A High Performance SIP and HTTP
Web Application Benchmark and
Its Tuning

Dec 2009

Nt

G - Rl 8. oWy e
2 &‘ii‘%_uv\‘ o Al -

GO EIGE software

=

Curtis Hrischuk, Ph.D.

Table of Contents

1 Performance of communication enabled applicatians...............oeeeviiiiiiiiiiiiiiiiiiceeeenen. 3
2 The web voice mail apPliCALION..........uieieee it 4
3 System configuration and performance of a SINQEEc.cevvvviiiiiiiiiiiiiiiiiiieiceeeeeee. 5
4 System configuration and performance of highlgilable clusterccccocviiiiiii i 8
5 HTTP and SIP Performance DIffEr€NCES..... e eeeeeeiiiiiiiiiiiiiee e ie e e e 11
6 Tuning Goals for SIP and HTTP ...ttt e e re e e e e e ee s 14
7 Tuning a stand-alone WebSphere application Server...........ccccceeiiiiiii e, 17
7.1 Operating SYSIEM TUNINGooo ittt e be e e e e e e e e eaeeeaeees 17
7.2 AV (0T o 1T o [P PP 18
7.2.1 Selecting the garbage collection algorithm...................uviiiiiiiiiiiiiiiiiiieeeenn. 18
7.2.2 Determining the size of the Java heapccooooeeiiii e, 19
7.2.3 Partitioning the Java Neapueueeeeeiiiiiiiiiiee e 19
7.2.4 JVM settings to avoid COMPACHIONS ... 21
7.2.5 Additional JVM SEtlNGSccovviiiiiiiiieieeee e 22
7.2.6 Setting the JVM OPLIONS.......coooiiiiiiiiiiiei ettt ea e 23
7.3 ApPlication SEIVEr tUNING........coeees e s s s e e e sess s nnnnnsnnnns 24
7.4 Tuning the appliCation ... 25
8 Tuning a highly available CIUSTEN ..o 26
8.1 WebSphere proxy SErver tUNING..... ... e ne e 27
8.2 High availability WebSphere application Sememingeuveeveveiverevnieenennees 28
O SUMIMIATY ...ttt e ettt e e e ettt ettt e e e e e et e bbb seae e e e e e e e e eeebae e e e e e e eeennnns 30
10 Appendix: Tuning INfOrmMation ... 31
11 RESOUICES ... e e e e e e e e ettt s e e e n e e e e e ee e e e e eeeeeeeeeeeeeeees 33

© Copyright IBM Corporation 2009. All rights resed. 2

1 Performance of communication enabled applications

Enterprises are adding communications capabiliesnew and existing web applications to

help customers, partners, and employees intera afficiently. Enhancing personal
communications can increase revenue while redumosts: social networking can identify more
sales leads, self-service helps customers to supmonselves, and instant messaging can speed-
up business processes.

Many enterprises start down the path of commuraoatenabling their existing applications by
adding "Click to Call" capabilities. "Click to Q&is a feature where a user clicks on an HTML
button and start a voice conversation to, or framphysical phone, a mobile phone or a Voice
over IP (VolP) softphone. Communications enabligdp applications enables personal
communication to occur over the Internet, in réalet

Java™ Enterprise Edition (Java EE) technologies malkasty to add communications
capabilities using Session Initiation Protocol (SfFogramming standards such as JSR 116
[JSR116] or JSR 289 [JSR289]. SIP servlet progrengms used to exploit all of the capabilities
of the converged HTTP and SIP Servlet containégnénBM® WebSphere® Application

Server. WebSphere Application Server easily hemnthis cutting edge functionality by
delivering over 3 million converged operations peur, running on a single IBM BladeCenter®
HS21 blade server. Another development approatthuse a multi-modal development
framework to simplify the effort, like the IBM Wep8ere Application Server V7 Feature Pack
for Communications Enabled Applications (CEA).

Any system benefits from performance tuning, anslithtrue of a communications enabled
application. Many standard HTTP web and Java egiitin server tuning techniques apply.
Some additional tuning techniques are needed be&léshas more stringent Quality of Service
(QoS) goals. This article describes best pracfimetining a new benchmark that accesses
voice mail over the web, combining HTTP and Sife Benchmark simulates people using a
browser to establish a Voice over IP (VolP) phoak and interact with a voice mail server.
Note that the technologies utilized in this benctiaze not limited to VolP phone calls, and
could equally connect calls over a standard laedbinone or mobile phone.

This benchmark demonstrates the carrier-grade qeaioce of IBM WebSphere Application
Server. The benchmark capacity is measured usiegvametric ofConverged Oper ations per

Hour which is the sustained hourly rate at which neersistart and complete the web voice
mail application. A converged operation begins wiité initial HTTP request and stops with the
call ending after an average duration of 60 secorddsaverage of 2.5 HTTP GET requests and
28 SIP messages are handled per user. The IBM pYel& Application Server achieved
3,351,600 Converged Operations per Hour (931 cgadeoperations per second) on a single
IBM BladeCenter HS21 Series x® blade server: 2 (jlad core machine, running at 3.33GHz
with 16 GBytes of RAM. This was achieved with ai@ge CPU utilization of 65%. This is
equivalent to 7,218,830 Busy Hour Call Attemptss(emsing each call is 13 SIP messages) while
also processing 8,379,000 HTTP requests per hour.

This article presents best practices for tuningraverged SIP and HTTP Java EE application,
reviewing the most commonly used parameters. Tahlethe appendix, summarizes the tuning

© Copyright IBM Corporation 2009. All rights resed. 3

information that is discussed, suggesting initellres that should work well in most
circumstances.

The structure of this article moves from high-lewathitectural principles to best practice
performance tuning procedures, using the exampbewoe mail benchmark to present
measurement data. To provide the context forrttaiterial, the performance results are
presented along with the configuration used fomtieasurements. Prior to this, a brief overview
of the web voice mail application is given. Thedallowed by a brief comparison between the
HTTP and SIP protocols and the impact on performanten the goals that guide the tuning
process are identified. Readers new to SIP aeeresf to [CMG-Sip] for a tutorial on SIP
performance.

2 Theweb voice mail application

The benchmark scenario is quite simple, convedim¢d TML button click into a voice
conversation. The scenario begins with a salesopeat a coffee shop wanting to access their
voicemail. They access the corporate network gouim their personal page, and then click on a
button to access their voice mail. The button sealdHTTP request to establish a SIP based,
voice three way call between: the voice mail systihe user's soft-phone on their netbook, and
a WebSphere Application Server instance runningvisie application. The WebSphere
Application Server instance manages the sessionastd end; the voice traffic is assumed to be
carried on a separate path as is customary for 8iffen the user is done they either: (1) hang
up the soft-phone (terminate the call by SIP) 9rc(zk a button on the web page (end the call
using HTML). The benchmark roughly equalizes #renination types (i.e., 50% hang up and
50% terminate via the web page). For simplicitys essumed that the number of sessions that
time-out is negligible.

This scenario translates into many SIP messageseastlal HTTP requests, as shown in Figure
1. The HTTP requests are shown on the left oapp@ication server and the SIP message
exchanges are shown on the righthe voice mail server and application server arge
SUBSCRIBE and NOTIFY evenfsp determine how many voice mail messages areipefior
the user. To keep things simple, the benchmarknass that there are always four pending
voice mail messages when the user initially cormiethe average time the user interacts with
the voice mail system (i.e., call hold time) isg&onds.

The system configuration is a three-tier modeker Dine is the load driver that simulates the
activities of Web users. Tier two comprises mudtippplication servers that receive the requests.
Unlike typical web applications where the third iea database, the third tier for this

application consists of SIP end points that beli&eethe end user and the voice mail server.
From a workload perspective, each user generateS 2veb page requests, as well as 28 SIP
messages which are not an uncommon amount of 8iftyacAn interesting aspect of the

! The soft phone and voice mail server behave asuptd the best practices in rfc3725: Best Curfmaictices for
Third Party Call Control (3pcc)

2 This is similar to rfc3842: Message Waiting Indioa Event Package

© Copyright IBM Corporation 2009. All rights resed. 4

message flows in Figure 1 is that much of the 3tegssing occurs in parallel between the
various SIP test driver end points.

User WebSphere User Soft Voicemalil
Browser Application Server Phone Server
. . I
| HTTP Get > I ,
; HTTP Get (start call) > Subscribe : .
I P 200 OK . -1
L INVITE - |
l I 180 1 I
| D) 200 | I
N
[le 180 1 .
I D) 200 OK 1 '
0~ ACK . A
| i ACK N ”1 Repeat4
l 1 NOTIFY “1 I times
Y
| I 200 OK | Sl
Ve |
I le NOTIFY L .
| N
200 OK . 5
I I - 1§ v
SUBSCRIBE <
I I I o
< 200 OK J
I L NOTIEY | I
€ |
| HTTP Get (end call) _} 200 OK | >
I > BYE)!
: r 200 OK _ l
r BYE ' 3l
l P 200 OK I 1
N

Figurel: HTTP and SIP Message Exchangesfor Ending the Call by a Web Request

3 System configuration and performance of a single node

It is useful to examine the performance charadtesi®f the System Under Test (SUT) before
diving into the details around performance besttzas. A standalone node configuration is
presented first, followed by a WebSphere Networklbgment configuration (i.e., a cluster)
since it builds on the standalone node concepts.

The benchmark configuration is shown in FigureTRere are eight stand-alone WebSphere
Application Servers instances configured on a sitigirdware node. This technique is referred
to asvertical scaling because it can be thought of as having multiplelg'$tacked on the single
hardware node. Vertical scaling is a standardriecte for application servers to more fully
utilize hardware resources and increases overnadlaty. In particular, vertical scaling helps
SIP applications by increasing the total amoumetfvork buffering available to reduce the
possibility of messages being lost (this is diseddsirther in Sectio6). Vertical scaling also
provides additional fault tolerance in the eved¥V# fails. The application server node is an
IBM BladeCenter® HS21 xSeries blade server with BM@BGHz Intel® quad core X5470 CPUs
with 16 GBytes of RAM, running Red Hat Enterprigaux release 5.2.

© Copyright IBM Corporation 2009. All rights resed. 5

8 Core HS21

WebSphere
Application Server #1 |

Web voice mall
application #1

VWED voIce mai
application #2

SIPp simulated SIP
soft-phone
Intel 2xCPU, Linux

SIPp simulated SIP
voice mail phone
Intel 2xCPU, Linux

Rational Performance Tester
Version: 8.0.0.2
Intel 2xCPU, Linux

SIPp simulated SIP
voice events
Intel 2xCPU, Linux

WebSphere
Application Server #8

Web voice malil
application #8

Figure 2. Software Configuration of a Single Har dwar e Server

IBM Rational® Performance Tester generates the HIG&R that simulates users accessing their
voice mail over the web. This workload is genetatsing one workbench that manages sixteen
load generation machines, each of which execusasgte load driving agent. The application
servers interact with the SIP load drivers that lateuthe user’s soft-phone and voice mail
server.

The traffic generator program SIPp [SIPp] is usedimulate the SIP end-points of Figure 2.
Three SIPp scripts are used: user’s soft-phondatimn (two instances), the voice mail VolP
line emulation (two instances), and a voice maNeges event notification emulation (four
instances). The SIPp program instances are digddbacross several machines to ensure there
was ample load generation capacity

The performance results of Figure 3 representohgbmned throughput of the eight stand-alone
Java EE WebSphere Application Servers running ersitngle IBM BladeCenter® HS21 xSeries
blade server.

The peak capacity is calculated per node whichésaggregate of the eight WebSphere
Application Server instances. It is determinedrmyreasing the rate of initial web voice mail
HTTP requests until either an HTTP request timetdbowne of the SIP interactions had an
unexplained failuré. At that peak capacity the user request rate, Hidd® request rate, SIP
message rate, CPU utilization, and aggregate ygg@dtation memory are recorded. A Quality
of Service latency value is also recorded, notitegdelay between a SIP request and its

3 For the sake of efficiency, the SIPp traffic gerter does not fully implement a SIP protocol statkch can result
in SIPp reporting a protocol violation when theshatction was valid. This usually is the resultrafssages being
retransmitted or messages being received out @frowhich is allowed in the SIP protocol but isstal reported by
SIPp as an error. The SIPp XML script files thaamacterize the message interactions do take auouat some of
these issues but, in some cases, manual inspéxtiequired. SIPp does record enough informatlmuteach
failure so that a manual inspection can deternfiaa error really occurred.

© Copyright IBM Corporation 2009. All rights resed. 6

acknowledgements (“§5Percentile latency from the NOTIFY to 200 acknaigement
message” measurement in Figure 3). This delagluated from data recorded by the SIPp
load driver, using a 10 minute measurement inteavalfixed call rate.

The peak capacity of the web voice mail applicatsoshown as theConverged Operations per
Hour” metric in Figure 3. Since the new benchmark coab HTTP and SIP, a new capacity
metric is used:Converged Operations per Hour.* This metric represents the sustained hourly
rate at which new users start and complete thewoile mail application. It begins with the
initial HTTP GET request and completes with thegabéne hanging up or an HTTP GET that
closes down the call. Per user it includes anamgeeof 2.5 HTTP GET requests and 28 SIP
messages.

The peak capacity for the stand-alone configurasd)351,600 Converged Operations per Hour
(931 converged operations per second * 3600 sequerdsour).

The converged operations per hour metric can bleebrdown into the individual message rates
driven by the workload. The HTTP request rate 82,HTTP requests per second (roughly 931
converged operations per second * 2.5 HTTP requestsonverged operation), while the SIP
request rate is 26,068 SIP messages per second@@8érged operations per second * 28 SIP
messages per converged operation). This combinmedghput was achieved with an average
65% CPU utilization, allowing room for more advaddrisiness logic without impacting the
overall capacity. This is equivalent to 7,218,882y Hour Call Attempts (assuming each call is
13 SIP messages) while also processing 8,379,000PH&quests per hour, on a single machine
running the same application.

In addition to peak capacity, memory consumptiocansmportant factor because users are
logged in for long periods with this type of applion. Although each user consumes a small
amount of application memory, there can be mangwoent users so the application memory
consumption can become a bottleneck. For exartipdes were about 55,860 users active at
peak capacity (931 converged operations per set6fdeconds). The application memory
that is used is part of thiava heap.

The used Java heap per node is measured by surtimistpady state Java heap memory used
by each application serv&rAs shown, the steady state memory consumpti@rlz? Mbytes
total or about 266 Mbytes per application sen&ince each application server was allocated a
Java heap of 1,500 Mbytes this leaves roughly 8B&eoapplication memory available. This
memory measurement technique can also be useel lthor HTTP application is split across
more than one tier.

* The term Converged Operations per Hour is baseationterminology. Converged is the usual industry term for
web applications that use both SIP and HTTP. Telap capacity is usually measured as Busy Hour &#dimpts.
The new term joins these two concepts together.

® The IBM JVM'’s generational garbage collector isdisn these measurements. The garbage colledtvityais
logged in the file native_stderr.log when enabl&tie steady state memory usage is found by searébirihe last
‘global’ garbage collection (i.e., ‘gc type="globalat peak capacity. Then the average used meisargiculated
as the tenured ‘totalbytes’ value less the tentfredbytes’ value. Other JVM vendors will recoiichdar
information.

© Copyright IBM Corporation 2009. All rights resed. 7

An important quality factor for SIP is the rounigbtdelay between issuing a SIP request and
receiving the acknowledgement. If the acknowledgeins not received in a timely fashion,

then the client retransmits the message. Thisaovinaf time is relatively small compared with
HTTP time-outs. For example, the initial messagetout value for a VolP call is 500
milliseconds while the typical HTTP time-out valise30 seconds: a factor of 60. Although the
WebSphere Application Server detects and discatdsnsmitted messages, the retransmissions
use some processing power and also waste netwawknees, so minimizing retransmissions is
beneficial. For this reason, the application rotnltime is a useful quality measure because it
provides an expectation of how close the systam ilse retransmission threshold.

For the web voice mail benchmark, round trip Skerlay is measured as the interval from the
voice mail server sending a NOTIFY to receiving 208 OK acknowledgement. The 200 OK is
generated by the application so measurement inglagplication latency; some other responses
(e.g., 100 TRYING) do not reach the application & returned by lower level protocol
processing. The “d5Percentile NOTIFY to 200 OK Latency” measuremerfigure 3 shows
that 95% of round trip times are less than 60 sationds, 440 milliseconds below the
retransmission threshold.

4 System configuration and perfor mance of highly available
cluster

Application capacity can be increased by horizdydaling the environment with additional
nodes to form a cluster. A cluster can also beentdighly Available (HA), so that a user’s
session will continue in the event of single falim the cluster. Figure 4 is an example of a
small HA clustef. There are two nodes which each have eight apigiicaervers, just like the
stand-alone example of Secti8n Each application server on one node is paitiéuamn
application server on the other node, exchangisgise and protocol data so that the user
session can survive an application server failure.

In comparison to Figure 2, the cluster configuraibd Figure 4 has the additional WebSphere
Proxy Server. The WebSphere Proxy Server incltitee$ollowing main features:

» Application level session failover and load balagoof SIP and HTTP protocol requests;

* Manages the work offered to the application sergerthat the application servers are not
overloaded (e.g., a denial of service attack);

* Maintains user session affinity information.

The WebSphere Proxy Server acts as both a loaddsland message router. HTTP requests
are first sent to the WebSphere Proxy Server wthieh forwards them to a WebSphere

Application Server instance. The HTTP responsedlback through the proxy server too. The
SIP messages to, and from, the WebSphere Applic&govers must traverse the WebSphere
Proxy Server to enable the load balancing, overtmadrol, and high availability features. This

® To avoid a single point of failure in this exampiesecond WebSphere Proxy Server is needed. &ymme
performance perspective, a single proxy server leartie workload so adding an additional proxy sedoes not
impact the performance results. So, to keep thsingple a single WebSphere Proxy Server was used.

© Copyright IBM Corporation 2009. All rights resed. 8

enables the WebSphere Proxy Server to act as eateed message monitoring point, for
diagnostics. Additional Proxy Servers can be addebe cluster to avoid a single point of
failure.

Converged Operations HTTP Throughput SIP Throughput
per Second
25007 30,000
1,000 - 031 2275 g 26068
900 - oy)
g & 2,000 @ 25,000 -
@ 800 S >
g e o
£ 700 1 = < 20,000
5 2 1,500 | =
2 600 - < =
c g 2
=] 3 E
3 500 { 2 S, 15,000 -
= [] S
E 400 | g 100 g
g g =
3 300 g 10,000 -
g 4 54
x Kol 4 7]
o 200 | § 500 A
2 = < 5,000
100 1 a
| 1 n
Used Application 95th Percentile
Memory at Full Load NOTIFY to 200 OK
2,500 - Latency
70
2100 g 60
2,000 - 5 601
(S}
(9]
2 1,500 | E
2 g 40 1
2 g
g 1,000 + 8 30
9] 2
= =
§ 20 -
500 E)
< 10
5
B [¢2]

Figure 3: Performance of the Web Voice Mail Application on a Stand Alone Node

© Copyright IBM Corporation 2009. All rights resed.

8 Core HS21

Rational Performance Tester 2 1

Version: 8.0.0.2 WebSphere

Intel 2xCPU, Linux Application Server #1 |,
E

Web VoIce mal

application #2

SIPp simulated SIP
soft-phone
Intel 2xCPU, Linux

Web voice malil
application #1

8 Core HS21

SIPp simulated SIP

> WebSphere o voice mail phone
- Proxy Server 9 Intel 2xCPU, Linux
 J

/AN

SIPp simulated SIP
voice events
Intel 2xCPU, Linux

WebSphere
Application Server #8

Web voice mail
application #8

‘ -

Figure4: A Small, Highly Available Cluster

The high availability benchmark configuration i©am in Figure 4 and expands the stand alone
configuration of Figure 2. There are two appliocatserver nodes with eight WebSphere
application servers configured per node. The apptin server node is an IBM BladeCenter®
HS21 xSeries blade server with a two 3.16GHz Intgl@d core X5460 CPUs with 16 GBytes
of RAM, running Red Hat Enterprise Linux releas2. 5The proxy server hardware node is an
IBM BladeCenter® HS21 xSeries blade server wittv@ 3.33GHz Intel® quad core X5470
CPUs with 16 GBytes of RAM, running Red Hat EntespiLinux release 5.2. The load
generation configuration was unchanged from Fi@ure

The performance results of Figure 5 are shown pde 0 the entire capacity of the cluster
would be twice these values. Each WebSphere Agipiic Server node processed 349
converged operations per second in a High Avaitglmbnfiguration. This breaks down to an
HTTP request rate of 873 HTTP requests per seaqonglily 349 converged operations per
second * 2.5 HTTP requests per converged operatidgr)e the SIP request rate is 9,772 SIP
messages per second (349 converged operationsquerds* 28 SIP messages per converged
operation). This combined throughput was achievitld an average 72% CPU utilization for
each WebSphere Application Server nodes. Thigusvalent to 2,706,092 Busy Hour Call
Attempts (assuming each call is 13 SIP messagey also processing 3,142,800 HTTP
requests per hour, on a node running the applica&tian HA configuration. This capacity is
lower than the stand alone configuration of Sec@ialue to HA using additional resources for
the data replication to maintain the user and $tfopol session state.

The memory consumption per node is increased fhemon-HA application server because
backup session information is used to recover see sessions in the event of an application
server fault. As shown, the steady state memaonguwmption per node is 1100 Mbytes total or

© Copyright IBM Corporation 2009. All rights resed. 10

about 136 Mbytes per application server. Sincé eaplication server was allocated a Java
heap of 1,500 Mbytes, this leaves roughly 90% efapplication memory available.

For the clustered configuration, the round trip Bitency is still measured as the interval from
the voice mail server sending a NOTIFY and recgthe 200 OK acknowledgement. Figure 5
shows that 95% of round trip times are less thamBigeconds, 470 milliseconds below the
retransmission threshold.

Converged Operations HTTP Throughput SIP Throughput
per Second
1,000 - 12,000 -
400 - s T 900 - 873 }3? 9772
[8] 4
S 350 | 2 800 | g 10000
z 72% & 200 g
€ 300 - cPU 5 é 8,000 -
2 250 - £ 600 7 1
> S 500 s
| < 4
S 0 - 2 5 6000
5 E 400]
- S <
7 150 8 300 - % 4,000
2 100 - g g
§ @ 200 - 2
a 2,000 |
g 50 2 10 2
= »n
Used Application 95th Percentile
Memory at Full Load NOTIFY to 200 OK
1,200 1 1100 45 Latency
30
1,000 - Py
30 -
£ @
©
— 1 © i
g 800 - oS
& =
= 600 $.0 20
= _ o =
> o E
o o = 15 4
IS <
< 400 A B
© 10 -
200 5 |

Figure5: WebSphere Application Server Node Performancein a High Availability Cluster

5 HTTP and SIP Performance Differences

HTTP is a well known technology, so it is usefuttmtrast it with SIP to understand the
similarities and differences around performanchisTs done first for a pure web server and
then for an application server.

© Copyright IBM Corporation 2009. All rights resed. 11

HTTP uses the TCP protocol just like other commighér-level protocols (e.g., Telnet, FTP).
From a pure HTTP web server perspective, the keyHperformance measures are the peak
web request rate along with its CPU utilizationog¥lof the tuning mechanisms that are
available for a web server are TCP tuning values. example, a TCP connection to a client
looks like a file handle to the operating systerd tere is usually an operating system limit to
the number of file handles that can be open atiamy. This can be adjusted for each operating
system but there is usually a limit of 64 thouswiitth a practical limit lower than that. An
additional tuning factor is the number of threaalsdrvice request along with the associated
threading mode.

A quality factor that is important to users of abngerver is the time it takes for the web page to
be rendered so that they can proceed with whatwlaey to do. The response time measure is
important because if it is too large then the ugérabandon the web page and go on another
web site, perhaps resulting in a lost sale or lepadtation for the original web site. This
response time measure can involve many HTTP rayndiessage exchanges to the web server
because a web page can have many embedded elédmgntsnages, style sheet, other
referenced web pages in frames, etc.), as welhas imternal scripts perform some operation
which takes additional time. These round trip sm@ay also involve multiple requests to
backend databases so the latency involved withdaktebase can impact the response time. Web
Server response time is primarily a function of tbe web page is retrieved which is well
understood and not covered here.

An application server provides more services thaR&TP web server so it has additional
tuning mechanisms. In general, the maximum thrpughate and the associated CPU utilization
are the key metrics to optimize for. Some applicaserver related tuning factors are: the
number of threads in thread pools, the number pheoctions, connection pooling, JDBC data
source statement cache size, and other cachingamieatns. For a good overview of tuning a
JEE application server see the article [JeeTuning].

SIP and HTTP are similar because they use texestg@and responses, but they differ in several
ways that impact performance:

» SIP applications commonly use UDP as the primaoyoool instead of TCP, so out-of-order
message reception is tolerated by SIP. Applicatioay also have to consider out of order
message reception;

» Some SIP requests need to explicitly receive an@gledgement within a time limit, after
which the request is retransmitted. UDP retransions consume network and CPU
resources. TCP handles retransmission implicitly;

» SIP message transactions and sub-transactions eretatieful or stateless. Additional, long-
lived memory is required to manage the statefulsaations for each user. HTTP requests
are stateless;

» SIP messages are usually very small so they typitainto a single MTU packet. HTTP
responses frequently exceed an MTU packet;

» SIP interactions may be synchronous (like HTTP)rbay also be asynchronous. SIP has a
peer to peer architecture, rather than the HT Téhtkerver approach.

© Copyright IBM Corporation 2009. All rights resed. 12

* More than one SIP response may be generated ianmespo a single SIP request. An
application that uses SIP has the freedom to sehdgeveral requests for a given input, or
wait for several inputs before a response. HTT$ahsimple reply-to-request model; and

» SIP is a bursty protocol where messages clumphiegét the network so messages are
usually sent and received in groups.

Due to the preceding factors, adding the SIP podtimcan HTTP environment introduces
additional performance considerations and tunietpfa. SIP communication over UDP
provides performance advantages when comparedi@ki UDP avoids the TCP slow start
and the overhead of the communication channelgeiad tear down. This advantage comes
with some trade-offs, such as most operating systtuned for TCP communications and
need to be retuned to support high performance tidRmunication. Also, the SIP protocol
needs to manage when UDP message retransmissiors.occ

The asynchronous nature of SIP requires that tRep&itocol and application deal with
retransmitted messages or messages that are raei@elifferent order than sent. Also, if a
SIP messages exceeds the MTU of a UDP packet|fhpr8tocol does allow for TCP to be
used to send the larger payload. However, mixi@& Bnd UDP messages can make tuning
more complex. A recommended alternative is torege the converged application’s HTTP
protocol to transfer large data payloads. In#ppgroach, the SIP message has an URI that the
application uses to retrieve the large data paylddds allows SIP to use UDP consistently, as
well as employing the HTTP protocol to serve uplérge objects.

The asynchronous nature of SIP highlights strenfithe WebSphere Application Server, which
is its integrated, converged container (see FiglreA converged JEE application server needs
to process HTTP and SIP messages, not only fasaime application, but for the same user.
This means that care must be taken to accommodateicent processing of an HTTP message,
and one (or more) SIP messages.

The WebSphere Application Server helps the develdgeelop for this asynchronous
environment. The container manages the sessianmtipendently for each user and serializes
the access per user. This serialization allows sesgsion data to be accessed from a SIP thread
or HTTP thread without requiring special API's,language constructs. This integrated,
converged container makes it easier for the deeeltwpprogram at the application level because
there are fewer things to worry about (e.g., syoctzing access because of multiple SIP threads
and HTTP thread needing to be processed).

© Copyright IBM Corporation 2009. All rights resed. 13

Presence
Messaging
Portlets

Servlet Container

| HTTP Container ! SIP Container
| Pre-processor g . Pre-processor

AAAAAAA

¢ ¢ ¢ ¢ ¢ { ¢ Shared Ports

Figure6: WebSphere Application Server Converged Container

6 Tuning Goalsfor SIPand HTTP

There are many books or articles that describe gbals should guide the tuning process of
HTTP servers. As the previous section mentioneohbining SIP and HTTP changes the
performance, requiring some adjustment to the tygmals. These goals are elaborated here
because they are used to guide the tuning proceks following sections.

Goal: Tuneto avoid SIP UDP message retransmission by smoothing out the SIP traffic
processing where possible. If the acknowledgement to a SIP request is negived in a timely
fashion, then the client retransmits the messadps window of time is not large compared with
HTTP time-outs. If SIP messages are retransmétadasse, then a network storm can occur
which can result in five times the expected netwoakic. For example, if the normal SIP
message rate is 3,000 SIP messages per second, ttteerate remains the same and
acknowledgements are not received in time, the peakork traffic could rise to 15,000 SIP
messages per secondAlthough the WebSphere Application Server detaotsignores
retransmitted messages, the retransmissions use m@ressing power and also waste network

" Although not discussed, the WebSphere Applicafierver has overload control mechanisms to pratécthis
situation.

© Copyright IBM Corporation 2009. All rights resed. 14

resources, SO minimizing retransmissions is bemfi¢-or this reason, tuning to minimize UDP
retransmissions is key goal. It also leads toragloals.

Goal: Engineer the system for 80% CPU utilization. CPU tuning for a SIP and HTTP
application is like any other web application. efdare obvious things to do (e.g., minimize
object synchronization time, provision thread paggropriately, avoid excessive logging). The
large HTTP request timeout facilitates high CPUiz#tion approaching 100% by queuing

HTTP requests because each request is usuallxsdmwithin the time-out window. But SIP’s
short retransmission timer means that request ggdaiency needs to be managed. SIP’s small
message time-out does elapse if a large numbdPofe§uests are queued. So, a CPU
utilization target of 100% is not appropriate. té@l, a target of 80% CPU utilization is
recommended for the maximum load which allows fansks of activity to be accommodated
without violating the SIP time-out limits.

Goal: Minimize application stall time so SI P message acknowledgements are sent quickly.

The Java Virtual Machine stalls the applicationgeissing when it performs a garbage collection
to reclaim unused memory. SIP tuning should mir@nhis impact using two approaches: (i)
minimize the number of garbage collection evenisc(dssed in the next goal) and (ii) minimize
the amount of time each garbage collection evémistaAn infrequent activity that occurs during
a garbage collection event i€@mnpaction which relocates objects in memory to maximize
contiguous free memory by shrinking the unused nigrgap between the objects. Avoiding
garbage collection compactions belongs to the secategory because a compaction can take
several seconds.

Application design can help to avoid compactioRsst, pre-allocate at start-up any large
objects. Secondly, when possible, pre-allocaggelaollections with their expected maximum
size. When a collection grows in size it needbun& of contiguous memory which is not a
problem at start-up since the heap is not fragnaentdowever, after the application runs for a
while, a very large contiguous chunk of memory rbayhard to find because the heap could
become fragmented through typical use. Lastly|BM JVM provides a way to avoid
compactions when allocating objects larger thaiKlbyites by reserving an area of the heap
called the Large Object Area (LOA). The LOA isersd at start up and it is discussed further
in the [JvmDiagnostic] guide.

Goal: Minimize memory usage but assume a lot of memory will be used. Memory

consumption is an important consideration becaussetapplication types have user sessions
typically active for long periods. Although eacteuconsumes a small amount of application
memory, there can be many concurrent users sothleapplication memory consumption can
become large. In addition to the user data, lovedlmemory for the SIP protocol state of each
user is also retained. This can be very large dime@umber of user application sessions is the
average request rate multiplied by the averagenigeof the sessions.

For example, if users’ sessions live for an avetaggth of three minutes and the request rate to
an application server is 200 requests per seched,dn application server will have 36,000 live
application sessions (200x3x60). If the applicatiehaves as a SIP back-to-back user agent
(B2BUA) then there will be at least two SIP sessiper user, for a total of 72,000 SIP sessions.
If each application session uses 25 Kbytes, thismtieans that 900 Mbytes of Java heap
memory will be in constant use. If the call halde increases by an additional minute, then the
live heap usage increases to 1.2 GBytes becausrithieer of sessions increases by 33%. This

© Copyright IBM Corporation 2009. All rights resed. 15

is a large amount of active memory which will impte time it takes to perform a garbage
collection event.

Some application design decisions that minimize orgyrmaonsumption are: keep the data stored
in the user session to a minimum; use soft-refagc weak-references in object caches so that
the cache memory becomes available if there i$ af lmemory pressure; invalidate a session as
soon as possible by using the appropriate methabladjust the default time-out values to your
application’s characteristics.

Goal: Usea 32-bit JVM if the SIP messages have QoS requirements, otherwise use a 64 bit

JVM. Obviously, there must be enough memory availtl¢he application during the peak
load. If the application memory of a single serdees not support the peak load, then there are
two alternatives: (i) use a 64-bit JVM or (ii) tieally scale the application by running multiple
32-bit JVMs (even if the operating system is 64. bit

Although a 64 bit JVM can address more memoryéRisa address space comes with some
additional costs. For example, each 64 bit JVMeobjeference requires more memory than the
32 bit JVM object reference.More importantly, using a very large heap witBdabit JVM has

the side effect of increasing the garbage collediimes which may stall the application for a
longer time and make retransmissions more probablé4 bit JVM can be used if the SIP
message exchanges do not have QoS requirememéezéiving acknowledgements. For
example, the SUBSCRIBE and NOTIFY SIP messagesthbave retransmission time-out
values so applications which use only these messigeaot need to be tuned for message
latency. The IBM JVM has an option which redudesimpact of object reference size by using
a feature called compressed references which lsdeshly the “Xcompressedrefs " option.

Running multiple JVM’s per WebSphere node can addensapacity when memory usage is a
bottleneck because it effectively adds more Japéicgiion memory, although this application
memory is spread across the several WebSphereafpth servers. If the sessions have a long
call hold time (e.g., three minutes) or live fong¢pperiods then this is a good strategy to use.

Vertical scaling can result in significant addit@mcapacity, even though a portion of the
additional memory is used for each WebSphere agipic server run-time. For example,
suppose there are three JVMs executing on the sadewhere each application server has 1.5
GBytes of free memory and the run-time memory faotpf the application server is 150
Mbytes. Then there is roughly 4 GBytes of applmatnemory available, spread across three
JVMs. This additional memory translates into addil session capacity and, usually, less
garbage collection activity.

Goal: Minimize queuing in the network communication path by servicing requests quickly.

This can be accomplished in two ways. The firspireduce the network processing delay for
which operating system tuning is the primary tobhe second is to introduce multiple queues
that are serviced in parallel to reduce the delay: example, an operating system socket can be
a bottleneck for an extremely high SIP messagebetause the socket is not serviced quickly
enough, causing requests to queue. Multiple sedhetn application server for sending and
receiving can alleviate this. Vertical scalingsigly supports this goal because it provides

8 The IBM JVM has an option that reduces the sizéhefobject references for the 64 bit JVM. SetBj&IVM] for
more information.

© Copyright IBM Corporation 2009. All rights resed. 16

concurrent socket communication through separatts path different thread pools. Both of
these approaches use multiple sockets to redueadlmontention for receiving and transmitting
messages, as well as reducing lock contentiondiocwrent access to the socket.

Goal: Provide adequate communication buffers so that message queues do not overflow. Due
to the bursts in message reception, adequate coration buffering is needed. With
inadequate buffering, messages may be receivedrapged, resulting in a message
retransmission. This is especially important whes recognized that there is the potential for a
positive feedback effect that compounds: dropjipgcket results in a retransmission which
use more communication buffers, resulting in mompgded packets because fewer
communication buffers are available, so there asge2zmmessages retransmitted, etc. All the
various network layers (i.e., network card, opagsystem buffers, etc.) must be tuned to
ensure there is adequate buffer capacity. Versicaling strongly supports this goal because
each application server instance adds additiomahaenication buffers at the application level
(e.g., socket) so that, overall, there is suffitmmmunication buffer capacity.

To conclude this section, a summary of the tunioggare:

* Tune to avoid SIP UDP message retransmission bytnmg out the SIP traffic processing.
* Engineer the system for at most 80% CPU utilizatinder the heaviest expected workload.
* Minimize application stall time so SIP message agkedgements are sent quickly.

* Minimize memory usage but assume a lot or memoltyb&iused.

» Use a 32-bit JIVM. A 64 bit JVM can be used whel Blessage exchanges do not have QoS
requirements

* Minimize queuing in the network communication path.
* Provide adequate communication buffers so messageeg do not overflow.
The tuning processes follow from these goals.

7 Tuning a stand-alone WebSpher e application server

The tuning for a single application server is dgs®d in this section, with the subsequent section
describing additional cluster tuning. This tuniagiot necessary for a functionally working
system but it can provide significant performanag. The tuning is also applicable to
configurations that are larger than a single apfibo server, such as a WebSphere Network
Deployment cluster.

The tuning is described in the following sectiom@yves from the lowest to highest level in the
software stack. The operating system is the loleest in the software stack and it is discussed
first. Then the JVM tuning is presented, whiclthis largest section. Then the application server
tuning is discussed. Finally, some applicatioreléuning guidelines are presented.

7.1 Operating system tuning

As mentioned, most operating system’s network patara are tuned for TCP so tuning for
UDP performance is needed. Network tuning forWebSphere Application Server has been

© Copyright IBM Corporation 2009. All rights resed. 17

extensively covered in [CMG] and [Infol] so it istrreviewed here. It is reproduced in Table 3
for completeness.

There are a several other operating system tumictgrfs that should be considered. For Linux
operating systems ensure the “Name Service Ca@aegnon” (nscd) is running to avoid slow
hostname resolution. The network capacity cambeeased by using multiple Network
Interface Cards (NIC). A technique to achieve thisalledlink aggregation (also known as
trunking or bonding) which can bind one IP address to multiple, achiV€ cards. Link
aggregation was not used in the benchmark measuotstet is mentioned for completeness. If
possible, IPv6 should be disabled. This is accahet by adding the following lines to the file
‘/etc/modprobe.conf . “alias net-pf-10 off " and “alias ipv6 off

Lastly, ensure that an adequate number of socketbe opened by increasing the number of
operating system file handles. Théimit ' command is used to do this.

7.2 JVM tuning

The largest group of tuning factors is associated thie JVM garbage collection options.
Garbage collection (GC) is performed by the JVNeclaim application memory for reuse.
During the GC process the application is stalled saning goal is to minimize this delay. The
guestions to answer are:

* Which garbage collection algorithm to select?

* What should the size of the Java heap be?

* How should the Java heap be partitioned?

* What settings can be used to avoid compactions?

* Are there any additional JVM settings that enhgrerformance?
The options are covered here in increasing prianider.

7.2.1 Selecting the garbage collection algorithm

Selecting the appropriate GC algorithm is the Bitsp because this choice affects the subsequent
tuning parameters. The recommended GC algorithireigenerational garbage collector
(calledgencon). Gencon is a compromise of minimizing applicatiatency and maximizing
throughput, as well as providing several usefuirtgriactors. A little background about the
gencon garbage collector helps to understand ttiegu For a detailed discussion, the reader is
referred to [JavaDiagnostic]. These articles #&se helpful [GcGencon] and [GcPerf]. The
[JeeTuning] article has some examples with freelilable garbage collection analysis tools.

A unique feature of gencon is that the heap igdéitiinto two areas: one area of the heap for
newly created objects (the new objechorsery space) and another area for long lived objects
(the old object otenure space). The garbage collection activity operetéso modes: focusing
solely on a nursery garbage collection, or perfagrboth a nursery and tenure space collection.
The nursery uses up its free space more frequdrgtythe tenure space because objects are first
allocated there. When the nursery space is uséldeunpthe application is suspended and a
scavenge GC is performed that recovers memory in the nyrspace. During the scavenge GC
event, objects are promoted (moved) from the nyrseace to the tenure space if they have

© Copyright IBM Corporation 2009. All rights resed. 18

lived long enough in the nursery space. The réstitat the tenure space stores the long lived
objects. If, during a nursery garbage collectivarg, there is no more space to move objects
from the nursery space to the tenure spaglal garbage collection occurs which also
reclaims memory in the tenure space.

The JVM option that selects the generational G@rélym is ~Xgcpolicy:gencon "

7.2.2 Determining the size of the Java heap

The size of the Java heap is selected by balatlcethree factors: the amount of application
memory in constant use, the amount of RAM memoajlable, and the length of the garbage
collection events. To select an optimum Java ls&agpsome testing is needed, which is covered
in the next sub-section. In general, a Java héaRdGBytes is good starting point because it
provides good performance for a typical SIP appice(called a Back-to-Back User Agent
application) with an average call hold time of #hreinutes. If the average call hold time or
session lifetime is less than three minutes, therheap size could be decreased. If the average
call hold time is longer than the heap size coddngreased. If each user session stores more
than 2 Kbytes of user data in the session thehéhe size will also need to be increased. A
Java heap size of 2 GBytes can be used (assunddpia JVM). When sizing the heap, it must
be ensured that the full heap resides in RAM ambisswapped to disk by the virtual memory
system.

For server applications, it is a good practiceetiotise minimum and maximum heap values to the
same value because this avoids a delay when tlaghdmp size decreases. Using different
minimum and maximum heap sizes allows an applinaiose of memory to grow or shrink.
However, reducing the heap size behaves like a aotigm event, where the application stalls
while objects are moved in the new heap to deertasheap size, etc. Itis recommended that
the minimum and maximum heap sizes be fixed asénee value for the WebSphere application
server to avoid this.

The JVM option that sets the minimum heap sizeXsi's<size> '. The JVM option that sets
the maximum heap size isXmx<size> ’. The following options would set the minimum and
maximum Java heap size to 1200 MbyteXnis12000m —Xmx1200m .

7.2.3 Partitioning the Java heap

Careful selection of the relative sizes of the agrsand tenure space areas can minimize the
application delay in two ways. An obvious appio&cto minimize the time each GC event by
tailoring the size of each area, ensuring it istootlarge. Guidelines for how large the areas can
really be are based on the amount of time the garballection events take. The
recommendation is to select the nursery and tespaee size so the time for one nursery
scavenge event and one global event take lesS0tamilliseconds most of the time. An initial
target for the scavenge garbage collection is 1#Heatonds. A target for the global garbage
collection is 350 milliseconds.

The other approach ensures that several GC evemtstdccur in the same second which limits
application processing time, even though a singlee@ent is not very large. This is illustrated
by Figure 7 where three GC events occur (two nyraed one global) within the same second.

© Copyright IBM Corporation 2009. All rights resed. 19

What is significant is that out of that entire segoonly about 150 milliseconds is available for
the application and this is too little time to pess all the queued up requests, leading to
retransmissions. Each GC event is less than 5D8anonds so a cursory review may not notice
that the closely spaced GC events do not allow gimaypplication processing time.

These closely spaced or cascading garbage cohlestients occur when: (i) a nursery scavenge
GC event begins and received messages are stoeecdkilty by the operating system or socket;
(ii) the queued up messages begin to be procesgdldy use up the available nursery space;
(iif) then a global GC event is triggered duringsthursery GC event because there isn’t enough
tenure space to promote objects; (iv) during tlebgl GC event, further messages are queued;
(v) when the global GC event finishes, another emyr&C event occurs during the processing of
the queued work. This type of activity can happien there is a very high inbound message
rate so that the nursery space is quickly useddogssing the queued messages.

These two approaches to sizing the GC areas haawgya of trade-offs between making
individual events short but having many events, thedother extreme of only having large GC
events.

0 200 400 600 800 1000 1200

Time (Ms)

— Scavenge GC
- — - Global GC

Figure 7. Closely spaced garbage collection cycles

Setting the nursery and tenure size is done withaption: -Xmn<size> ’ which sets the size

of the nursery. Values for the nursery size gdhyerange from ‘100m’ (100 Mbytes) to ‘250m’
(250 Mbytes). The size of the tenure space isutatied as the size of the Java heap, less the size
of the nursery. For example, the following sebpfions : Xms12000m —Xmx1200m —
Xmn150m establishes a Java heap size of 1200 Mbytesrsenusize of 150 Mbytes, with a
corresponding tenure space size of 1050 Mbytes)(Mtytes — 150 Mbytes).

Tuning the heap size does require running the syateder a heavy test load, monitoring the
garbage collection time, and then adjusting thesenyror tenure space. The overall steps are:

1. Examine the nursery garbage collection timeHernursery garbage collections. If the
time is too large then decrease the nursery size.

2. Count the number of nursery garbage collectibasoccur within a one second
period. If there is more than one nursery gartzadiection then increasing the nursery
size may be advantageous.

3. Measure the global collection time. If the tirm@oo large then decrease the tenure
space size by reducing the Java heap.

© Copyright IBM Corporation 2009. All rights resed. 20

4. Check to see if there is a large number of cingaGC events. If there are, then
increase the nursery size.

5. Adjust the JVM parameters, restart the appbcasierver, and rerun the workload.
Each of these steps is described using the exaeilef Figure 8

<af type="nursery" id="1078" timestamp="Aug 28 00:4 7:51 2009" intervalms="557.296">
... text deleted ...
<time totalms="80.338" />
<laf>
<con event="collection" id="9" timestamp="Aug 28 00 :47:52 2009" intervalms="63618.373">
... text deleted ...
<time totalms="322.192" />
</con>
<af type="nursery" id="1079" timestamp="Aug 28 00:4 7:52 2009" intervalms="899.301">
... text deleted ...
<time totalms="93.525" />
<laf>
<af type="nursery" id="1080" timestamp="Aug 28 00:4 7:53 2009" intervalms="799.301">
... text deleted ...
<time totalms="90.125" />
<laf>

Figure 8. Garbage collection text examples

There are four garbage collection events in Fi@mith some text removed to highlight the
parts of interest. There are three nursery ewghish are identified by the ‘type="nursery”’
label and one global event (the ‘event="collectidn”Each event records the amount of time
that the event took in the last “<time totalms=g,tavhich is the time (milliseconds) the
application was stalled. To determine the timeveen garbage collection events of different
types, the “timestamp” values need to be subtrathed‘intervalms” events cannot be used
because they are the time between events of thetgpen

Looking at the values of these events, the nuraedytenure size are good because the scavenge
GC times are below 100 milliseconds and the gleleaht is below 350 milliseconds. By
examining the timestamp values it can be seenhiaglobal GC event and subsequent nursery
GC event both occur in the same second but thigil time would only stall the application for

415 milliseconds which leaves 585 millisecondstifier application. Additionally, the third

nursery GC event, with ID of 1080, occurs in th&trecond so it does not need to be included.
In summary, the events in Figure 8 suggest thaapipdication is well tuned.

7.24 JVM settingsto avoid compactions

A JVM compaction takes a large amount of time. J¥#& tuning described here is to avoid
compactions where possible. The key JVM options) descriptions, are shown in Table 1.
The first two options are strongly recommended |evthie last option can avoid compactions
when the system experiences a sudden spike-likease in the workload.

° The main cause is the nursery-global-nursery sempieThis can be avoided by increasing the nusieeywhich
greatly reduces the probability of that third nuys8C event. There is a slight increase in thesayr GC event
duration but it is not a linear relationship sitlee nursery GC time is proportional to the numkdive objects and
not the nursery size.

© Copyright IBM Corporation 2009. All rights resed. 21

JVM Option

Required
(Y/N)

Description

-Xloaminimum<value>

Y

Set aside a portion of the Java
heap so that new, large objects will
be stored here to avoid a
compaction. A typical value
would be 0.01 which allocates 1%
of the heap to the Large Object
Area (LOA). This would be
entered as-’

Xloaminimum0.01 .

Xgc:scvNoAdaptiveTenure,scvTenur
eAge=1,stdGlobalCompactToSatisfy
Allocate

Nursery objects which survive one
garbage collection cycle will be
promoted to the tenure space on
the next garbage collection cycle|
This is based on the assumption
that if an object survives for the
time between a nursery GC
(ranging from 1 to 10 seconds),
then the object is likely to survive
for the duration of the web activity
or call. Aggressive compactions
are disabled.

-Xcompactexplicitgc

Enable compaction on a
System.gc(). In some benchmarks,
it has been found that doing a
compaction after start-up can
improve performance by
increasing data locality for
common system operations.

Tablel: Application Server JVM Tuning Recommendationsto Reduce Compaction Events

7.2.5 Additional JVM settings

There are some additional JVM options that areulsef

The option ‘verbosegc ' reports garbage collection event informationtte file
native_stderr.log. This information is extremebetul for analysis. The reader is referred to
[JeeTuning] which provides examples of examinirig tlata using some of IBM’s tools.

The option *Xlp ' enables the JVM to use large memory pages fohé&ap which makes JVM
memory access more efficient. This does requineesoperating system support and the reader
is referred to [JvmDiagnostic] for details. Usiigs option can increase capacity by 1-3%.

© Copyright IBM Corporation 2009. All rights resed. 22

A JVM network communication option for buffers isXX:MaxDirectMemorySize=<memory
size in Bytes>" is used to specify the amount of\R#at is used to buffer messages. SIP can
use a lot of buffers so it is recommended to ireedae default value of 64 MBytes. The
example “-XX:MaxDirectMemorySize=128000000" increaghe buffer size to 128 MBytes.

The last option-Xdisableexcessivegc ' can prevent an out of memory exception being
thrown if there is a lot of garbage collection aityi. This is useful if the system is experiencing
an extended spike in workload and there is a I&®©factivity. If this option is not used in this
type of circumstance, it is possible that an ounemory situation is assumed by the JVM
because much of the processing time is spent lmagarcollection activity. Please see the
[JvmDiagnostic] guide for further information.

7.2.6 Settingthe JVM options

The WebSphere Application Server administrationsotmis used to enter the JVM options.
Figure 9 shows the console page, which is arrivdxy éhe following path of menu/options:
“Application servers™> <application server name> “Java and Process Managemett”
“Process definition™ “Java Virtual Machine”. To enter the options te following:

1. Check the “Verbose garbage collection” box if yoanivthe garbage collection activity
logged. This is the same as the *-verbosegc’ aptio

2. Set the “Initial Heap Size” field to the chosene&e. This is the same as thérhs’
option.

3. Set the “Maximum Heap Size” field to the chosenphgi@ae. This is the same as the
Xmx option.

4. Set the “Generic JVM arguments” field to the valtiegcpolicy:gencon —
Xloaminimum0.01 —Xmn150m -
Xgc:scvNoAdaptiveTenure,scvTenureAge=1,stdGlobal@actil o SatisfyAllocate” for a
nursery size of 150 Mbytes.

5. Press the “OK” button at the bottom of the page.
6. Save the configuration changes.
7. Restart the application server for these changeskmeffect
If additional options are needed, they can jusadded to the string in step 4.

© Copyright IBM Corporation 2009. All rights resed. 23

pplication servers

Application servers > serverl > Process definition > Java ¥irtual Machine

Use thiz page to configure advanced Java(TM) virtual machine settings.

Configuration Runtirme
General Properties Additional Properties
Classpath

Custormn properties

Boot Classpath

O “erbose class loading
el Verboze garbage collection

[Verbose IMI
Initial heap size
1z00 MB
Marimurm heap size
1200 MEB
I- Fun HPraf

HFrof Arguments

O Debug Made

Debug arguments
|-agentlib:jdwp=transport=dt_so cket server=y,suzpend=n,address=7777

Generic IVM arquments
|-Xdisab|ee=—=cessiuegc -¥mni150m -Hgcpolicyigencon -¥goascvMoAdaptive Tenure, scw

Erecutable JAR file name

™ Dizable 21T

Crperating system name

||inl.IH

Apply | (1.4 | Reset | Cancel |

Figure9: WebSphere Consolefor Updating JVM Options

7.3 Application server tuning

The application server is the next layer in thévgaffe stack to tune. The tuning for a
WebSphere stand-alone application server (i.e.jmaftcluster) is straightforward. WebSphere
application server does have mechanisms for magagiroverload condition but they are not
covered here.

© Copyright IBM Corporation 2009. All rights resed. 24

A key WebSphere Application Server tuning paramistéine socket buffer size, for both sending
and receiving messages. This is adjusted by addisipm properties to the SIP communication
channel, as shown in Figure 10. This screen igeatiat by the following path of menu/options:
“Application servers™> <application server name> “Transport Chain™>
“SipClnboundDefaultUDP™= “UDP inbound channel (UDP 1)> “Custom properties”. The
following property names and values can be entered:

Custom property Value Description
receiveBufferSizeSocket 3000000 Receive socket buffer size, in
Bytes.
sendBufferSizeSocket 3000000 Sending socket buffer size, in
Bytes.

These values may need to be adjusted for somecapiphis but they have proven to be generally
applicable in performance stress tests.

Application servers Ll

Application servers > serwerl = Transport Chain > SIPCInboundDefaultUD P > UDP inbound channel (UDP 1) > Custom properties

Use thiz page to specify an arbitrary name and value pair. The value that is specified for the name and value pairis 3 string that can
set internal systern configuration properties,

Preferences

Mew Delete

El=IEElE

Select | Mame Value Description

“fou can adrminister the following resources:

O receiveBufferSiceSocket 3000000

O sendBufferSizeSocket 3000000

Total 2
Figure 10: SIP Channel Tuning Values

7.4 Tuningthe application

The application is the last layer in the stackutoet A brief description of the implementation of
the web voice mail SIP and HTTP application is gite those unfamiliar with JSR116 or
JSR289.

There are three key parts to the application:higk level structure, the application state
information of each user, and the application be&iram response to messages.

The high-level application structure derives frdra §SR289 specification. It consists of two
Servlets (one SIP and one HTTP) that interact tfinadhe common application session state of
the user. The threads that run in each serweinaliependent of each other. Any thread can
update and store information about a user’s regapsgtication, or SIP responses in the user’'s
application session state. The application infaromafor each user is stored in the application
session state. If high availability is enabledhthige session state is replicated so that the
application can continue even if a server fails.

© Copyright IBM Corporation 2009. All rights resed. 25

After initialization, the behavior of the applioai follows a request-response model. When
either an HTTP or SIP message is received, a gonesng method is called. A SIP message
reception results in a JSR289 method call in tlies®rviet and the associated message object is
used to navigate to the user’s application sesgtate information. Similarly with an HTTP
request’ So, in the example application, each user’s apfiin session

(SipApplicationSession) will have a single HttpSessas well as a SipSession for the soft-
phone, a SipSession for the voice mail server'sR/€dll, and a SipSession for the notifications
of subscribe/notify.

Although it is not a tuning mechanism, a generadlgline is to introduce concurrency in the
application only when it is absolutely warrantdd.the example web voice mail application, the
end of the call could be done in parallel and itilddoe very fast. However, this speed is not
needed and it introduces additional complexity beeahere would need to be synchronization
to prevent simultaneous access to the session stetiead, the call is ended in a serial fashion:
first close down the user phone call, then closerdthe voice mail server voice
communications, and then the event messaging. elinénates the need for synchronization as
well as makes diagnosing problems easier sincappkcation is easier to understand.

Where concurrency is advantageous, the Asynchroimvosation API of the Communications
Enabled Applications feature pack provides usedplabilities. The Asynchronous Invocation
API simplifies how the developer considers sessidf a single server, it is useful for
serializing access to the same SIP application@essien multiple threads are competing. In a
clustered environment, this API can redirect warlatSIP session which avoids having a central
session repository for all application servers aadng sessions migrate between application
servers. It allows work to be forwarded from opelaation server to another so that sessions
do not need to be migrated between servers for amranced interactions. For example, if a
web-service request needs to interact with a S§Bise on another application server, the
Asynchronous Invocation API is used to forward tidek to the remote SIP session.

A diagnostic tool that has proven useful is torimstent the application to print out the number
of application sessions that are outstanding @&ragic rate. This information is useful for
monitoring heap usage and correlating that withntlvaber of live users.

8 Tuning a highly available cluster

As would be expected, an HA cluster has addititunaihg related to the high availability
mechanisms, as well as the WebSphere Proxy Sefver prior discussions about the stand
alone application server tuning applies to the igppbn servers in a cluster.

1% This is done in the following manner. Each messghgt is received can navigate to an associassioseobject
that corresponds to the message type: a SIP s¢SSpession) or an HTTP session (HttpSessiorgchbf these
session objects can then navigate to the userlgcappn session (SipApplicationSession). Navigatcan proceed
in the other direction: from the user’s applicatgession to the SIP or HTTP session. For exara@#pSession
can access the HttpSession by first getting aeater to the SipApplicationSession that is then tisedference the
appropriate HttpSession. Each of these sessi@tistiias a unique identifier.

© Copyright IBM Corporation 2009. All rights resed. 26

8.1 WebSphere proxy server tuning

The proxy server tuning is different than the aggdion server because the proxy server has a
different purpose. Unlike the WebSphere applicatierver, the WebSphere proxy server has
very little long lived memory because it does ne¢thto maintain protocol information for each
user. Rather, the proxy server simply passes messdong. This affects the proxy server
tuning.

Proxy server goal: Minimize the duration of each garbage collection event. The proxy server
introduces delay for each request that passesghribu The worst case delay occurs when a
given message is delayed by both a WebSphere Bexaer GC event and a WebSphere
Application Server GC event. So, minimizing thei@dnal proxy sever delay is done by adding
a little delay to many requests rather than intoeda large delay for a small number of requests.
This satisfies the objective to minimize the potigyoof SIP retransmission. In summary, the
GC tuning for the WebSphere Proxy Server is to herg short GC times, with the trade-off
that GC events may be frequent.

This goal is achieved by the following configuratisteps:
* Minimize the overall size of the Java heap to mimerthe longest global GC event time;

» Make the nursery size much larger than the tempaieessize because a nursery GC takes
less time than a tenured GC. This works for thé®yere Proxy Server because when
a garbage collection event occurs most of the mgniothe nursery space is no longer
used so the scavenge operation is very fast;

» Keep objects in the nursery size for a long timensure that only really long lived
objects are promoted to the tenure space;

To achieve this tuning, a different set of garbegiection tuning options are used for the proxy
server, as shown in Table 2.

JVM Option Required Description
(YIN)
-Xgcpolicy:gencon Y Selects the generational gagbag

collection policy.

-Xmo160m Y Sets the tenure size to 160 Mbytes
so that tenure GC events are very
short.

-Xms650m N Sets the minimum heap size to 650

Mbytes. The maximum nursery
size is 490 Mbytes (=650 Mbytes
— 160 Mbytes).

-Xmx650m N Sets the maximum heap size to
650 Mbytes. The maximum
nursery size is 490 Mbytes (=65(

© Copyright IBM Corporation 2009. All rights resed. 27

JVM Option Required Description
(Y/N)
Mbytes — 160 Mbytes).
- Y Objects which live for at least
Xgc:scvNoAdaptiveTenure,scvTenureAge=8,st eight nursery GC cycles are
dGlobalCompactToSatisfyAllocate promoted. Aggressive
compactions are disabled.

Table2: WebSphere Proxy Server Garbage Collection Tuning

8.2 High availability WebSphere application server tuning

There is additional cluster tuning for the highialaility feature. When discussing high
availability performance, there are three systatestthat need to be considered independently:
behavior prior to a failure, behavior during adad recovery operation, and behavior after a
failure recovery operation.

During normal operation data is replicated fromheagplication server to its active backup
application server so that the backup can take tveduties of a failed application server. This
data replication has an impact on CPU, memory,retdork capacity. The additional CPU cost
is to package the replicated data, transmit ih&oldackup application server, and to unpack
replicated data that it receives. The additionahmary cost is to package the data to be
replicated (transient objects); the additional camioation buffers to transmit and receive the
replicated data; and the storage of the replicdégd. The replicated data is stored in an efftcien
binary structure. Network resources are usednd sed receive the replicated data but there is
usually enough network bandwidth so this is nobrcern.

After a failed application server’s work has beecavered by its backup, the resource usage of
the backup application server changes becausaesdadedonger being replicated. However, this
reduction in replication activity is offset by thew activity due to the sessions that have moved
over to the backup application server. This netiviég involves processing new messages for
the failed over sessions, as well as any other wwakis redirected to this backup that would
have gone to the failed server. Although memaospueces are no longer consumed for
replication of data there is additional memory ugdhe backup session data which is now
active, as well as the additional load that isad&d to the backup application server.

When a failure is being recovered, the WebSphediégtion Server takes care to not starve the
application. This is done by lazily deserializthg failed server’s session information on a
background thread. If a request is made for d@edisat has not yet been deserialized, that
session is immediately deserialized and the apic@rogresses. This approach amortizes the
cost of the failure recovery over several second$fiat the application can continue to process
the existing and new workload, with little impact.

The cost of the data replication is dependent uperguality of service (QoS) that is requested.
Replication QoS is configured via a SIP containetem property. There are three replication
QoS options:

© Copyright IBM Corporation 2009. All rights resed. 28

* Immediate replication: When a change is madeda#ssion state, this change is
immediately replicated on the backup applicatiawese This has the highest resource
usage. This is enabled by setting the propentyrfediate.replication " to “true ”

» On outgoing message replicate: When a messagetishe data is replicated. This has
intermediate resource use. This is enabled bingdtie property to
“on.outgoing.message.replication s” to “true ”

» End of service replication: All changes to appima sessions are batched up and sent when
the message processing ends. This has the Isastce usage. This is enabled by setting
the property to énd.of.service.replication "to “true ”

The default is end of service replication. Figlieis an example of enabling replication to
occur on each outgoing message.

PRICaOON Sefvers

Application servers > sipbenchmark2 1 > SIP container > Custom propertes

Usze this page to specify an arbitrary marme and value pair, The value that iz specdfied for the name and
value pair is a string that can set internal system configuration properties.

[F Prefersncas

[Mew || Delete |

Salact| Marna 3 |valua] Description
You can adrminister the following resources:

-

Total 10

on. outgoing. message. replication true

Figure11l: Custom Property to set the Replication Mode

A high availability parameter that determines théfdr capacity used for exchanging the
replicated data is the “Transport memory size”iguFe 12. As shown, the memory buffer size
that is specified is 250 Mbytes.

© Copyright IBM Corporation 2009. All rights resed. 29

fQeore Growps

Core Groups = DefaultCoreGroup
Use this page to specify the zettings for a core group.

Funtirme Configuration

General Properties

* Marme

DefaultCoreGroup

Description

Default Core Group, The default core group cannot be
deleted,

Murmber of coordinators
[1

Transport mermory size
|25III rmegabytes

Transport type

= Channel framewark

Tranzport chain
Des =

. Unicast (Deprecated)

Apply | =13 | Reset | Cancel

Figure 12: Settingthe high availability buffer size

9 Summary

Enterprises are adding near real-time communicatapabilities into existing and new
applications by combining the HTTP and the Seshidiation Protocol (SIP). This article has
reviewed the performance of a web application tisas both SIP and HTTP protocols. It
identified the various tuning parameters and preeg$or achieving optimal performance of the
WebSphere Application Server and Proxy Server.

The example web voice mail application performashemonstrate that the WebSphere
Application Server can easily satisfy the perforoegoals of converged web applications like
social networking, unified communications (i.eteigrating instant messaging, email, phone
communication, etc.), and web based self-serveéndthe example application, a single HS21
blade server’s achieved 931 converged operationsgmend which is well beyond what most

© Copyright IBM Corporation 2009. All rights resed. 30

enterprises would require. If this high level apacity is not needed then additional SIP or
HTTP applications could be deployed on the saméwee for greater efficiency.

Although a single hardware server was used fontdmreHA measurements, the performance
results can be extrapolated to additional servecailse the WebSphere Application Server
scales out horizontally to large deployments.

WebSphere Application Server high performance algento high availability configurations.
The built in high availability of WebSphere Applican Server provides excellent capacity,
achieving 349 converged operations per second §@d Hlade server. The High Availability
measurement results can also be horizontally saaletb larger deployments. However, some
care must be taken to make sure that backup sedwerst run on the same hardware as their
primary server.

Other IBM WebSphere products that were not includetiis example can enhance these
capabilities. The Communications Enabled Applmadifeature pack enables developers to
build communications enabled applications using \&@&bwidgets and services, without
requiring in-depth technical knowledge about STRis would include adding capabilities to
web applications like: click to call, co-browsiramd call notifications to web applications.

WebSphere eXtreme Scale can improve high avaitalli providing a distributed,
transactional, highly available cache which cam$ed for geographic redundancy. It can also

be used to build high throughput transaction preiogsapplications that may require web and/or

voice multi-modal interactions.

If external factors require tightening up the latemalues or having smarter management of
retransmissions then WebSphere Real-Time for Loanxhelp to make the latency more

deterministic and/or WebSphere Virtual Enterprige ase its autonomic admission controls to
guard against extreme load or Denial of Servicacit.

10 Appendix: Tuning Infor mation

The following table summarizes the tuning inforroatthat was covered in the previous

sections.
Category Command or Value Comment
Network ethtool -s <eth int> autoneg off The <eth int> is

interface card
tuning

/sbin/ifconfig <eth int> txqueuelen 2000

ethtool -s <eth int> speed 1000

ethtool -s <eth int> duplex full

ethtool -A <eth int> rx on tx on

ethtool -C <eth int> adaptive-rx off adaptive-tx of
rx-usecs 20 rx-frames 5 tx-usecs 60 tx-frames 11
ethtool -G <eth int> rx 511 rx-jumbo 255 tx 511

the name of the
interface, such
as ‘eth0’.

Linux
operating
system tuning

chkconfig nscd on

Start the name
server caching
demon.

echo 16777216 > /proc/sys/net/core/rmem_max
echo 2097152 > /proc/sys/net/core/rmem_default

© Copyright IBM Corporation 2009. All rights resed.

31

Category

Command or Value

Comment

echo 16777216 > /proc/sys/net/core/wmem_max
echo 2097152 > /proc/sys/net/core/wmem_default
echo 10000000 > /proc/sys/net/core/optmem_max
echo 4096 87380 16777216 >
/proc/sys/net/ipv4/tcp_rmem

echo 4096 65536 16777216 >
/proc/sys/net/ipv4/tcp_wmem

echo 8388608 8388608 8388608 >
/proc/sys/net/ipv4/tcp_mem

echo 400 > /proc/sys/net/unix/max_dgram_glen
echo 400 > /proc/sys/net/core/message_burst
echo 2800 > /proc/sys/net/core/mod_cong

echo 1000 > /proc/sys/net/core/lo_cong

echo 200 > /proc/sys/net/core/no_cong

echo 2900 > /proc/sys/net/core/no_cong_thresh
echo 3000 > /proc/sys/net/core/netdev_max_backlog

ulimit —n 16000

Increase the
number of file
handles to
16,000.

Add the following lines to the file /etc/modprobent :
alias net-pf-10 off
alias ipv6 off

Disable IPv6
which can slow
down
communications

Application
server JVM
option tuning

Menu path is: “Application severs> <application server name> “Java

and Process Managemenr®’ Process definitior> Java Virtual Machine.

-Xtgc:parallel -Xdisableexcessivegc -Xmn150m -
Xgcpolicy:gencon -
Xgc:scvNoAdaptiveTenure,scvTenureAge=1,stdGlobalCom
actToSatisfyAllocate —Xloaminimum0.01 —
Xcompactexplicitgc -XX:MaxDirectMemorySize=12800000

Application
server JVM
heap size
tuning

Menu path is: “Application severs> <application server name> “Java

and Process Managemenr®’ Process definitior> Java Virtual Machine.

Initial heap sizet536 MB
Maximum heap siz&536 MB

Proxy server
JVM options
tuning

Menu path is: “Application severs®> <application server name> “Java

and Process Managemenr¥ Process definitior> Java Virtual Machine.

-Xmo160m -Xgcpolicy:gencon -
Xgc:noAdaptiveTenure,tenureAge=8,stdGlobalCompactTo
atisfyAllocate -Xtgc:parallel -
XX:MaxDirectMemorySize=128000000

Proxy server
JVM heap size
tuning

Menu path is: “Application severs®> <application server name> “Java

and Process Managemenr¥ Process definitior> Java Virtual Machine.

Initial heap sizé&600 MB

© Copyright IBM Corporation 2009. All rights resed.

32

Category Command or Value Comment

Maximum heap siz650 MB

Application Menu path is: “Application Servers¥<application server name> “SIP Custom
server high container”-> “Custom properties”. properties panel
availability . S for the
. end.of.service.replication=true S
tuning application
server’s SIP
container
Menu path is: “Core Groups®> “DefaultCoreGroup”. This setting

controls the
peak amount of
dynamic
memory that can
be used for
caching the data|
replication
messages. The
default value for
this property is
50 megabytes.

Transport memory size = 250 megabytes

Application Menu path is: “Application severs> <application server name> Buffer size for
server SIPCInboundDefaultUDP> UDP inbound channel (UDP £ Custom the UDP socket.
communicatio | property.

n tuning receiveBufferSizeSocket=3000000
sendBufferSizeSocket=3000000

Table3: Summary of SIP and HTTP Tuning Parametersfor Linux

11 Resources

[CMG-Sip] C. Hrischuk, G. DeVal. "A Tutorial on SKpplication Server Performance and
Benchmarking”, Computer Measurement Group 2006.
www.cmg.org/conference/cmg2006/awards/6084. pdf

[JeeTuning] Christopher Blythe and David Hare. s€atudy: Tuning WebSphere Application
Server V7 for performance.”
http://www.ibm.com/developerworks/websphere/tecyal/f0909 _blythe/0909_blythe.html

[GcGenconhttp://www.ibm.com/developerworks/java/library/jptpava2/

[GcPerf]http://www.ibm.com/developerworks/library/i-gctraub

[Infol] “Tuning SIP servlets for Linux”
http://publib.boulder.ibm.com/infocenter/wasinfof@index.jsp?topic=/com.ibm.websphere.nd.
multiplatform.doc/info/ae/ae/tsip tunelinux.html

[JvmDiagnostic] http://www.ibm.com/developerwoiksia/jdk/diagnosis/index.html
[SIPp] Seéhttp://sipp.sourceforge.net/doc/

© Copyright IBM Corporation 2009. All rights resed. 33

[64BitJVM] “IBM WebSphere Application Server V7 @3t Performance”
https://lwww14.software.ibm.com/webapp/iwm/web/sigro?lang=en_US&source=sw-
app&S_PKG=WAS_V7_64-bit&S_TACT=109DA54W

[CEA]
http://publib.boulder.ibm.com/infocenter/wasinf@femdex.jsp?topic=/com.ibm.websphere.ceafe
p.multiplatform.doc/info/ae/ae/ccea_jsr289 overvigml

© Copyright IBM Corporation 2009. All rights resed. 34

W L A
I NS . A
L Il - I A
I I I A
L LN I e
L I I T .
I I S w
I I ' .

© Copyright IBM Corporation 2009. All Rights Resed/

The information contained in this publication i®yded for informational purposes only. While
efforts were made to verify the completeness awcdracy of the information contained in this
publication, it is provided AS IS without warrargfany kind, express or implied. In addition,
this information is based on IBM’s current prodptans and strategy, which are subject to
change by IBM without notice. IBM shall not be respible for any damages arising out of the
use of, or otherwise related to, this publicatiommy other materials. Nothing contained in this
publication is intended to, nor shall have thecftd, creating any warranties or representations
from IBM or its suppliers or licensors, or alteritige terms and conditions of the applicable
license aggement governing the use of IBddftware.

References in this publication to IBM products,greoms, or services do not imply that they will
be available in all countries in which IBM operatBsoduct release dates and/or capabilities
referenced in this presentation may change atiareydt IBM'’s sole discretion based on market
opportunities or other factors, and are not intendebe a commitment to future product or
feature availability in any way. Nothing containedhese materials is intended to, nor shall
have the effect of, stating or implying that antiattes undertaken by you will result in any
specific sales, revenue growth, savings or otrsilte

Performance is based on measurements and projectsimy standard IBM benchmarks in a
controlled environment. The actual throughput ofggenance that any user will experience will
vary depending upon many factors, including comnsitilens such as the amount of
multiprogramming in the user's job stream, thedé@figuration, the storage configuration, and
the workload processed. Therefore, no assurancbecgiven that an individual user will
achieve results similar to those stated here.

IBM, the IBM logo, WebSphere, and Rational are ¢éradrks or registered trademarks of
International Business Machines Corp., registenedany jurisdictions worldwide. Other
product and service names might be trademarksfdBother companies. A current list of
IBM trademarks is available on the Web at “Copytighd trademark information” at
www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks and logosadentarks of Sun Microsystems, Inc. in the
United States, other countries or both.

Linux is a registered trademark of Linus Torvaldshe United States, other countries, or both.

Intel is a registered trademark of Intel Corponatio its subsidiaries in the United States androthe
countries.

© Copyright IBM Corporation 2009. All rights resed. 35

