
© 2009 IBM Corporation

NMAC01 -Transformation Design Patterns

Transformation Design Patterns

Sandeep Katoch
sakatoch@in.ibm.com

NMAC01

© 2009 IBM Corporation

IBM Rational Software Conference 2009

NMAC01 - Transformation Design Patterns

Agenda

Quick Review
Model Driven Development
Rational MDD Platform
Model to Model Transformations
Designing Model to Model Transformations with Mappings

Transformation Design Patterns
Reference Filter
One to Many
Filling the Gaps
Ask the User
Copy a Reference
Chain

IBM Rational Software Conference 2009

NMAC01 - Transformation Design Patterns

Model-Driven Development

What is model-driven development (MDD) ?
Technical Definition:

Development with models as the primary artifacts from which efficient implementations
are generated by the application of transformations.
Models in the application domain are the primary focus when developing new software
components.
Code, executables and other target domain artifacts are generated by using
transformations that are designed by using input from modeling experts and target
domain experts.

Another way to look at it?
When applied properly, MDD leverages abstractions to accelerate and improve the
quality of individual and group software development.
To reap these benefits, use model-based technologies to provide abstractions and
accelerators for solution delivery.

IBM Rational Software Conference 2009

NMAC01 - Transformation Design Patterns

MDD Approach – Few Key Ideas

Abstraction
Focus on relevant details

In MDD, we use abstraction to enable us to work with a logical view of our
application, focusing on the functionality of the system without being
concerned with implementation details

Abstraction can be used to model applications at
Different Levels
– Analysis / Design / Implementation
Perspectives
– Security / User Interface

4

IBM Rational Software Conference 2009

NMAC01 - Transformation Design Patterns

MDD Approach – Few Key Ideas

Automation
Modeling is a valuable technique in itself, but manually synchronizing models
and code is error prone and time consuming
Automation is the main characteristic that distinguishes MDD from other
approaches that use modeling
MDD is concerned with automating the development process so that any
artifact, which can be derived from information in a model, is generated

5

IBM Rational Software Conference 2009

NMAC01 - Transformation Design Patterns

MDD Approach – Few Key Ideas

Automation – Profiles

6

IBM Rational Software Conference 2009

NMAC01 - Transformation Design Patterns

MDD Approach – Few Key Ideas

Automation - Transformations
Automate generation of Artifacts from Models
This includes the generation of code and also the generation of more detailed
models, for example generating a design model from an analysis model

7

IBM Rational Software Conference 2009

NMAC01 - Transformation Design Patterns

MDD Approach – Few Key Ideas

Transformations - Layered Modeling
Each successive layer adds further detail to the solution, answering questions that were
left open in the layer above and constraining the implementation of the application

Transformation

Transformation

8

IBM Rational Software Conference 2009

NMAC01 - Transformation Design Patterns

MDD Approach – Few Key Ideas

Automation - Patterns
Best practice approaches to common design problems
Automate the creation and the modification of model elements
within a model to apply a given software pattern

Factory Method
Define an interface for creating an object, but let subclasses
decide which class to instantiate.

Abstract Factory
Provide an interface for creating families of related or
dependent objects without specifying their concrete
classes.

9

IBM Rational Software Conference 2009

NMAC01 - Transformation Design Patterns

MDD Approach – Process

There the two distinct types of activities in the MDD process
Framework Development

Develop Profiles, Patterns, Transformations

Application Development
Modeling the Application using Profiles & Patterns
Apply Transformations to generate artifacts

There is no magic to MDD
Someone must come up with a set of modeling conventions that are
suitable for the software under development
Someone must also develop transformations that can automate the
generation of code from models that follow these conventions

10

IBM Rational Software Conference 2009

NMAC01 - Transformation Design Patterns 11

IBM Rational Software Conference 2009

NMAC01 - Transformation Design Patterns

Rational MDD Platform

Rational Modeling tools provide a set of flexible technologies that can be
used to implement “MDD”

Set of supporting technologies for managing and manipulating models
Support authoring of various forms of patterns

Transformation framework
Model2Model transformations
Model2Text transformations
Model operative (in place) pattern (MoP) authoring for UML models

Support authoring of various forms of domain specific modeling languages
UML-based DSL tool authoring
Custom DSL tool authoring

Future technologies for executable models

These technologies can be used together in various ways to address a
huge variety of problems

IBM Rational Software Conference 2009

NMAC01 - Transformation Design Patterns

Model To Model Transformations

Model to model transformations (from WIKIPEDIA)

The notion of model transformation is central to Model Driven Engineering. A model
transformation takes as input a model conforming to a given metamodel and produces as
output another model conforming to a given metamodel. If the source and target
metamodels are identical the transformation is called endogeneous. If they are different
the transformation is called exogeneous. A model transformation may also have several
source models and several target models. One of the characteristics of a model
transformation is that a transformation is also a model, i.e. it conforms to a given
metamodel. This facilitates the definition of Higher Order Transformations (HOTs), i.e.
transformations taking other transformations as input and/or transformations producing
other transformations as output.

IBM Rational Software Conference 2009

NMAC01 - Transformation Design Patterns

Rational Transformation Framework

It is a framework for managing and
customizing transformations.

It provides a default transformation
engine.

It supports a UI and multiple services:
Managing installed transformations
Managing transformation configurations
Managing transformation extensions
Chaining transformations; for example,
Model2Model with Model2Text
Supporting headless transformations
Integrating transformations with Eclipse
build

The transformation framework has the
following features:

IBM Rational Software Conference 2009

NMAC01 - Transformation Design Patterns

Model to Model Transformations

Transformation frameworks
Rational Transformation Framework (RTF) from IBM Rational

Since 6.0
Forms the basis for built-in transformations
– UML-to-Java, UML-to-C++, UML-to-C# …
Allows users to author new transformations

Rational Transformation Mapping Framework (RTMF) from IBM Rational
Introduced in 7.0

IBM Rational Software Conference 2009

NMAC01 - Transformation Design Patterns

Model to Model Transformations: RTF

extractor

transform

rule

rule

extractor

rule

input model output model

A transform is an ordered set of
rules, content extractors, and
nested transforms

A content extractor traverses the
input model and collect objects to
be transformed

A rule creates or updates objects in
the output model

IBM Rational Software Conference 2009

NMAC01 - Transformation Design Patterns

Model to Model Transformations: RTMF

Visual construction of RTF transformations
Design transformations by mapping between input and output metamodel types
Generation of Java source code for RTF transformations

Input models
Ecore (includes UML models, profiles, and libraries) – typically loaded from workspace

Generated output models
In-memory Ecore

Post processing options
Merge model with existing model – the default behavior
Persist model (overwriting existing model if one with same uri exists)
Pass model as input to another transformation (not mutually exclusive with merge/persist)

IBM Rational Software Conference 2009

NMAC01 - Transformation Design Patterns

Model to Model Transformations: Example

18

IBM Rational Software Conference 2009

NMAC01 - Transformation Design Patterns

Mappings:
Mapping Model = set of Mapping Declarations

Mapping Declaration = set of Mappings

Mapping = relationships between inputs and outputs
Type (move, submap, custom) conveys how the mapping should be
implemented when transformation source code is generated

IBM Rational Software Conference 2009

NMAC01 - Transformation Design Patterns

Mappings: Move

Create a move mapping when the input and output attributes are compatible primitive
types; for example, String, int, boolean

When transformation source code is generated a rule is defined; this rule copies the
contents of the specified input attribute of the current input object to the specified output
attribute of the current output object

A move mapping can have a guard condition associated with it, thus making the rule
execution optional

IBM Rational Software Conference 2009

NMAC01 - Transformation Design Patterns

Mappings: Submap

Create a submap mapping when the input and output attributes are complex types; for
example, Model, Package, Class.

When transformation source code is generated a content extractor is defined; this content
extractor passes the contents of the specified input attribute of the current input object to the
transform that was generated from the referenced mapping declaration.

referenced mapping declaration

IBM Rational Software Conference 2009

NMAC01 - Transformation Design Patterns

Mappings: Custom

Create a custom mapping when a move or submap mapping is insufficient.

The transformation author supplies the code that computes the value for the output
feature by using the values of input feature(s) of the current input object.

You can specify Java
source code directly in the
mapping model or you can
provide the name of a Java
class that contains the
custom code.

IBM Rational Software Conference 2009

NMAC01 - Transformation Design Patterns

Mappings: Submap Filters and Customizations
Input Filter

Subset the collection of input objects that the referenced mapping declaration will process
Default: all objects in the input collection

Output Filter
Decide which generated object will be used to resolve a reference
Default: first compatible object generated from input object by specified mapping declaration

Custom Extractor
Generate the collection of objects that the referenced mapping declaration will use as input
Default: all objects in mapped input feature of current input object

Custom Feature
Specify the feature of the output object that the referenced mapping declaration will modify
Default: mapped output feature

Custom Output
Specify the output object that the referenced mapping declaration will modify
Default: current output object

IBM Rational Software Conference 2009

NMAC01 - Transformation Design Patterns

Model to Model Mappings: Example

24

IBM Rational Software Conference 2009

NMAC01 - Transformation Design Patterns

Pattern: Reference Filter

Problem
Need to create a reference to an output object of a particular type that was generated from
a specific input object, but there’s multiple output objects of different types to choose from

Example

Design

Generated Implementation

yes no

IBM Rational Software Conference 2009

NMAC01 - Transformation Design Patterns

Pattern: Reference Filter

Solution
Filter types via mapping declarations

Strategy
Submap mapping specifies mapping declaration that generates a particular type of object

Consequences
Filtering is symmetric with mapping solution for object creation
Second level of filtering might be required if more than one object of same type created

IBM Rational Software Conference 2009

NMAC01 - Transformation Design Patterns

Pattern: Reference Filter Example

27

IBM Rational Software Conference 2009

NMAC01 - Transformation Design Patterns

Pattern: One to Many

Problem
Multiple related output objects must be generated from a single input object

Example

Design Generated Implementation

generated relationship references

other objects generated from the

same input object

IBM Rational Software Conference 2009

NMAC01 - Transformation Design Patterns

Pattern: One to Many
Solution

Propagate input object to multiple mapping declarations

Strategy
Submap mappings specify an element, instead of a feature of element, as their input

Consequences
Separation of concerns (into multiple mapping declarations) simplifies mapping solution
Recursive application of the pattern can make the solution harder to maintain

IBM Rational Software Conference 2009

NMAC01 - Transformation Design Patterns

Pattern: One to Many Example

30

IBM Rational Software Conference 2009

NMAC01 - Transformation Design Patterns

Pattern: Filling the Gaps

Problem
Output model has structures that don’t directly correspond to anything in the input model

Example
Design Generated Implementation

IBM Rational Software Conference 2009

NMAC01 - Transformation Design Patterns

Pattern: Filling the Gaps
Solution

Redirect output to objects other than the current target container

Strategy
Custom submap mappings can specify the output object that will be used (by the
transform that is generated from the referenced mapping declaration)

IBM Rational Software Conference 2009

NMAC01 - Transformation Design Patterns

Pattern: Filling the Gaps

Consequences
Specification of the target container is isolated from the referenced mapping
declaration, and so the population of the target container can still be specified in the
normal way with mappings (via the referenced mapping declaration)
Custom code must be provided to create instances of some objects

IBM Rational Software Conference 2009

NMAC01 - Transformation Design Patterns

Pattern: Filling the Gaps Example

34

IBM Rational Software Conference 2009

NMAC01 - Transformation Design Patterns

Pattern: Ask the User

Problem
Output model is dependant on information that’s not contained in the input model

Example
Design Generated Implementation

Which naming

convention to use?

IBM Rational Software Conference 2009

NMAC01 - Transformation Design Patterns

Pattern: Ask the User

Solution
Obtain the additional information from the transformation context object

Strategy
Define transformation specific properties and have the user assign values to those
properties programmatically or via the Transformation Configuration Editor

IBM Rational Software Conference 2009

NMAC01 - Transformation Design Patterns

Pattern: Ask the User

Consequences
Supplying information via properties is simpler then supplying via auxiliary models
Complex properties can require custom GUI for specifying values

Transformation Configuration Editor

Properties tab

Retrieve property

value from

transformation context

IBM Rational Software Conference 2009

NMAC01 - Transformation Design Patterns

Pattern: Ask the User Example

38

IBM Rational Software Conference 2009

NMAC01 - Transformation Design Patterns

Pattern: Copy a Reference

Problem
A reference to an external object (an object that is contained in a model that is not being
transformed) needs to be propagated from the input model to the output model

Example

Design Generated Implementation

copy reference

IBM Rational Software Conference 2009

NMAC01 - Transformation Design Patterns

Pattern: Copy a Reference
Solution

Use a submap mapping that specifies an empty (or ignorable) mapping declaration

Strategy
When the target of a submap mapping is a reference, the specified mapping declaration is
only used (at transformation development time and transformation execution time) to ensure
type safety and assist with reference resolutions; consequently, any mappings in the
specified mapping declaration will be ignored. Intra-model references are copied if no
corresponding object was generated.

Consequences
No need to define mappings for types that will be referenced, but not contained
Transformation will create empty objects for instances of types with empty mapping
declarations when the occurrence is by containment rather than reference

IBM Rational Software Conference 2009

NMAC01 - Transformation Design Patterns

Pattern: Copy a Reference

41

IBM Rational Software Conference 2009

NMAC01 - Transformation Design Patterns

Pattern: Chain
Problem

Output model is input for other transformations

Example

Model to Model
Design Generated ImplementationTransient Model

Model to Text

IBM Rational Software Conference 2009

NMAC01 - Transformation Design Patterns

Pattern: Chain

Solution
Add rules that chain to other transformations

Strategy
Add instances of ChainRule or JETRule to PostProcessing rules of the RootTransformation -
a class which instantiates the top level (Main) transform of the generated transformation

Consequences
Generated in-memory (optionally persisted) model can easily be passed to other
transformations, usually with no special adaptation for those transformations required
Custom, transformation specific, properties can require extensions to standard chain rules

IBM Rational Software Conference 2009

NMAC01 - Transformation Design Patterns 44

IBM Rational Software Conference 2009

NMAC01 - Transformation Design Patterns

© Copyright IBM Corporation 2009. All rights reserved. The information contained in these materials is provided for informational purposes only, and is provided AS IS without warranty of any kind,
express or implied. IBM shall not be responsible for any damages arising out of the use of, or otherwise related to, these materials. Nothing contained in these materials is intended to, nor shall have
the effect of, creating any warranties or representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement governing the use of IBM
software. References in these materials to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates. Product release dates and/or capabilities
referenced in these materials may change at any time at IBM’s sole discretion based on market opportunities or other factors, and are not intended to be a commitment to future product or feature
availability in any way. IBM, the IBM logo, Rational, the Rational logo, Telelogic, the Telelogic logo, and other IBM products and services are trademarks of the International Business Machines
Corporation, in the United States, other countries or both. Other company, product, or service names may be trademarks or service marks of others.

45

IBM Rational Software Conference 2009

NMAC01 - Transformation Design Patterns

Backup

46

IBM Rational Software Conference 2009

NMAC01 - Transformation Design Patterns

Example solution: LogicalDataModel to Java beans

Create two transformations, and transform in two steps:
From a UML model that has the LogicalDataModel profile applied to it, create an instance of an Ecore model for
Java beans.
From an Ecore model for Java beans, create a Java project and populate it with Java bean source code.

Why do this in two steps?
The best practices for authoring model-to-text transformations suggest the following steps:

Harvest the templates from an exemplar project. For example, harvest the templates from a Java bean
reference project.
Construct a model that contains the information that is required to instantiate the templates. For example,
construct an Ecore model for Java beans.

Different requirements were used to design the LogicalDataModel profile and the Ecore Java bean model.
These different requirements often lead to disparities between the models, which are typically resolved by inserting
an additional transformation step.
You can reuse the transformations independently. For example, you can reuse the Ecore-model-to-Java-beans
transformation in many other contexts.

IBM Rational Software Conference 2009

NMAC01 - Transformation Design Patterns

Designing Model to Model Transformations: Mappings
The following factors contribute to the complexity of transformation authoring:

The inherit complexity in the input and output metamodels and their APIs
The relationships of interest between the input and output metamodels
The transformation framework elements, including the engine, languages, supporting tools, and APIs

Learning the transformation framework is not the goal of the transformation author, but it often
becomes the main task

The framework complexity and abstraction level impacts the productivity of experts and novices
Complexity is a common problem for transformation frameworks:

XSLT with XPath
Query/View/Transformation (QVT) operational or relational transformation language with Object
Constraint Language (OCL)

Mappings simplify transformation authoring so that the author can focus on the problem and
not the tooling required to implement the solution

IBM Rational Software Conference 2009

NMAC01 - Transformation Design Patterns

Designing Model to Model Transformations: Example

Sketch of a design: mapping LogicalDataModel things to Java bean model things

get the bean project name and
namespace from the model

find all packages that contain classes
with the Entity stereotype

only interested in classes with
the Entity stereotype

property is not multi-valued or derived

property is multi-valued but not derived

property is derived

IBM Rational Software Conference 2009

NMAC01 - Transformation Design Patterns 50

