
© Copyright IBM Corporation 2009. All rights reserved.

Scalable Caching in a Java Enterprise

Environment with WebSphere eXtreme Scale

September 2009

John Stecher,

Adam Stolle,

Robert Wisniewski

© Copyright IBM Corporation 2009. All rights reserved.

Executive Summary

The paradox of completing transactions faster with bigger and bigger data sets has been solved.

IBM® WebSphere® eXtreme Scale V7 and IBM System x® hardware shattered the

performance barrier that limited application scalability by introducing a linearly scalable high

performance in-line cache to the database system. With this breakthrough new technology from

IBM, developers can rapidly build a seamless, flexible in-memory data grid that scales out as

their application scales unlocking them from being limited by the performance of the database.

This article reports a benchmark where a synchronous in-line eXtreme Scale database cache

improved client performance by 365% over direct database access. This had a peak throughput

of over 2.46 million transactions per minute. Furthermore, CPU consumption on the database

system was reduced by 75%, enabling other critical applications to use the newly freed database

capacity to improve their performance as well.

This new benchmark (called Fantasy Sports XS) simulates a world-wide, sports website where

users create and manage a fantasy sports team and update personal preferences and options. An

application of this scale and size presents significant challenge for administrators and developers

because there is a need to scale in response to client demand increases. Utilizing WebSphere

eXtreme Scale in these cases eliminates the concern of scaling the underlying database

infrastructure as the eXtreme Scale grid scales in unison with the application independently of

the database.

Three unique benchmark configurations were used to firmly prove out these conclusions. First, a

traditional OLTP topology is utilized where the application uses JPA persistence APIs to directly

access a traditional database. Secondly, an eXtreme Scale grid is introduced, with the

application accessing the grid directly, and the grid using the same JPA persistence APIs to keep

the data store updated in a synchronous manner. Finally, the advanced eXtreme Scale

asynchronous write-behind technology is used to illustrate the benefits afforded by this type of

optimization.

© Copyright IBM Corporation 2009. All rights reserved.

In-Line Data Caching with WebSphere eXtreme Scale

IBM WebSphere eXtreme Scale is a product which solves many design and implementation

patterns in the enterprise environment. eXtreme Scale acts as an elastic data grid capable of

creating a single virtualized memory space for a collection of member Java processes so that data

can be easily, quickly, and transparently accessed regardless of location. To ensure that the data

is consistent and will not be corrupted, the data is isolated and interacted with in a transactional

matter just like a database. To provide fault tolerance and self healing characteristics the data

can also be replicated in a variety of ways, which can also speed up access. All of this is

accomplished with little to no administration or management of the grid itself. For example, an

eXtreme Scale grid can dynamically expand or contract to utilize additional java processes

provided.

An eXtreme Scale grid can be very effectively utilized as a data cache for a database or other

data sources, which are generally slower to respond due to the need to access data on a hard disk.

In addition, these data sources are generally more complicated and expensive to scale beyond a

single instance and so have a limit on the total throughput that can be achieved. An eXtreme

Scale grid has no such limitation and when properly used can scale with a linear response time

without any reasonable upper bound. Applications have predictable scaling characteristics at a

predictable cost as the need for resources grows. These optimizations for the data read and write

operations significantly increase performance, sometimes by orders of magnitude. In addition,

the overall load on the data source itself is drastically reduced along with response times.

A worldwide Fantasy Sports XS application is used as a new benchmark to demonstrate how

eXtreme Scale can reduce database hardware needs while speeding up overall data access. This

benchmark simulates the user management aspects of a worldwide fantasy sports website. The

user session management is the key aspect here since game engines would handle the

visualization aspects. Common user session operations such as retrieving and changing the core

user’s data, team members and athletes of interest form the workload.

The benchmark uses eXtreme Scale as an ‘in-line cache’ which is a common usage pattern. In

this case the application retrieves and writes all data from the data source directly to and from the

eXtreme Scale grid. The grid is configured with a ‘Loader’ which implements basic primitive

operations to the data source such as create, update, delete, and get. The grid uses this

implementation to keep the data source in sync with the information being requested from and

written to the grid. By default all updates to the grid are written synchronously to the backend

data source as part of the transaction so the cache is never out of sync with the database (a

‘write-through’ configuration). Optionally, the grid can be configured to buffer changes to the

database for some period of time before asynchronously grouping all of the changes into a batch

transaction and sending them in one large transaction. Generally this large transaction is more

efficient, and additionally if a given object is updated multiple times in the asynchronous

window, only one update with the latest version of the object is eventually written to the

database. This avoidance of updates is called conflation. The buffer of updates is itself

replicated within the grid and is also fault tolerant like the data itself, so even in the case of a

container failure the database will continue to be in a coherent state. This asynchronous update

configuration is called a ‘write-behind’ cache. The write-behind optimization provides the best

© Copyright IBM Corporation 2009. All rights reserved.

performance results since the slower write operations are taken out of the client’s critical path for

the transaction.

Fantasy Sports XS

In this benchmark the user session information is stored in memory as a Java Object. This

session can either be persisted through relational mapping via the JPA APIs or simply stored into

the eXtreme Scale grid as a POJO using the eXtreme Scale ObjectMap APIs. (More information

on persistence options can be found on the WebSphere eXtreme Scale Wiki.)

The Fantasy Sports XS application can be configured in multiple modes with its baseline case to

use the traditional JPA data access model and its optional cases to be configured using the grid’s

APIs. When the application is configured to use the grid instead of the database via JPA, an

eXtreme Scale Loader is provided to the grid deployment. This loader also uses JPA to retrieve

and write data in the database, keeping it updated and retrieving any information the grid may

not have currently loaded.

Benchmark Runtime Configuration Scenarios

The scenarios which have been tested in this paper represent common deployment patterns for

applications of this type both with and without a data caching layer. They are outlined as

follows:

1. Traditional Direct Data Access Deployment

https://www.ibm.com/developerworks/wikis/display/extremescale/Home

© Copyright IBM Corporation 2009. All rights reserved.

The application simply uses JPA APIs to retrieve, manipulate and write session

information. The mapping between the user session POJO and the relational data tables

as well as associated SQL queries is accomplished using the JPA framework.

2. Synchronous In-Line Data Cache (Write Through)

The application interacts only directly with the eXtreme Scale data grid via the

ObjectMap APIs which is stored as a serialized Java object. When data is requested that

is not currently in the grid, or when data is created or written, an eXtreme Scale Loader

utilizing the JPA framework is used to then interact with the database. Any updates to

the grid are written to the database synchronously within the active transaction. The

update is only committed to the grid if a successful update to the data source is achieved.

3. Asynchronous In-Line Data Cache (Write Behind)

The application code is identical to the synchronous scenario and interacts once again

only with the eXtreme Scale data grid. Any updates or new data is written only to the

grid within the transaction itself, and the need for an update to the database is buffered in

an update queue. This is accomplished with a simple grid configuration change. Updates

are buffered for a maximum of two minutes before being written to the data.

Basic System and Software Configuration Parameters

Hardware Topology

State of the art hardware representative of what would be found in most high end high volume

websites was used for this benchmark. We selected IBM’s System x line of products because of

its performance and

reliability at all layers of a

modern IT infrastructure.

The benchmark client

hardware consisted of eight

IBM System x x3550

machines each with two Intel

x5470 3.33Ghz processors

and 16GB of RAM running

SuSE Linux 10SP2.

The hardware topology for

benchmark testing where

WebSphere eXtreme Scale

was used consisted of six

IBM System x HS22 blade

© Copyright IBM Corporation 2009. All rights reserved.

servers featuring two Intel x5570 2.93Ghz processors and 28GB RAM also running SuSE Linux

10SP2.

The database tier consisted of a single IBM System x x3850M2 with six Intel x7460 processors

and 64GB of RAM running SuSE Linux 10SP2. Backing the database system was an IBM

DS4800 disk array with 32 disks combined into a single RAID-10 storage system for optimal IO

performance.

Application Client Configuration

The application client side of the Fantasy Sports XS benchmark can be thought of as the code

that typically resides inside of a servlet displaying a rich user interface or inside of a standalone

JVM for simplified testing. The term client for the purposes of this benchmark is not the end

user that would be browsing the website from their web enabled phone or laptop; it is instead the

application code that is attached to the database or WebSphere eXtreme Scale grid.

For this benchmark case we wanted to ensure that the client was not a performance bottleneck,

hence we took the approach of using the stand alone JVM client coupled with IBM System x s

x3550 systems sporting 3.33Ghz Intel Xeon x5470 processors. Each client JVM ran eight

threads executing the client code to correspond with the eight hardware threads in the system

thus minimizing contention on shared data structures in the client code and focusing the

benchmark’s performance on the backend systems.

The application client tier was sized with an appropriate number of machines such that there

were no network bottlenecks or CPU bottlenecks during testing. In a real world deployment the

client code would be designed in the same manner for optimal performance and availability.

WebSphere eXtreme Scale Configuration

The middle tier of the configuration is the tier containing the WebSphere eXtreme Scale grid.

This tier given its use case had to use hardware with a significant amount of physical memory

capacity as well as network bandwidth to the client and database tiers. We selected IBM System

x HS22 blades with Intel x5570 2.93Ghz processors to take advantage of their memory density

as well as performance.

On each HS22 blade we ran sixteen WebSphere eXtreme Scale instances each instance having a

1GB JVM heap. This gave us the ability to fit the whole 2 million user database inside of the

grid as would be expected for optimal performance in a production environment. As the

database grew in users given WebSphere eXtreme Scales linear scalability more blades could be

added to the cluster to maintain response times.

Database Configuration

The database tier for this benchmark uses IBM’s DB2 9.7 as the backing persistent datastore for

Fantasy Sports XS. It resides on an IBM System x x3850M2 with Intel x7460 processors

© Copyright IBM Corporation 2009. All rights reserved.

running at 2.66Ghz with 64GB of RAM. Backing the physical server infrastructure is a set of

IBM DS4800 disk arrays complete with 32 disks configured for RAID-10.

The database for the Fantasy Sports XS application consists of 2 million unique users each with

1-4 Fantasy Sports Teams which each in turn have 1-10 members. This database and user load is

consistent with many of the leading fantasy sports sites in production today around the globe.

The Results

Baseline Scenario

The baseline scenario for this paper is the common case where the Fantasy Sports XS application

is developed using the JPA programming model (OpenJPA in our scenario) to access the

backend database system. As client load is ramped up against the Fantasy Sports XS website the

database machine becomes the limiting factor for performance. In this case the database dictates

how many users can be supported as the application tier can be scaled out horizontally nearly

infinitely given its stateless design, but its dependency on a single database system limits the

scalability of the overall infrastructure.

During our testing the JPA based client application running against a highly optimized DB2 9.7

database system produced very respectable throughput results with 8971.4 reads/sec (56ms

response time), 2134.6 updates/sec (79ms response time), 66.5 deletes/sec (77ms response time)

and 47.2 inserts/sec (95ms response time) which results in nearly 11209.7 transaction/sec.

The application server tier in this case was running at nearly 50% average CPU utilization with

the database tier running at 90% average CPU utilization. Adding more client load to the

application resulted in exponentially increasing response times thus the above metrics were taken

as the best possible performance the topology could yield for the JPA programming model case.

Synchronous Data Cache (Write Through)

Since our database system was the limiting factor for increasing capacity of the application and

we cannot grow that tier anymore hardware wise to support additional users, we will offload the

database by storing data into WebSphere eXtreme Scale using it as an inline cache between the

application tier and the database tier. This scenario illustrates a significant improvement of

overall throughput by over 365% from 11209.7 transaction/sec to 41019.7 transaction/sec. In

addition the load on the database is reduced by nearly 75%. The response times for read

operations went from 56ms to 10ms, a 560% improvement. Update operations improved from

79ms to 57ms, showing an improvement of 139%.

© Copyright IBM Corporation 2009. All rights reserved.

The significance of these massive performance improvements in this scenario has massive real

world implications to the simulated business. By being able to offload nearly 75% of the

database load (effectively dropping

database CPU consumption from

90% to 23% the database system

now has CPU cycles available to

support the deployment of new

applications into the business IT

infrastructure. At the same time the

performance improvements of the

Fantasy Sports XS application

being 365% faster mean that the

applications user load can now

effectively grow 3.65X without

impact on the backend database

system above and beyond the tested

23% CPU consumption this

scenario showed.

Where does this gain come from?

Most of the benefit is the offloading

of a significant amount of the read operations from the database and into the eXtreme Scale grid.

The same update, insert and delete operations are still being handled by the database and thus

data integrity is maintained on the backend system but because of the reduction in read traffic the

database is able to much more effectively process those specific transactions improving

performance.

The below table summarizes the actual individual transaction results

Scenario Baseline

Throughput

(tx/sec)

Baseline

Response Time

(ms)

Write Through

Throughput

(tx/sec)

Write Through

Response Time

(ms)

Percent

Improvement

with WXS

Read 8971.4 56 32843.7 10 366%

Update 2124.6 79 7765.6 57 366%

Insert 47.2 77 199.7 47 423%

Delete 66.5 95 210.7 55 315%

Asynchronous Data Cache (Write Behind)

This scenario further improves overall end client response time over the synchronous data cache

deployment by 79% or more for data manipulation scenarios (update/insert/delete) while holding

constant the performance of the read scenarios. The load on the database is reduced by a nearly

80% over the traditional JPA application deployment, and 50% reduction when compared to the

© Copyright IBM Corporation 2009. All rights reserved.

write through cache. The update operation response time dropped significantly from 79ms to

25ms over the traditional deployment.

The further significant

performance improvements

in this case are due to the

removal of the database

update from the critical path

of those transactions with

the update occurring only in

the WebSphere eXtreme

Scale data grid. Database

utilization dropping even

further when compared to

the write-through

deployment is due to the

conflation of multiple

updates of a single object

into a single object within

the buffering window as

well as the greater

efficiency of large batched

transactions over individual

write operations for each

data object.

In the case of Fantasy Sports XS, where the application can tolerate an interval of time without

updates to data elements being pushed out to the actual database, significant gains in response

time performance can be realized by taking advantage of the asynchronous write-behind feature.

Conclusion

In this paper we presented benchmark testing showing that a synchronous in-line WebSphere

eXtreme Scale database cache improved the Fantasy Sports XS scenario performance by 365%

over a standard JPA based implementation. This allowed the existing infrastructure with the

simple addition of the WebSphere eXtreme Scale layer to grow from supporting an already

impressive 672,500 transactions per minute up to nearly 2.45 million transactions per minute.

When you couple this impressive throughput performance improvement with the fact that the

load on the database system was reduced by nearly 75% allowing for other applications to utilize

the freed up cycles on the database you can easily see how injecting WebSphere eXtreme Scale

into your IT infrastructure can reduce your TCO significantly and enable your existing backend

systems to support significantly more applications.

© Copyright IBM Corporation 2009. All rights reserved.

Moving beyond using WebSphere eXtreme Scale as a pure inline cache with synchronous write-

through behavior to an asynchronous write-behind cache with a 2-minute asynchronous window

performance was further improved above the synchronous case with response times dropping

another 1.79X giving the end user of the Fantasy Sports XS application cutting edge

performance no matter the load applied to it while allowing them the opportunity to tune the

environment to meet their applications data consistency needs.

Overall WebSphere eXtreme Scale represents a significant leap forward in technology allowing

administrators and developers to expand their existing infrastructure significantly while not

having to increase the size of their database systems. In fact most will see reductions in database

CPU and IO consumption allowing for significantly expanded IT operations.

© Copyright IBM Corporation 2009. All rights reserved.

© Copyright IBM Corporation 2009. All Rights Reserved

The information contained in this publication is provided for informational purposes only. While efforts
were made to verify the completeness and accuracy of the information contained in this publication, it is
provided AS IS without warranty of any kind, express or implied. In addition, this information is based on
IBM’s current product plans and strategy, which are subject to change by IBM without notice. IBM shall
not be responsible for any damages arising out of the use of, or otherwise related to, this publication or
any other materials. Nothing contained in this publication is intended to, nor shall have the effect of,
creating any warranties or representations from IBM or its suppliers or licensors, or altering the terms

and conditions of the applicable license agreement governing the use of IBM software.

References in this publication to IBM products, programs, or services do not imply that they will be
available in all countries in which IBM operates. Product release dates and/or capabilities referenced in
this presentation may change at any time at IBM’s sole discretion based on market opportunities or
other factors, and are not intended to be a commitment to future product or feature availability in any
way. Nothing contained in these materials is intended to, nor shall have the effect of, stating or implying
that any activities undertaken by you will result in any specific sales, revenue growth, savings or other
results.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled
environment. The actual throughput or performance that any user will experience will vary depending
upon many factors, including considerations such as the amount of multiprogramming in the user's job
stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no
assurance can be given that an individual user will achieve results similar to those stated here.

IBM, the IBM logo, DB2, and WebSphere are trademarks of International Business Machines Corporation
in the United States, other countries or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United
States, other countries or both.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product and service names may be trademarks or service marks of others.

	Scalable Caching in a Java Enterprise Environment with WebSphere eXtreme Scale
	September 2009
	John Stecher,
	Adam Stolle,
	Robert Wisniewski
	The scenarios which have been tested in this paper represent common deployment patterns for applications of this type both with and without a data caching layer. They are outlined as follows:
	Traditional Direct Data Access Deployment
	The application simply uses JPA APIs to retrieve, manipulate and write session information. The mapping between the user session POJO and the relational data tables as well as associated SQL queries is accomplished using the JPA framework.
	Synchronous In-Line Data Cache (Write Through)
	The application interacts only directly with the eXtreme Scale data grid via the ObjectMap APIs which is stored as a serialized Java object. When data is requested that is not currently in the grid, or when data is created or written, an eXtreme Scal...
	Asynchronous In-Line Data Cache (Write Behind)
	The application code is identical to the synchronous scenario and interacts once again only with the eXtreme Scale data grid. Any updates or new data is written only to the grid within the transaction itself, and the need for an update to the databas...

	Basic System and Software Configuration Parameters
	Basic System and Software Configuration Parameters
	Hardware Topology
	State of the art hardware representative of what would be found in most high end high volume websites was used for this benchmark. We selected IBM’s System x line of products because of its performance and reliability at all layers of a modern IT in...
	The benchmark client hardware consisted of eight IBM System x x3550 machines each with two Intel x5470 3.33Ghz processors and 16GB of RAM running SuSE Linux 10SP2.
	The hardware topology for benchmark testing where WebSphere eXtreme Scale was used consisted of six IBM System x HS22 blade servers featuring two Intel x5570 2.93Ghz processors and 28GB RAM also running SuSE Linux 10SP2.
	The database tier consisted of a single IBM System x x3850M2 with six Intel x7460 processors and 64GB of RAM running SuSE Linux 10SP2. Backing the database system was an IBM DS4800 disk array with 32 disks combined into a single RAID-10 storage syste...
	Application Client Configuration
	WebSphere eXtreme Scale Configuration
	Database Configuration

	The Results
	Baseline Scenario
	Synchronous Data Cache (Write Through)
	Asynchronous Data Cache (Write Behind)

	Conclusion

