Test Automation Framework
Using Rational Functional Tester

Shinoj Zacharias
(Shinoj.zacharias@in.ibm.com)

IBM Software

Innovate2011

The Premier Event for Software and Systems Innovation

030 Software, Everyware, August 9-11, Bangalore | August 11, Delhi

vy
"\@r"

|nn0vate The Premier Event for Software and Systems Innovation

Agenda

= Collaborative Application Life Cycle
Management

= Introduction to Rational Functional Tester
= Why Automation Framework

= RFT and Automation Framework

= Types of Automation Framework

= Automation Framework Using Find

= Keyword driven framework

= Q&A

2 © 2011 IBM Corpg

|nn0vate The Premier Event for Software and Systems Innovation

Collaborative Application Lifecycle Management

IBM Collaborative Application Lifecycle Management

Rational Quality Manager

[Quality Dashboard]
Requirements [Test Management]
W Defect
‘ Create f Build f Manage f Execute { Report ‘
Plan Tests Test Lab Tests Results

_‘ Best Practice Processes
-

Collaboration OPEN SERVICES

Administration: Users,
projects, process
Storage

Presentation: .
-Mashups Discovery Search & Query

SR . NET J
Test Data J — SysteT z,i W
Quality

Open Lifecycle Servicf Integrations W

W SCecuriIty and ?“% m
Functional w L4 ”
\Tes_tiy Performance Web Service &Ogi‘ta COMPUWARE. (ﬁF]

Open Platform

homegrown

!l
il
U

[lwm]]
T

|nn0vate The Premier Event for Software and Systems Innovation

1
I
ul

Maximize your investment in test automation
With IBM Rational Functional Tester

= Automated functional and regression te

= Achieve success quickly and minimize
» Simplified natural language scripting
» Eclipse based or Visual Studio .net
» Easy to learn, maximize reuse

= Powerful scripting language

= Complete test coverage

» Supports testing for Java, Web, Visual Basic .Net, SAP, Siebel, Web
2.0, Power Builder and Terminal Based applications

» Ability to support custom controls

%}' Microsoft,

JAVA — ‘ i
Certified
SA In?eg; r?tion ﬁ:ﬁ?ﬁ; "‘ %@ d

|nn0vate The Premier Event for Software and Systems Innovation

Introduction — Rational Functional Tester (RFT)

= RFT Recorder

» Test scripts are recorded on the fly, as user navigates
application

» Verification points are inserted to validate system
response

= RFT Scripts

» Java code or VB.net is added to perform a variety of
functions

» Typical Modifications: Conditional branching,
datapooling, refactoring

= RFT Playback
» Scripts are executed. Discrepancies are logged

© 2011 IBM Corpg

|nn0vate The Premier Event for Software and Systems Innovation

1
1
aull

Rational Functional Tester

Rational. Functional Tester

Test Datapools

Reusable Test Scripts

ol
Al

6 © 2011 IBM Corpg

Innovate

RFT Scripts - Java

@ Functional Te

The Premier Event for Software and Systems Innovation

Private Test Object Map for Script Script1 =]
Eile Edit Source ==t

DT NSNS RARADD I DIEEEI®

File Edt Find TeskObject Preferences Applications Display Help
M [E] R q: ..' :-Og‘-.xiﬂpg“u}%%“gf=f-‘*= ﬁ|§'§)FunctionalTest
:: %l = GI - t}j a a a a0 o . L]]

Eruneti 52

Projectl
b %h Seripkl
% Seripkz
% Seripk3

EI[E Jawa: Frame: logFramet: javax.swing . JFrame
-3 Java: Button: ok-orderlogon: javax . swing . JButton
Lo @ Java RadioButton: radioButton javax.swing JRadioButton
EI@ Java: Dialog: IncompleteCrder: javax. swing.JDialog
=[] Java: Panel: JOptionPane: javax swing JOoptionPane

- | Btton: Ok | o JELtton
EI[E Jawva: Frame: ClazsicsCD: Classicslava
E Java: Button: placeCrderButton: javax.swing JButton
o B Jave: Tree: treel; javax.swing JTree
I':'I[E Jawva: Frame: orderForm: javax.swing JFrame

E Jawva: Button: placeCrder: javax.swing.JButton

II—I Jawva: Text: cardMumberField: javax swing JTextField

----- II—I Java: Text: expireField: javax. swing JTextField

$ s N0 .ﬂ] ﬂk] =0
Seripkl
BG Scripk1Helper

------ €] RationalTestScript
|2 Test Datapoal

£ () verification Points

=15 Test Objects

""" i Private Test Object Map

""" 1 cardMumberIncudeTheSpacs
----- [E classics’D

""" 'I—' expirationDate

----- & newCustomer

----- [E placefnorder

Recognition] Administrative

----- = placedrder
----- = placedrderz

Property Yalle wieight (0 E treez
clazs javax. swing JEutton 100
Clazsindex 0 =0
accessibleContext accessibleMame Ok 100

L= T U L= Y =3 Y =T == O s W ol = = o e = Y R
placeinCrder () . inputChars ("123456™) ;
expirationbate () .clicki{atloint (6,5));
placeldnOrder () .inputChars("12/12/2010™) ;
placedrder2 () .clicki)

© 2011 IBM Corpg

!l
il
U

[0

|nn0vate The Premier Event for Software and Systems Innovation

5
[
-l

Script Assure™

Version 1.0 Version 2.0
Customer Log On
[
.

Account# /Log InID Password

I |

Log In

Click here to save your start pd

No User
1 . ‘ “al
Intervention .
<nizx 0 Required With ScriptAssure™ &0
utton . E;E!r'-LD gin
siubrnit
Log On

.hame userlLeo
type submit
walue Lag In

etermir

» Et,

|nn0vate The Premier Event for Software and Systems Innovation

Why automation framework

= Most automation tools enable testers to simply record & FGULInter
play them back against the application under test. S

= Even with adequate training on the tool the automation scripting often b com
ware. 2

= Although record-playback features can be used to create suite:
quickly, the limitation of this approach is that the application unt
complete and functioning correctly before a workable !

= Testers are often effectively limited to using GUI automatlon for regressio

= The record-playback approach leads to extensive test script maintenance. 1€
up recording and re-recording scripts each time the applieation changes %'_;.

= Test t%ams abandons the record-playback model and writing test cases maftially
instea

= The object recognition algorithms are complex and inaccessible, making updates to the
scripts extremely tedious and in some cases impossible.

= Though tools exposes the recognition algorithms, which makes updates much more
manageable, but which also has the unfortunate side effect of making object
recognition less reliable.

= Need reusable assets

- roco d.

© 2011 IBM Corpe

|nn0vate The Premier Event for Software and Systems Innovation

1

I
-l
(LU

Rational Functional Tester and automation framework

= Powerful scripting capability. Can leverage on Java and VB programmin
= Object Oriented approach to test automation

= Qbject recognition algorithm and Object Maps

= Find() algorithm to dynamically find test objects.
= Rich set of RFT APIs for scripting.

= Extensibility mechanism using proxy SDK.

© 2011 IBM Corpg

|nn0vate The Premier Event for Software and Systems Innovation

Types of framework

= Framework using Find API

= Keyword driven framework.

|nn0vate The Premier Event for Software and Systems Innovation

Automation Framework Using Find

= The record-playback approach leads to extensive test script
maintenance. ' ;

= Team end up recording and re-recording scripts each time the e
application changes oo ”

= Hierarchical changes affect script playback

Innovate The Premier Event for Software and Systems Innovation

(o]

Automation Framework Using Find
Find() API

= Easy to use API for finding a control in Application
= Need not use Object Map

= Can use Hybrid approach : Object Map Vs non-Object M:

= Ensures resilience of the script] i‘?, iy
= Exposed on any test object (e.g.: GuiTestObject, B'rquersT{dbject é Ib_L_

L

= Exposed on RootTestObject - ~

-
a8 @l _,.r"‘“"“

"

0 2011 1BM Col n

The Premier Event for Software and Systems Innovation

Innovate
Automation Framework Using Find

Find() Available in Script

= Find(Subitem Properties)
= Find(Subitem Properties, Boolean

mappableOnly)

public void testMain(Object[] args)

{
startBrowser ("http://www.google. com™) ;

find ()]
& find{Subitem properties) | TestObject]] - Rational TeskScript
o find{Subitem properties, boolean mappableCnly) | TestObject[] - FationalTestSoriph

|nn0vate The Premier Event for Software and Systems Innovation

Automation Framework Using Find
Find(Subitem Properties)

Subitem can be either atChild() or atDescendant() or atList()

atChild()

One or more properties that must be matched against the direct child
of the starting TestObject

atDesendant()

One or more properties that can be matched against any child of the

starting TestObject
atList()

A sequential list of properties to match against. atList valid subitems
are

atChild, atDescendant, and atProperty. The first list item will be
matched

against to get a list of candidates, and out of those candidates their

descendants will be matched against for the next list item, and so on.

© 2011 IBM Corpg

Innovate

The Premier Event for Software and Systems Innovation

[lwm]]
Iy

Automation Framework Using Find
RootTestObject

= Represents a global view of the system bei

= Provides access to system-wide functionalit

» Finding an arbitrary testobject based on properties
» DomainTest Object

RootTestObject root = RootTestObjec
root.find(Subitem properties)

ProcessTestObject p1 = StartApp("Notepad") ;
Integer pid = new Integer((int)p1.getProcessid()) ;

foundTOs = root.find(atList(atProperty(".processld", pid,atDescendant(".class", ".text"))) ;

g0 2011 IBM Corpogion

|nn0vate The Premier Event for Software and Systems Innovation

Automation Framework Using Find
RootTestObject Special properties for find

There are special properties that apply to a RootTestObject find. These include:

.processName

- dynamically enable the process for testing

- constrain the find to only look in processes with that name.
.processld

- dynamically enable the processes testing.

- constrain the find to only look in processes with that process id (pid).
.domain

- only search in toplevel domains matching the .domain property
.hWnd

- If the .domain "Win" is also specified the matching window will be

enabled for testing.

Handle - if the .domain "Net" is also specified the matching window will be
enabled for testing.

© 2011 IBM Corpg

|l
il
I

u..!

|nn0vate The Premier Event for Software and Systems Innovation

=
=
—

Automation Framework Using Find
Find(atChild)

One or more properties that must be matched
the starting TestObject

find(atChild(Property[] properties))

find(atChild(String propName, Object propVaIue'ﬁ....u

find(atChild(String propName1, Object propValuel, String
propName2, Object propValue2))

Property prop1 = new Property(".class", "JButton");
Property prop2 = new Property(".name", "ok");
Property prop3 = new Property("text", "OK");
Property[] props = {prop1, prop1, prop3};
TestObject[] tobs = find(atChild(props));

TestObject[] tobs = find(atChild(“.class” , “JButton”))

TestObject[] tobs = find(atChild(“.class”, “JButton”, “text”, “OK”) >

'},-—-@l 2011 IBM Corpoglion

|l
il
I

u..!
[0

=
=
—

|nn0vate The Premier Event for Software and Systems Innovation

Automation Framework Using Find
Find atDesendant

One or more properties that can be matched agai
starting TestObject

find(atDesendant(Property[] properties)) R - NG

find(atDesendant(String propName, Object propValue)) g7 i

find(atDesendant(String propName1, Object propValuel, String
propName?2, Object propValue?2))

Property prop1 = new Property(".class", "JButton");
Property prop2 = new Property(".name", "ok");
Property prop3 = new Property("text", "OK");
Property[] props = {prop1, prop1, prop3};
TestObject[] tobs = find(atDesendant(props));

TestObject[] tobs = find(atDesendant(“.class” , “JButton”))

TestObject[] tobs = find(atDesendant(“.class”, “JButton”, “text”, “OK”)

|nn0vate The Premier Event for Software and Systems Innovation

[
-l

Automation Framework Using Find
Find(atList(Subitem))

A sequential list of properties to match against. Valid subitems for atlList are
atChild, atDescendant, and atProperty. The first list item will be matched against to
get a list of candidates, and out of those candidates their descendants will be
matched against for the next list item, and so on.

find(atList(atChild(), atDescendant(), atProperty());

TestObject[] tobs = find(atList(atDescendant(".class", dialogRE),

atChild(".class", buttonRE, ".value", "OK"))) ;
tobs[0].click();

20

© 2011 IBM Corpg

|nn0vate The Premier Event for Software and Systems Innovation

Automation Framework Using Find
Creating library using find

ClickButton()

SelectComboBoxltem()

SelectTreeltem()
SetText()

|nn0vate The Premier Event for Software and Systems Innovation

Automation Framework Using Find
example

ClickButton(String buttonName)
{

TestObject to = find(atChild(“.class”, “JButton”, “name”, buttonName”)

selectComboBox(String ComboBoxName, String comboltem)

{

TestObject to = find(atChild(“.class”, “JCombobox”, “hname”, ComboBoxName)

to.select(comboltem);

[
-l

© 2011 IBM Corpg

[0

|nn0vate The Premier Event for Software and Systems Innovation

1
I
-l

Keyword Driven Framework

Keywords are reusable assets that can be created

Enables creating tests at more high-level/abstract manner using
Keyword approach

Enables non technical SMEs and Business user to design test without
knowing the complexities of the tool

23

© 2011 IBM Corpg

The Premier Event for Software and Systems Innovation

Innovate

Keyword Driven Framework
Roles in Keyword Framework

Test Architect/Designer :
Role played mostly by a non technical SME or Business user.

Domain Expert, such as an SAP Consultant.
Creates Keyword driven test cases with parameters

Automation Expert:
e

Role played by the technical person. S
Understand the automation tools and has the knowledge of scripting“"f

languages.
Implements the framework (set of libraries)
Responsibility to enhance the framework for application changes.

Execution Engineer
Role played by a non technical tester.
Has the knowledge of how to use the framework to run the regression

tests suite.

Innovate The Premier Event for Software and Systems Innovation

Keyword Driven Framework
Sample keywords

LogonToSAPGUI
CreateSalesOrder
ShipTheProduct
LogOut()

:||:l[
b

gl o
© 2011 IBM Corpogfion

|nn0vate The Premier Event for Software and Systems Innovation

LogonToSAPGUI(

)

StartApplication(“LogON”)

EnterTeXt(“UernametXt”, uJohnn)

EnterText(“passwordixt

clickButton(“logon”);

tH 13
J

XXXXX”)

Entertext(String controlName, String text)

{
TestObject to = find(atChild(“.class”,
“SAPText”,
“.name”, controlName)
to.setText(text);
}

clickButton(String buttonName)
{

TestObject to = find(atDesendant(“.class”,
“SAPButton”, “name”, buttonName”

to.click()

© 2011 IBM Corpg

!l
il

aull
[0

[

e —

[0

|nn0vate The Premier Event for Software and Systems Innovation

UESTID!

www.ibm/software/rational

[
[
-l

© 2011 IBM Corpg

|nn0vate The Premier Event for Software and Systems Innovation

www.ibm/software/rational

© Copyright IBM Corporation 2011. All rights reserved. The information contained in these materials is provided for informational purposes only, and is provided AS IS without warranty of
any kind, express or implied. 1BM shall not be responsible for any damages arising out of the use of, or otherwise related to, these materials. Nothing contained in these materials is intended to,
nor shall have the effect of, creating any warranties or representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement governing

the use of IBM software. References in these materials to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates. Product release
dates and/or capabilities referenced in these materials may chan?e at any time at IBM’s sole discretion based on market orpportunities or other factors, and are not intended to be a commitment
to future product or feature availability in any way. IBM, the IBM logo, Rational, the Rational logo, Telelogic, the Telelogic logo, and other IBM products and services are trademarks of the
International Business Machines Corporation, in'the United States, other countries or both. Other company, product, or service names may be trademarks or s K

s of others.

© 2011 IBM Corpg

!l
il
I

Il
i;:l|

|nn0vate The Premier Event for Software and Systems Innovation

(o]

I
Il

= Back up

© 2011 IBM Corpg

[0

|nn0vate The Premier Event for Software and Systems Innovation

[
-l

Layered approach to organize the tests

= The framework consists of three tiered architectur
appobjects, tasks and test cases.

» AppObijects: where you will store information about y
elements. It is also where you will write your Getter Methods
objects enabling the Caller to query and manipulate these GUI elements. |
Typically, these methods are called within the Task layer. 4 -

L

» Tasks: where you will write reusable methods that exercise common
functions in your application. It is also where you will write methods to
manipulate and query complex, application-specific controls. Methods in the
Task are called by Test Cases.

» Test Cases: methods that navigate through an application, verify its state,
and log results.

© 2011 IBM Corpg

e —

,¢.||

[0

|nn0vate The Premier Event for Software and Systems Innovation

(o]

I
Il

AppODbjects.

= Separate the object maps from the test cases. Object map
located in scripts whose sole purpose is to return the objec ~
caller. In this way, the object maps can be private within the script
that holds them, and it is possible to store the information about —
each object in the application in one and only one map

= The purpose of this folder is to hold scripts that return the GUI
objects contained in the application. Each script in this folder
includes a private object map and several methods that simply
returns the object that will be used by other scripts.

© 2011 IBM Corpg

|l
il
I

Innovate The Premier Event for Software and Systems Innovation

[
all

Tasks

= Tasks methods invoke appobjects methods in orde
to GUI elements in the application. In turn, tasks met
invoked by test cases. The strengths of the tasks folder 2 1t
promotes code reuse and shields the test cagzﬂom low-leve
implementation details. A robust and well-designed tasks layer,
along with well-constructed object maps in the appobjects layer, is
critical to the success of the entire automation effort.

il

. tl 2011 IBM Corporaiion

|nn0vate The Premier Event for Software and Systems Innovation

TestCases

= The testcases provides the most general view of the test effort. Generally
speaking, test cases invoke tasks (passing data if necessary), verify conditions,
and log results. Test cases should contain only the simplest logic and flow of
control; all else is reserved for the tasks folder. If sufficient time and thought has
been devoted to the construction of the tasks folder, it should be quick and easy to
generate test cases, even for a relatively inexperienced testers.

= In the testcases , each class should represent a feature area or other logical,
intuitive grouping, and each method should represent a test case. This design

makes it very easy to write data-driven testing, thus increasing test coverage with
minimal effort.

33

© 2011 IBM Corpe

