Corporation

� Example of the Build Engine Wizard

Jazz Build Build Engine - Continued



The Premier Event for Software and Systems Innovation 

© 2011 IBM Corporation

� Defines a build, such as a weekly project-wide integration build.

� Easy to use wizards help create Build Definitions

� Define variables to use

� Define scripts to use

� Define command line arguments to use

� Define Workspace to use and which Components to exclude

� Build Definitions can be several, like for each team.

� One used by Development team

� One used by the QA team

� One used by the Release Team

� Build Definitions can run on single or multiple Build Servers.

� Can create a New Build Definition or copy an existing one.

Jazz Build Definition



The Premier Event for Software and Systems Innovation 

© 2011 IBM Corporation

� Provides many out of the box build templates

Jazz Build Definition - Continued 



The Premier Event for Software and Systems Innovation 

© 2011 IBM Corporation

Jazz Build Definition – Pre Build step



The Premier Event for Software and Systems Innovation 

© 2011 IBM Corporation

Jazz Build Definition – Post Build step



The Premier Event for Software and Systems Innovation 

© 2011 IBM Corporation

Jazz Build Definition –Additional Configurations



The Premier Event for Software and Systems Innovation 

© 2011 IBM Corporation

� Can make it Continuous or schedule a time for the build to run.

Jazz Build Process: Build Definition Schedule 



The Premier Event for Software and Systems Innovation 

© 2011 IBM Corporation

� You can add properties that will be used by the build.

� These properties can be used in other sections of the Build Definition.

Jazz Build Process: Build Definition - Properties 



The Premier Event for Software and Systems Innovation 

© 2011 IBM Corporation

� This is where you specify the workspace to use for the build.

� Several other items can be selected here to make the build perform in 
various ways, as you can see.

Jazz Build Process: Build Definition – Jazz Source Control



The Premier Event for Software and Systems Innovation 

© 2011 IBM Corporation

� Builds can be run as “Scheduled” or “On Demand”.

� Team members, if permitted, can “request a build”, just by clicking on a 
button.  This can be done in the Eclipse Client and the Visual Studio 
Client.

� Can request a “Personal Build” or a regular project build.

Jazz Build Process: Request a Build

Request Build buttonRequest Build button



The Premier Event for Software and Systems Innovation 

© 2011 IBM Corporation

� Personal builds will run on the build server using the code in the requestor’s 
workspace.

� Properties of a “Personal Build” can be changed by the requestor.  The 
changes will not affect the project build.

Jazz Build Process: Personal Build



The Premier Event for Software and Systems Innovation 

© 2011 IBM Corporation

Continuous Integration Key Practices with Rational Team 
Concert 

IBM Rational Software



The Premier Event for Software and Systems Innovation 

© 2011 IBM Corporation

Maintain a Single Source Repository 

The base of a Continuous Integration system is to implement a good source control management 
system to keep track and control all of the files needed to build a product. In this source control 
repository you must include everything you need for the build.

RTC implements a Source Control component which manages the source code, documents, and 
other artifacts that a team creates. It provides change-flow management to facilitate sharing of 
controlled artifacts, retains a history of changes made to these artifacts, and enables simultaneous 
development of multiple versions of shared artifacts, so that teams can work on several 
development lines at the same time. 

Automate the Build 

To get an efficient Continuous Integration system you need to implement an automatic build 
process. 

RTC implements a Team Build component which provides support for the automation, monitoring, 
and awareness of a team's regular builds. This component provides a model for representing the 
team's build definitions, build engines, and build results. The model supports teams with different 
build technologies. 



The Premier Event for Software and Systems Innovation 

© 2011 IBM Corporation

Make Your Build Self-Testing 

A good practice that will help you to detect errors quickly is to include some automated tests in your 
build process. If some testing fails, the build should also fail. 

RTC is not an IDE, so it doesn't provide features to define and implement unit tests. But in its Team 
Build component it includes support for execution and result analysis of different unit test 
frameworks like: CPPUnit, JUnit, MSTest and NUnit. So development teams will be able to execute 
and check the results of all the unit tests of the project. 



The Premier Event for Software and Systems Innovation 

© 2011 IBM Corporation

Everyone Commits To the Mainline Every Day 

This is more a methodology aspect than a technical issue to be resolved or supported by the tool. 
Communication is key for continuous integration, and developers communicate with others 
delivering changes they have made to their files. A good practice is to force developers to commit 
their changes to the main development stream at least once every day. 

The RTC Source Control component lets the developer to commit or deliver code to streams as 
many times as they require as needed . So a development team adopting Continuous Integration 
practices should encourage its developers to commit at least once per day. 



The Premier Event for Software and Systems Innovation 

© 2011 IBM Corporation

Every Commit Should Build the Mainline on an Integration 
Machine 

Although developers must run local builds and tests in their local machines before delivering to the 
main development stream, there may be differences between each developer's machine, or code 
integration errors. This is why it is very important to ensure that an integration build is run on an 
integration machine each time each a developer commits some changes. 

Two ways to achieve this 

� developer manually request a build execution after he has committed some new code to 
the stream 

� automatic build will be executed after a code commit to the stream. 

RTC supports both the approaches 

Keep the Build Fast 

It is important to reduce to a minimum the time spent running the integration build each time a 
developer commits changes to the main development stream. 

Test in a Clone of the Production Environment

The test environment as similar as possible to your final production environment. 

This is more a methodology aspect than a specific feature in RTC. 

However, it is worth noting that the RTC Build Team component can be installed multiple times in 
multiple different environments (all installations working against the same RTC server). Therefore it 
is very easy to setup several build environments (development, integration and production) 
executing the builds with different scheduling in each one. 



The Premier Event for Software and Systems Innovation 

© 2011 IBM Corporation

Make it Easy for Anyone to Get the Latest Executable 

Most builds produce useful output, such as an executable program, a packaged zip file, or other 
artifacts. Many people may need to get access to the latest executable to be able to run it or just to 
see what changed last week. Many times developers are not able to find it because there is not a 
well known place where these files are stored and they spend many hours just looking for this 
information.

The Ant build toolkit of RTC has a set of Ant tasks that can perform various operations on a build. 
Some of these tasks (artifactLinkPublisher and artifactFilePublisher tasks) enable your build to 
publish these artifacts. When using these tasks, the artifacts specified in your builds are available 
in the build result editor, on the Downloads page, once the build finishes.



The Premier Event for Software and Systems Innovation 

© 2011 IBM Corporation

Automate Deployment 

Communication is critical to implement a good Continuous Integration system. Each team member 
needs to have easy and transparent access to the state of the system, last changes made and 
state of the mainline integration build. Visibility and transparency of the flow of information between 
team members are essential. 

RTC Provides different ways to communicate and track Team Builds
� Build Dashboard viewlets

� Event Notification System for Builds

� History of Builds

� Build Reports

� Build Auditing

Everyone can see what's happening

To implement a Continuous Integration system you need to implement multiple environments 
(development, integration, production) to run your build and tests and, if possible, automate as 
much deployment between these environments as possible because you may be doing these 
deployments several times each day. 



The Premier Event for Software and Systems Innovation 

© 2011 IBM Corporation

www.ibm.com/software/rational



The Premier Event for Software and Systems Innovation 

© 2011 IBM Corporation

www.ibm.com/software/rational



The Premier Event for Software and Systems Innovation 

© 2011 IBM Corporation

© Copyright IBM Corporation 2011.  All rights reserved. The information contained in these materials is provided for informational purposes only, and is provided AS IS without warranty of any 
kind, express or implied.  IBM shall not be responsible for any damages arising out of the use of, or otherwise related to, these materials.  Nothing contained in these materials is intended to, nor 
shall have the effect of, creating any warranties or representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement  governing the 
use of IBM software. References in these materials to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates.  Product release dates 
and/or capabilities referenced in these materials may change at any time at IBM’s sole discretion based on market opportunities or other factors, and are not intended to be a commitment to future 
product or feature availability in any way.  IBM, the IBM logo, Rational, the Rational logo, Telelogic, the Telelogic logo, and other IBM products and services are trademarks of the International 
Business Machines Corporation, in the United States, other countries or both. Other company, product, or service names may be trademarks or service marks of others.

www.ibm.com/software/rational


