
August 9-11, Bangalore | August 11, Delhi

Test Automation Framework
Using Rational Functional Tester

Shinoj Zacharias
(Shinoj.zacharias@in.ibm.com)

The Premier Event for Software and Systems Innovation

2
© 2011 IBM Corporation

Agenda

� Collaborative Application Life Cycle
Management

� Introduction to Rational Functional Tester

� Why Automation Framework

� RFT and Automation Framework

� Types of Automation Framework

� Automation Framework Using Find

� Keyword driven framework

� Q & A

The Premier Event for Software and Systems Innovation

3
© 2011 IBM Corporation

3

Collaborative Application Lifecycle Management

Storage

Collaboration

Search & QueryDiscovery

Administration: Users,
projects, process

Presentation:
Mashups

Best Practice Processes

Manage
Test Lab

Create
Plan

Build
Tests

Report
Results

Execute
Tests

IBM Collaborative Application Lifecycle Management

Test Management

Rational Quality Manager

Quality Dashboard

Requirements
Management Defect

Management

Open Lifecycle Service Integrations

Functional
Testing Performance

Testing
Web Service

Quality

Code
Quality

Security and
Compliance

Open Platform

homegrown

Test Data
Quality

Java System z, i
SAP .NET

The Premier Event for Software and Systems Innovation

4
© 2011 IBM Corporation

4

� Automated functional and regression testing tool

� Achieve success quickly and minimize maintenance

�Simplified natural language scripting with Storyboard testing

�Eclipse based or Visual Studio .net

�Easy to learn, maximize reuse

� Powerful scripting language

� Complete test coverage

�Supports testing for Java, Web, Visual Basic .Net, SAP, Siebel, Web
2.0, Power Builder and Terminal Based applications

�Ability to support custom controls

Maximize your investment in test automation
With IBM Rational Functional Tester

System i

System z

The Premier Event for Software and Systems Innovation

5
© 2011 IBM Corporation

Introduction – Rational Functional Tester (RFT)

� RFT Recorder

� Test scripts are recorded on the fly, as user navigates
application

� Verification points are inserted to validate system
response

� RFT Scripts

� Java code or VB.net is added to perform a variety of
functions

� Typical Modifications: Conditional branching,
datapooling, refactoring

� RFT Playback

� Scripts are executed. Discrepancies are logged

The Premier Event for Software and Systems Innovation

6
© 2011 IBM Corporation

Rational Functional Tester

The Premier Event for Software and Systems Innovation

7
© 2011 IBM Corporation

RFT Scripts - Java

The Premier Event for Software and Systems Innovation

8
© 2011 IBM Corporation

Script Assure™

Determines
Match

Version 1.0 Version 2.0

Tester
Sees

Tool
Sees

No User No User
Intervention Intervention

Required With ScriptAssureRequired With ScriptAssureTMTM

The Premier Event for Software and Systems Innovation

9
© 2011 IBM Corporation

Why automation framework

� Most automation tools enable testers to simply record a set of GUI interactions and
play them back against the application under test.

� Even with adequate training on the tool the automation scripting often becomes shelf-
ware.

� Although record-playback features can be used to create suites of test cases very
quickly, the limitation of this approach is that the application under test must be mostly
complete and functioning correctly before a workable script can be recorded.

� Testers are often effectively limited to using GUI automation for regression testing

� The record-playback approach leads to extensive test script maintenance. Team end
up recording and re-recording scripts each time the application changes.

� Test teams abandons the record-playback model and writing test cases manually
instead.

� The object recognition algorithms are complex and inaccessible, making updates to the
scripts extremely tedious and in some cases impossible.

� Though tools exposes the recognition algorithms, which makes updates much more
manageable, but which also has the unfortunate side effect of making object
recognition less reliable.

� Need reusable assets

The Premier Event for Software and Systems Innovation

10
© 2011 IBM Corporation

Rational Functional Tester and automation framework

� Powerful scripting capability. Can leverage on Java and VB programming language

� Object Oriented approach to test automation

� Object recognition algorithm and Object Maps

� Find() algorithm to dynamically find test objects.

� Rich set of RFT APIs for scripting.

� Extensibility mechanism using proxy SDK.

The Premier Event for Software and Systems Innovation

11
© 2011 IBM Corporation

Types of framework

� Framework using Find API

� Keyword driven framework.

The Premier Event for Software and Systems Innovation

12
© 2011 IBM Corporation

Automation Framework Using Find

� The record-playback approach leads to extensive test script

maintenance.

� Team end up recording and re-recording scripts each time the

application changes

� Hierarchical changes affect script playback

The Premier Event for Software and Systems Innovation

13
© 2011 IBM Corporation

Automation Framework Using Find
Find() API

� Easy to use API for finding a control in Application Under Test

� Need not use Object Map

� Can use Hybrid approach : Object Map Vs non-Object Map

� Ensures resilience of the script

� Exposed on any test object (e.g.: GuiTestObject, BrowserTestObject etc)

� Exposed on RootTestObject

The Premier Event for Software and Systems Innovation

14
© 2011 IBM Corporation

Automation Framework Using Find
Find() Available in Script

� Find(Subitem Properties)

� Find(Subitem Properties, Boolean
mappableOnly)

The Premier Event for Software and Systems Innovation

15
© 2011 IBM Corporation

Automation Framework Using Find
Find(Subitem Properties)

Subitem can be either atChild() or atDescendant() or atList()

atChild()

One or more properties that must be matched against the direct child

of the starting TestObject

atDesendant()

One or more properties that can be matched against any child of the

starting TestObject
atList()

A sequential list of properties to match against. atList valid subitems

are

atChild, atDescendant, and atProperty. The first list item will be

matched
against to get a list of candidates, and out of those candidates their

descendants will be matched against for the next list item, and so on.

The Premier Event for Software and Systems Innovation

16
© 2011 IBM Corporation

Automation Framework Using Find
RootTestObject

RootTestObject root = RootTestObject.getRootTestObject()

root.find(Subitem properties)

� Represents a global view of the system being tested

� Provides access to system-wide functionality, such as

�Finding an arbitrary testobject based on properties, location etc

�DomainTest Object

ProcessTestObject p1 = StartApp("Notepad") ;

Integer pid = new Integer((int)p1.getProcessId()) ;

foundTOs = root.find(atList(atProperty(".processId", pid,atDescendant(".class", ".text"))) ;

The Premier Event for Software and Systems Innovation

17
© 2011 IBM Corporation

Automation Framework Using Find
RootTestObject Special properties for find

There are special properties that apply to a RootTestObject find. These include:

.processName

- dynamically enable the process for testing
- constrain the find to only look in processes with that name.

.processId

- dynamically enable the processes testing.

- constrain the find to only look in processes with that process id (pid).

.domain

- only search in toplevel domains matching the .domain property

.hWnd

- If the .domain "Win" is also specified the matching window will be

enabled for testing.

Handle - if the .domain "Net" is also specified the matching window will be
enabled for testing.

The Premier Event for Software and Systems Innovation

18
© 2011 IBM Corporation

Automation Framework Using Find
Find(atChild)

find(atChild(Property[] properties))

find(atChild(String propName, Object propValue))
find(atChild(String propName1, Object propValue1, String

propName2, Object propValue2))

Property prop1 = new Property(".class", "JButton");

Property prop2 = new Property(".name", "ok");

Property prop3 = new Property("text", "OK");
Property[] props = {prop1, prop1, prop3};

TestObject[] tobs = find(atChild(props));

TestObject[] tobs = find(atChild(“.class” , “JButton”))

TestObject[] tobs = find(atChild(“.class”, “JButton”, “text”, “OK”)

One or more properties that must be matched against the direct child of

the starting TestObject

The Premier Event for Software and Systems Innovation

19
© 2011 IBM Corporation

Automation Framework Using Find
Find atDesendant

find(atDesendant(Property[] properties))

find(atDesendant(String propName, Object propValue))
find(atDesendant(String propName1, Object propValue1, String

propName2, Object propValue2))

Property prop1 = new Property(".class", "JButton");

Property prop2 = new Property(".name", "ok");

Property prop3 = new Property("text", "OK");
Property[] props = {prop1, prop1, prop3};

TestObject[] tobs = find(atDesendant(props));

TestObject[] tobs = find(atDesendant(“.class” , “JButton”))

TestObject[] tobs = find(atDesendant(“.class”, “JButton”, “text”, “OK”)

One or more properties that can be matched against any child of the

starting TestObject

The Premier Event for Software and Systems Innovation

20
© 2011 IBM Corporation

Automation Framework Using Find
Find(atList(Subitem))

A sequential list of properties to match against. Valid subitems for atList are

atChild, atDescendant, and atProperty. The first list item will be matched against to

get a list of candidates, and out of those candidates their descendants will be

matched against for the next list item, and so on.

TestObject[] tobs = find(atList(atDescendant(".class", dialogRE),

atChild(".class", buttonRE, ".value", "OK"))) ;

tobs[0].click();

find(atList(atChild(), atDescendant(), atProperty());

The Premier Event for Software and Systems Innovation

21
© 2011 IBM Corporation

Automation Framework Using Find
Creating library using find

� ClickButton()

� SelectComboBoxItem()

� SelectTreeItem()

� SetText()

The Premier Event for Software and Systems Innovation

22
© 2011 IBM Corporation

Automation Framework Using Find
example

ClickButton(String buttonName)

{

TestObject to = find(atChild(“.class”, “JButton”, “name”, buttonName”)

}

selectComboBox(String ComboBoxName, String comboItem)

{

TestObject to = find(atChild(“.class”, “JCombobox”, “name”, ComboBoxName)

to.select(comboItem);

}

The Premier Event for Software and Systems Innovation

23
© 2011 IBM Corporation

Keyword Driven Framework

Keywords are reusable assets that can be created

Enables creating tests at more high-level/abstract manner using

Keyword approach

Enables non technical SMEs and Business user to design test without

knowing the complexities of the tool

The Premier Event for Software and Systems Innovation

24
© 2011 IBM Corporation

Keyword Driven Framework
Roles in Keyword Framework

Test Architect/Designer :

Role played mostly by a non technical SME or Business user.

Domain Expert, such as an SAP Consultant.

Creates Keyword driven test cases with parameters

Automation Expert:

Role played by the technical person.

Understand the automation tools and has the knowledge of scripting
languages.

Implements the framework (set of libraries)

Responsibility to enhance the framework for application changes.

Execution Engineer

Role played by a non technical tester.

Has the knowledge of how to use the framework to run the regression
tests suite.

The Premier Event for Software and Systems Innovation

25
© 2011 IBM Corporation

Keyword Driven Framework
Sample keywords

� LogonToSAPGUI

� CreateSalesOrder

� ShipTheProduct

� LogOut()

The Premier Event for Software and Systems Innovation

26
© 2011 IBM Corporation

LogonToSAPGUI()

StartApplication(“LogON”)

EnterText(“uernametxt”, “John”)

EnterText(“passwordtxt”, “xxxxx”)

clickButton(“logon”);

Entertext(String controlName, String text)

{

TestObject to = find(atChild(“.class”,
“SAPText”,

“.name”, controlName)

to.setText(text);

}

clickButton(String buttonName)

{

TestObject to = find(atDesendant(“.class”,
“SAPButton”, “name”, buttonName”

to.click()

}

The Premier Event for Software and Systems Innovation

27
© 2011 IBM Corporation

www.ibm/software/rational

The Premier Event for Software and Systems Innovation

28
© 2011 IBM Corporation

© Copyright IBM Corporation 2011. All rights reserved. The information contained in these materials is provided for informational purposes only, and is provided AS IS without warranty of
any kind, express or implied. IBM shall not be responsible for any damages arising out of the use of, or otherwise related to, these materials. Nothing contained in these materials is intended to,
nor shall have the effect of, creating any warranties or representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement governing
the use of IBM software. References in these materials to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates. Product release
dates and/or capabilities referenced in these materials may change at any time at IBM’s sole discretion based on market opportunities or other factors, and are not intended to be a commitment
to future product or feature availability in any way. IBM, the IBM logo, Rational, the Rational logo, Telelogic, the Telelogic logo, and other IBM products and services are trademarks of the
International Business Machines Corporation, in the United States, other countries or both. Other company, product, or service names may be trademarks or service marks of others.

www.ibm/software/rational

The Premier Event for Software and Systems Innovation

29
© 2011 IBM Corporation

�Back up

The Premier Event for Software and Systems Innovation

30
© 2011 IBM Corporation

� The framework consists of three tiered architecture implemented through

appobjects, tasks and test cases.

�AppObjects: where you will store information about your application’s GUI

elements. It is also where you will write your Getter Methods, which return

objects enabling the Caller to query and manipulate these GUI elements.

Typically, these methods are called within the Task layer.

�Tasks: where you will write reusable methods that exercise common

functions in your application. It is also where you will write methods to

manipulate and query complex, application-specific controls. Methods in the

Task are called by Test Cases.

�Test Cases: methods that navigate through an application, verify its state,

and log results.

Layered approach to organize the tests

The Premier Event for Software and Systems Innovation

31
© 2011 IBM Corporation

AppObjects.

� Separate the object maps from the test cases. Object maps are

located in scripts whose sole purpose is to return the objects to the

caller. In this way, the object maps can be private within the script

that holds them, and it is possible to store the information about

each object in the application in one and only one map

� The purpose of this folder is to hold scripts that return the GUI

objects contained in the application. Each script in this folder

includes a private object map and several methods that simply

returns the object that will be used by other scripts.

The Premier Event for Software and Systems Innovation

32
© 2011 IBM Corporation

Tasks

� Tasks methods invoke appobjects methods in order to gain access

to GUI elements in the application. In turn, tasks methods are

invoked by test cases. The strengths of the tasks folder are that it

promotes code reuse and shields the test cases from low-level

implementation details. A robust and well-designed tasks layer,

along with well-constructed object maps in the appobjects layer, is

critical to the success of the entire automation effort.

The Premier Event for Software and Systems Innovation

33
© 2011 IBM Corporation

TestCases

� The testcases provides the most general view of the test effort. Generally

speaking, test cases invoke tasks (passing data if necessary), verify conditions,

and log results. Test cases should contain only the simplest logic and flow of

control; all else is reserved for the tasks folder. If sufficient time and thought has
been devoted to the construction of the tasks folder, it should be quick and easy to

generate test cases, even for a relatively inexperienced testers.

� In the testcases , each class should represent a feature area or other logical,

intuitive grouping, and each method should represent a test case. This design
makes it very easy to write data-driven testing, thus increasing test coverage with

minimal effort.

