
The premiere software and product delivery event.
June 6–10 Orlando, Florida

A Practical Guide to
Securing the SDLC

Ryan Berg
Sr. Architect Security
Research, Rational
ryan.berg@us.ibm.com
ASC-1340A

Why are we here ?

I had some time to fill and this topic looked interesting

Application security is the latest <insert newest internet related
buzzword here>

Heard there was free food

I thought this was a different session but am too embarrassed to
leave

The “monster at the end of the book”

Application security is more visibleApplication security is more visible……

Managers & Developers Are Being Asked Difficult Questions

• What regulations and standards are required?
PCI, HIPAA, FISMA

• What confidential data is at risk?

• What risk threshold is tolerable?

Copyright Copyright ©© 2009 Ounce Labs, Inc. All rights reserved.2009 Ounce Labs, Inc. All rights reserved.

Combating Data Theft Supporting Compliance Securing the SDLCSecuring Outsourcing

Web App Vulnerabilities Continue to Dominate
49% of all vulnerabilities are Web application
vulnerabilities
SQL injection and Cross-Site Scripting are
neck-and-neck in a race for the top spot

90% of injection attacks are attributed to SQL-
related attacks
Automated toolkits continue to flourish in 2009

SQL injection attacks continue to grow up 50%
in Q1 2009 vs. Q4 2008 and nearly doubling in
Q2 vs. Q1

Is this really necessary?Is this really necessary?

• What’s being done isn’t working

• Security isn’t always included
Software Engineer vs. Software Security Engineer

Coding guidelines vs. secure coding guidelines

• “Build Security In” – sounds deceptively simple
Starts with training. This class is a good place to start.

Requires a commitment to change. If we agree that what we are doing isn’t working than it should be
obvious that we need to change what we are doing.

• Policy is not a four letter word
Requirements, Requirements, Requirements

Developers need security requirements, if not given don’t assume, demand.

• Have a plan before you need one

Copyright Copyright ©© 2009 Ounce Labs, Inc. All rights reserved.2009 Ounce Labs, Inc. All rights reserved.

Copyright Copyright ©© 2009 Ounce Labs, Inc. All rights reserved.2009 Ounce Labs, Inc. All rights reserved.

Create consistent
processes, policies,
and a culture of
improved securityDevelopers must

identify all
vulnerabilities in the

code, then remediate
the greatest risks first

Consistency

Prioritize
remediation

Provide the
whole picture

Follow the path to secure coding Follow the path to secure coding

Large-scale design flaws
typically trump individual

coding errors

Sometimes the answers canSometimes the answers can onlyonly be found in the source codebe found in the source code
• Does the application enforce or even

use appropriate access controls?

• In what ways and in what places
does the application attempt to
connect to the network?

• Is there malicious code or back
doors in your applications?

• Can user inputs or outputs can
corrupt your system ?

• Is customer credit card information
encrypted?

• Is sensitive data being stored
outside of your database?

WhereWhere to look for vulnerabilitiesto look for vulnerabilities

Copyright Copyright ©© 2009 Ounce Labs, Inc. All rights reserved.2009 Ounce Labs, Inc. All rights reserved.

• Buffer overflows,
result from
mismanagement
of memory

• Race conditions,
result from call
timing mismatches

• Authentication
• Encryption
• Use of insecure external code
types
• Validation of data input and
application output

HowHow to look for vulnerabilitiesto look for vulnerabilities

• Manual Code Review
Time-consuming, expensive, error
prone

• Penetration Testing
Useful but can only discern a small
sub-set possible errors

• Automated Testing Tools

Copyright Copyright ©© 2009 Ounce Labs, Inc. All rights reserved.2009 Ounce Labs, Inc. All rights reserved.

“The most effective approach is to
integrate source code vulnerability
scanners into the application
development, integration and test
process.” (Gartner)

An Interesting AsideAn Interesting Aside

From Microsoft’s SDL http://msdn2.microsoft.com/en-
us/library/ms995349.asp

• “However, one finding will come as no surprise to long-time
security researchers: penetration testing is not the way to
achieve security. Penetration testing is an element of the
Final Security Review (FSR) for a major software release, but
product team activities throughout the entire lifecycle focus
on threat modeling, code reviews, the use of automated
tools, and fuzz testing rather than penetration testing. The
latter measures are much more thorough in preventing or
removing security bugs than the classic ad hoc penetration
testing.”

That wasnThat wasn’’t really helpfult really helpful

• It is much more effective to look at the places in the SDLC that you can reduce risk.
Requirements

Design

Implementation

Test

Deployment

RequirementsRequirements

• Identifying security requirements are an integral part of the software design process, and the
most neglected

• Just as good project requirements requires use cases, good security requirements require
abuse cases

• Must be able to identify all potential assets at risk and outline the required and acceptable
mitigation requirements.

Example of a bad requirement:
• All sensitive data needs to be encrypted

Example of a better requirement:
• All sensitive data needs to be encrypted both in transit and at rest using no less than 256 bit AES encryption,

see addendum A for the list of items that are considered sensitive for this application.

Design: Policy DefinitionDesign: Policy Definition
• It is important that organizations begin to formalize secure coding guidelines.

• Avoid the temptation to “grade” an organization, development manager, or
individual contributor’s, ability to deliver secure code without letting them know
what is on the test.

• Policy, in the case of security requirements, is to remove ambiguity as much as
possible.

• Examples
New development projects using C/C++ must avoid the use of all following api’s: gets(),
strcpy(),unbouded use the printf and sprintf family of calls etc.

All data transferred from web clients that contain customer specific information must be
transported using SSL, and if any personal information is stored using cookies the entire
application needs to be SSL enabled.

What Details: Threat ModelingWhat Details: Threat Modeling
• Threat modeling is an important aspect in developing good security requirements as well as designing

good mitigation strategies

• Aspects of threat modeling should occur in several phases of the SDLC
During Requirements

Phase 1: Identifying assets at risk and business objectives
Phase 2: Generate use and abuse cases

During Design

Phase 3: Identify components responsible for controlling access to and from assets identified in Phase1.
Phase 4: Identify the threats posed by Phase 2 against the components outlined in Phase 3.

During Implementation & Test

Phase 5: Review application to identify weaknesses against the threats identified in Phase 4 about and review
mitigation and remediation efforts.

• Additional resources
http://msdn2.microsoft.com/en-us/security/aa570411.aspx

http://www.projects.ncassr.org/threatmodeling/

Design: Security Design ReviewDesign: Security Design Review

• The security design review is a critical step in the SDLC. The primary goal of this
step is to verify that the policies identified in the requirements and phases 1-4 of
the threat modeling exercise have the appropriate mitigation strategies identified
in the application architecture.

• Identify any gaps, this may include identifying new threats.

• This should be done as early in the process as possible, for an agile development
process every feature iteration that impacts security as identified by the
requirements needs to perform this step.

Application Vulnerability AssessmentApplication Vulnerability Assessment

• Think of this as the verification step. This is to verify that all policy requirements and
threats have the appropriate mitigation in the final product.

• This also enables unintended or new threats to have another chance of being found
prior to deployment.

• Leverage tools as much as possible to reduce costs.

WhatWhat To Look For: The ChecklistTo Look For: The Checklist

Security-related functions

Input/Output validation and encoding
errors

Error handling and logging
vulnerabilities

Insecure Components

Coding errors

“Detecting and correcting security
vulnerabilities early in the
application development life cycle,
prior to deployment and
operations, results in significant
risk and cost reduction.” Gartner

SecuritySecurity--related Functionsrelated Functions

Weak or Nonstandard Cryptography
Non-Secure Network

Communications
Access Control Vulnerabilities

MD5 is no longer considered secure for highly sensitive and business critical
applications, SHA1 is also considered broken though no practical attacks have been
identified.

“Microsoft is banning certain cryptographic functions from new computer code, citing increasingly
sophisticated attack”, http://www.eweek.com/article2/0,1759,1859751,00.asp

The following example was from a content management systems password reset
function.

/**

* Generates a random 10 characters password.

*

* @return the generated password.

*/

public static synchronized String generate()

{

return Long.toString(Math.abs(random.nextLong()) % MAX_RANDOM_LENGTH, Character.MAX_RADIX);

}

The biggest failure in encryption is not
often the algorithm used but more often
than not it is the failure to properly
identify what data needs to be
encrypted and making sure that the
appropriate encryption is always
utilized.

Input/Output Validation and Encoding ErrorsInput/Output Validation and Encoding Errors

Have we not learned to NEVER trust the user, all input needs to be validated?

What is the problem with the code below?

SQL Injection Vulnerabilities
Cross-Site Scripting Vulnerabilities
OS Injection Vulnerabilities
Custom Cookie/Hidden Field

Manipulation

It is not all about SQL Injection
and XSS (though those are still a
huge problem).

public void doGet(HttpServletRequestreq, HttpServletResponse res)
throws IOException, ServletException

{
String pageName = getParameter(“pageName”) ! =null ? “”:

getParameter(“pageName”);
log.info("Requestfor page: "+pageName);
String forward = "/"+pageName+"?“+req.getQueryString();
RequestDispatcher disp = req.getRequestDispatcher(forward);
disp.forward(req, res);

}

Error Handling & Logging VulnerabilitiesError Handling & Logging Vulnerabilities

Consider the following code example:

public void doPost(HttpServletRequestreq, HttpServletResponse res)
throws IOException, ServletException

{
RequestDispatcher disp = null;

String user = getParameter(“user”) ! =null ? “”: getParameter(“user”);
String pwd = getParameter(“pwd”) !=null ? “”: getParameter(“pwd”);
if(!validUser(user,pwd)) {
log.warn(“Invalidlogin received from: “+ user + “password:” +pwd);
disp = req.getRequestDispatcher(“/jsp/invalidLogin.jsp”);

} else {
log.info(“Successfullogin attempt from: “ + user);
disp = req.getRequestDispatcher("/jsp/loginSuccess.jsp”);

}
disp.forward(req, res);

}

Insecure Error Handling
Insecure or Inadequate Logging

There really are two major
issues with logging:

1. Lacking a consistent
logging framework.

2. Logging the wrong data or
breaking company policy
and regulations (think: PCI)

Insecure ComponentsInsecure Components

Developers need to understand where the utilities provided by the framework begin and end when
related to security. Consider the following code from a .NET web application.

<head>
<title>Registration Form Please Sign-In</title>

</head>
<%String loader = Request.Params[“loader”]; %>
<body onload = “<%=loader%>”>
…

</body>

Even if you have Microsoft’s page validation enabled (the default) you are still vulnerable.

As we focus our efforts to fix the low hanging fruit, the attacks are moving to the application layer.

There are many undocumented APIs that exist as public interfaces in the JDK or the .NET
framework

Many of these interfaces may bypass internal member data validation that if used directly could
crash the JVM (or lead to more serious vulnerabilities http://www.blackhat.com/presentations/win-usa-
03/bh-win-03-schoenfeld.pdf

Unsafe Native Methods
Unsupported API
Improper Use of 3rd Party Application

Frameworks

Coding ErrorsCoding Errors

Use of native libraries (System.loadLibrary, [DllImport]) can also
expose your web application to this more traditional style of attack.

What’s wrong with this code?

protected void doGet(HttpServletRequestrequest,HttpServletResponse response) {
InputStreamReaderinStr = new InputStreamReader(request.getInputStream());
BufferedReaderin = new BufferedReader(inStr);
while(in.readline()!=null) {
//process the request
…

}
}

Buffer Overflow
Vulnerabilities

Format String
Vulnerabilities

Denial of Service Errors
Race Conditions

Most modern day web
applications are immune to
the more traditional
“overflow” style of attacks,
but anytime the user is able
to control data that reaches
an internal system the
possibility exists.

http://documents.iss.net/whitepapers/IBM_X-Force_WP_final.pdf

Follow The Path: The ChecklistFollow The Path: The Checklist

• Security-related functions
• Weak or Nonstandard Cryptography

• Non-Secure Network Communications

• Application Configuration Vulnerabilities

• Access Control Vulnerabilities

• Input/Output validation and encoding
errors

• SQL Injection Vulnerabilities

• Cross-Site Scripting Vulnerabilities

• OS Injection Vulnerabilities

• Custom Cookie/Hidden Field
Manipulation

• Error handling and logging
vulnerabilities

• Insecure Error Handling

• Insecure or Inadequate Logging

• Insecure Components
• Unsafe Native Methods

• Unsupported Methods

• Improper use of 3rd Party

Application Frameworks

• Coding errors
• Buffer Overflow Vulnerabilities

• Format String Vulnerabilities

• Denial of Service Errors

• Race Conditions

Where?
Baking security into requirements: gathering security
requirements/needs, abuse cases, and threat modeling

Baking security into design: security design patterns, security
reviews and threat modeling

Baking security into development: secure coding guidelines, tools,
and audit

Baking security into testing: negative testing, thinking like the bad
guy and “red teams”

Baking security into deployment: secure deployment guidelines,
secure update mechanisms (patching) and much, much more!

When?

• As often as is practical
– Prioritize the most critical

applications
– Separate legacy from new

development
– Customer facing vs. internal

Improve existing development process, not create new one

Maximize security impact of personnel and technologies

Use models as initial framework and tailor to individual
organization

Select model with consideration for future requirements

How: Objectives for Practical Security

27

Guidelines and best
practices for secure
software in design,
development and

deployment

Provides structure,
execution and accountability

for software and solution
development projects

Supply Chain Security

Secure
Engineering
Framework

Continually improve the
security characteristics of
software offerings through

Key Performance Indicators

Continuous
Security

Improvement

Common
Development

Process

Builds and Maintains trusted
relationships with suppliers,

distribution channels,
import/export and customer

support

IBM Secure Engineering Initiative

Link to Security Engineering Framework:
http://www.redbooks.ibm.com/redpieces/abstracts/redp4641.html?Open

Sample Secure Development Framework

Set security requirements: A manager or security expert defines
vulnerabilities and how to judge criticality

Verify fixes: The code is rescanned to assure vulnerabilities are
eliminated.

Remediate flaws: Vulnerabilities are eliminated by rewriting code,
removing flaws, or adding security functions.

Triage results: Security-minded staff study results to prioritize
remediation workflow.

Scan source code: The analysis tool is run against the target
application to pinpoint vulnerabilities.

Configure analysis: The source code analysis tool is customized to
address internal policies.

Core ResponsibilitiesCore Responsibilities

Benefits
• Developer-only

implementation
• Low initial investment

Challenges
• Scalability
• Redundancy of work
• Reporting/tracking progress
• Enforcing policy
• Expertise requirements

http://xkcd.com/303/

Model I: Independent

Benefits
• Developer-only

implementation
• Low initial investment

Challenges
• Scalability
• Redundancy of work
• Reporting/tracking progress
• Enforcing policy
• Expertise requirements

Best Practices
• Establish centralized security

requirements
• Conduct security reviews among

developers
• Establish a security-capable

developer as a mentor

Model I: Independent

QA/Release Engineer Team

QA/Release Engineer Team
• Configure scanner for

build integration
• Sync code at each

milestone
• Scan entire app with new

milestone components
• Provide raw data to

development

Developers
• Triage analysis results
• Perform necessary

remediation
• Verify fixes before

checking code back in

Managers
• Refine security

requirements
• Track development

progress and review
assessment data

Model II: Distributed

Benefits
• Deployment flexibility
• Integration with build

environment
• Policy enforcement
• Central reporting

Challenges
• Scalability
• Redundancy of work
• Expertise requirements

QA/Release Engineer Team

Model II: Distributed

Benefits
• Deployment flexibility
• Integration with build

environment
• Policy enforcement
• Central reporting

Challenges
• Scalability
• Redundancy of work
• Expertise requirements

Best Practices
• Scan early in life cycle
• Assign developers specific

components to review
• Establish a security-capable

developer as a mentor

Model II: Distributed

Security Analysis Team
• Configure scanner for

build integration
• Retrieve code for

analysis
• Scan entire application
• Triage results
• Assign vulnerabilities to

developers
Managers

• Refine security
requirements

• Track development
progress, review
vulnerability data,
and monitor
remediation results

Developers
• Perform necessary

remediation
• Check in code

Model III: Centralized

Benefits
• Deployment flexibility
• Separation of duties
• Central management

• Long-term value

Challenges
• Resource requirements
• High-level commitment

Model III: Centralized

Benefits
• Deployment flexibility
• Separation of duties
• Central management
• Long-term value

Challenges
• Resource requirements
• High-level commitment Best Practices

• Plan process with development and security
• Focus on training and guidance for security team
• Integrate with existing technologies

Model III: Centralized

Benefits Independent
Model

Distributed
Model

Centralized
Model

Effectively reduces
security vulnerabilities

- +

Centralized management
and remediation strategy

+

Centralized analysis
configuration

Cross-enterprise
reporting of results and
progress

+

Supports distributed
development teams

-

Supports small
development and audit
projects

+

Prioritized remediation
assigned to developers

Low level of management
commitement

Scales to large
applications and
development teams

+

To learn more about using IBM’s secure engineering
framework

http://www.redbooks.ibm.com/redpieces/abstracts/redp4641.
html?Open

For More Information…

4
0

4
1

Daily iPod touch giveaway

Complete your session surveys online each day
at a conference kiosk or on your Innovate 2010 Portal!

Each day that you complete all of that day’s session
surveys, your name will be entered to win the daily
IPOD touch!

On Wednesday be sure to complete your full conference evaluation
to receive your free conference t-shirt!

SPONSORED BY

4
2

© Copyright IBM Corporation 2010. All rights reserved. The information contained in these materials is provided for informational purposes only, and is provided AS IS without warranty of any kind,
express or implied. IBM shall not be responsible for any damages arising out of the use of, or otherwise related to, these materials. Nothing contained in these materials is intended to, nor shall have
the effect of, creating any warranties or representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement governing the use of IBM
software. References in these materials to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates. Product release dates and/or capabilities
referenced in these materials may change at any time at IBM’s sole discretion based on market opportunities or other factors, and are not intended to be a commitment to future
product or feature availability in any way. IBM, the IBM logo, Rational, the Rational logo, Telelogic, the Telelogic logo, and other IBM products and services
are trademarks of the International Business Machines Corporation, in the United States, other countries or both. Other company, product,
or service names may be trademarks or service marks of others.

www.ibm.com/software/rational

