
IBM Software
Rational

Technical White Paper

Close encounters of the
third kind
A look at the prevalence of client-side JavaScript
vulnerabilities in web applications

Contents

1 Executive summary

2 Technical details

7 Summary

8 Vulnerability disclosure

Executive summary
In the past ten years, many whitepapers, research articles, and blog
posts have been published on the subject of server-side web application
vulnerabilities such as SQL injection, Cross-site scripting, and HTTP
response splitting. In addition, several projects such as the WASC Web
Hacking Incident Database1 or the WASC Statistics2 projects have tried
to estimate the incidence of such issues in the real world. On the other
hand, there is a dearth of information and statistics on the incidence of
client-side JavaScript™ vulnerabilities in web applications, even though
these vulnerabilities are just as severe as their server-side counterparts.
We suspect that the main reason for this lack of information is that
client-side vulnerabilities are harder to locate, and require deep knowl-
edge of JavaScript and the ability to perform code review for HTML
pages and JavaScript files.

As Web 2.0, AJAX applications and rich internet applications (RIAs)
become more common, client-side JavaScript vulnerabilities will prob-
ably become more relevant, and we foresee a rise in the amount of
such issues being exploited by malicious hackers.

This whitepaper presents the results of a research recently performed
by the IBM® Rational® application security group into the prevalence
of client-side JavaScript vulnerabilities. For this research, we used a
new IBM technology called JavaScript Security Analyzer (JSA), which
performs static taint analysis on JavaScript code that was collected from
web pages extracted by an automated deep web crawl process. This
kind of analysis is superior to and more accurate than regular static
taint analysis of JavaScript code, as it includes the entire JavaScript
codebase in its natural environment: fully rendered HTML pages and
the browser’s Document Object Model (DOM).



2

IBM Software Technical White Paper
Rational

The research used a sample group of approximately 675 web-
sites, consisting of all the Fortune 500 companies and another
175 handpicked websites, including IT, web application 
security vendors, and social networking sites. In order to
avoid damage to the sites or interference with their regular
behavior, we used a non-intrusive web crawler, similar to 
that of a web search engine, which retrieved approximately
200 web pages and JavaScript files per site from the applica-
tion into a repository. These pages were then analyzed offline
for client-side JavaScript vulnerabilities, using the JavaScript
Security Analyzer, concentrating on two main types of issues:
DOM-based Cross-site scripting, and Open redirects. 
The results of our research were quite disturbing: about 
14 percent (98 sites) of the 675 sites suffer from many severe
client-side JavaScript issues, which could allow malicious
hackers to perform attacks such as:

● Infect users of these sites with Malware and viruses.
● Hijack users’ web sessions and perform actions on their

behalf.
● Perform Phishing attacks on users of these sites.
● Spoof web contents

The troubling fact about these statistics is that most organi-
zations have no efficient process or automated solution to
assist them with the task of locating these types of issues.

Our research also showed that 38 percent of the vulnerable
sites suffered from these vulnerabilities as a result of using
third party JavaScript code such as:

● Marketing campaign JavaScript snippets.
● Flash embedding JavaScript snippets.
● Deep linking JavaScript libraries for Adobe® Flash and

AJAX applications.
● Social networking JavaScript snippets.

Of the 98 vulnerable sites, 92 sites (94 percent) suffered from
DOM-based cross-site scripting issues, whereas only 11 sites
(11 percent) suffered from open redirects. The total amount
of DOM-based cross-site scripting issues found was 2370,
while only 221 open redirects were found.

Lastly, based on the dataset that we analyzed, we may extrap-
olate that the likelihood that a random page on the internet
contains a client-side JavaScript vulnerability is approximately
one in 55.

We would like to stress the fact that our research concen-
trated on only two issue types (DOM-based cross-site script-
ing and Open redirects), and was performed using the first
version of the JavaScript Security Analyzer technology. Our
analysis was run on a relatively small number of web pages,
and was performed without digging deeply into each site 
(for example, no credentials were used to log in to the sites).
We are quite certain that a more thorough web crawl and a
longer list of client-side JavaScript issues to look for would
reveal significantly more security vulnerabilities.

Technical details
In order to understand the difficulties involved in assessing
web applications for client-side JavaScript issues, we must
first understand how these types of issues differ from server-
side web application vulnerabilities.

In 2005, Amit Klein, a distinguished security researcher, pub-
lished a whitepaper called “DOM Based Cross Site Scripting
or XSS of the Third Kind.”3 The paper discussed a unique
variant of Cross-site scripting which, unlike “Stored” and
“Reflected” Cross-site scripting, did not rely on user input
being sent to the application and then reflected back in a 
web page, but instead exploited the fact that the vulnerable
HTML page used information from JavaScript objects such
as document.URL, document.location or document.referrer,
all of which could be controlled by a malicious attacker in
some way.



3

IBM Software Technical White Paper
Rational

The paper presented the following vulnerable 
example HTML page, with the URL address: http://www.vulnerable.site/welcome.html

<HTML>

<TITLE>Welcome!</TITLE>

Hi

<SCRIPT>

var pos=document.URL.indexOf(‘name=’)+5;

document.write(document.URL.substring(pos,document.URL.length))

</SCRIPT>

<BR>

Welcome to our system

…

</HTML>

According to the original paper, a typical access to 
this web page would be via the following URL: 
http://www.vulnerable.site/welcome.html?name=Joe
However, if this web page is retrieved via the following mali-
cious URL: http://www.vulnerable.site/welcome.html?name=
<script>alert(document.cookie)</script>
A Cross-site scripting condition occurs.

The whitepaper then described how this Cross-site scripting
vulnerability works:

“The victim’s browser receives this link, sends an HTTP request to
www.vulnerable.site, and receives the above (static!) HTML
page. The victim’s browser then starts parsing this HTML
into DOM. The DOM contains an object called document,
which contains a property called URL, and this property is
populated with the URL of the current page, as part of DOM
creation. When the parser arrives to the JavaScript code, it
executes it and it modifies the raw HTML of the page. In
this case, the code references document.URL, and so, a part
of this string is embedded at parsing time in the HTML,
which is then immediately parsed and the JavaScript code
found (alert(…)) is executed in the context of the same page,
hence the XSS condition.”4

The whitepaper also discussed how this third kind of Cross-
site scripting could be used to mount attacks that evade
server-side detection and prevention mechanisms, such as
web application firewalls, by using the HTML fragment
identifier (#), a fact that makes this type of vulnerability 
particularly dangerous.

Many security experts believe5 that the task of locating client-
side JavaScript issues such as DOM-based Cross-site scripting
is a daunting one, often requiring that a penetration tester
perform thorough code review of both the HTML and the
JavaScript source code that is included with it. In addition,
many believe that current automated methods for performing
dynamic and static security analysis of web applications 
fall short, and are incapable of accurately locating most
client-side JavaScript issues.

For our research we used a new technology, developed by the
IBM Rational application security group, which is available as
part of IBM Rational AppScan® Standard Edition software
v8.0.6 This technology is called JavaScript Security Analyzer
(JSA), and works in the following way:



4

IBM Software Technical White Paper
Rational

JSA goes over all URLs visited by the web crawler of
Rational AppScan Standard Edition software, one by one. For
each URL, JSA saves the entire HTTP response stream. JSA
then looks for JavaScript entry points in the current visited
URL, and applies a set of JavaScript-specific taint analysis
rules. These rules include specifications of source, sink, and
sanitizer functions. JSA reports on data flows from source to
sink that do not go through a sanitizer. JSA reports on six dif-
ferent issue types. Issues reported by JSA appear in Rational
AppScan Standard Edition software. Trace information for
each issue is displayed in the issue information pane in
Rational AppScan Standard Edition software.

Note that JSA runs entirely on the local machine, pulling 
visited URLs from the current scan, and performing no 
communication with the site at all. This makes it possible to
run JSA on existing scan files, even if the scanned host is not
available. The engine of JSA uses a sophisticated taint analy-
sis algorithm, and is based on a static analysis platform devel-
oped by IBM research.

Modern websites, which use Web 2.0 and AJAX, often gener-
ate HTML and JavaScript code on the fly. This means that
standard static code analyzers cannot fully scan the source
code and locate client-side JavaScript issues, since the source
code itself does not yet include the entire HTML and
JavaScript code. On the other hand, because the input for 
the assessment done by JSA includes both the fully rendered
HTML and the JavaScript code (both extracted by deep
crawling of the website), client-side issues can be detected
with superior accuracy.

In essence, JSA enjoys the best of both dynamic and static
analysis, amalgamating the two approaches, in order to accu-
rately assess JavaScript code in its natural environment.

For this research, we used a sample group of 675 websites,
including all 500 of the Fortune 500 companies, plus 
175 handpicked websites including IT security companies,
web application security companies, social networking sites

and other popular websites. We retrieved approximately 
200 pages and JavaScript files per site, using a non-intrusive
web crawling process that only follows HTML links, and
executes JavaScript code in each page to find dynamically
generated links and simulate real user interaction with the
site, which is necessary for AJAX-type sites. To avoid damage
to or any non-standard interaction with the sites, our web
crawler did not fill out any HTML forms, did not log in to
the application, and did not submit any additional HTTP
requests to the sites. In essence, our web crawler merely 
performed an indexing of each application similar to that of
web search engines.

Each application was tested for two main client-side
JavaScript issues: DOM-based Cross-site scripting, and Open
redirects7 a vulnerability which allows a malicious attacker to
force the victim’s browser to automatically redirect to a site
he/she owns, and which can be used for Phishing purposes.

Our research found that of the 675 websites analyzed, 
98 (14.5 percent) were infested with DOM-based Cross-site
scripting and open redirects (Figure 1).

Vulnerable sites

Not vulnerable sites

14.5%

85.5%

Figure 1: Percentage of sites vulnerable to client-side JavaScript issues



2370

221

11

92

DOM-based XSS

Sites Vulnerable

Total Issues

Open Redirect

1200

1000

800

600

400

200

0

5

IBM Software Technical White Paper
Rational

Another interesting piece of information was that out of 
the 98 vulnerable sites, 38 percent suffered from a vulnerabil-
ity introduced by a third-party JavaScript code snippet
(Figure 2). These snippets were included for adding one of
the following capabilities:

● Marketing campaign JavaScript snippets.
● Flash embedding JavaScript snippets.
● Deep linking JavaScript libraries for Flash and AJAX 

applications.
● Social networking JavaScript snippets.

Snippets of this kind are quite common in web applications
these days, and we see a growing use of such third party
JavaScript code, especially in Web 2.0 and AJAX web applica-
tions. Moreover, web developers often add these snippets
blindly, without performing any security verification on
them—they are unaware of the hazards they introduce to
what could have been a reasonably secure application.

Figure 3: Distribution of vulnerability types (DOM-based Cross-site
Scripting vs. Open redirects)

In-house written JavaScript code

3rd party JavaScript code

62%

38%

Figure 2: Vulnerable third party JavaScript code vs. in-house written code

Looking at the distribution of vulnerability types (Figure 3),
we see that of the 98 vulnerable sites, 92 (94 percent) 
suffered from DOM-based Cross-site scripting issues, and
only 11 (11 percent) suffered from Open redirects. The total
amount of DOM-based Cross-site scripting issues that were
found was 2370, versus only 221 Open redirects.

In total, our scan included 169,443 web pages, out of which
90,929 were unique. Out of the unique pages, we have found
that 1659 web pages had a verified client-side JavaScript vul-
nerability, which means that the approximate likelihood for a
random web page on the internet to contain a client-side
JavaScript vulnerability is one in 55.



6

IBM Software Technical White Paper
Rational

In order to validate each of the issues found, and to avoid false positive results, we used the trace information provided by JSA,
and manually verified each vulnerability. Below (Figure 4) you can see an example of such JavaScript trace information of a real
vulnerability found during our research:

Figure 4: JavaScript taint analysis trace information

The example above is quite common. As can be seen, hacker-controlled data is first used in line #42, through the usage of the
document.URL object, and is later used in the HTML code in line #1504. The various steps of the malicious data flow can also
be observed.



7

IBM Software Technical White Paper
Rational

Summary
Our research, which ran on a modest-sized sample group of
675 websites, showed that client-side JavaScript issues such as
DOM-based Cross-site scripting and Open redirects are far
more common than previously thought. Moreover, as 
Web 2.0 and AJAX design patterns that rely on untrusted
third party JavaScript code gain popularity, it is likely that
client-side security issues will become more and more 
common.

We suggest that the dearth of accurate statistics on the preva-
lence of such issues in public discussions, projects, and
whitepapers on web application vulnerabilities is due to their
complex nature and the difficulty involved in manually or
automatically locating them. However, our research has
demonstrated a new automated and accurate approach for
locating client-side JavaScript issues, by amalgamating two
separate security analysis approaches: static taint analysis of
JavaScript code, and deep dynamic web crawling of running
web applications. Our approach harnesses the best of both
techniques to locate vulnerabilities in web applications with
precision.

Vulnerability disclosure
IBM has notified the third party JavaScript vendors whose
code was found by our research to contain vulnerabilities
about the severe issues found by IBM and offered assistance
in solving them.

About the authors
Ory Segal, security products architect and IBM Rational
AppScan product manager
Ory Segal is a leading expert in web application security and
an experienced product manager with more than 12 years of
security and research experience. Ory is responsible for
researching technologies and recommending strategic 
directions for IBM Rational’s application security product
line. Ory holds a degree in computer science from the 
Open University of Israel, and recently received an 
IBM Outstanding Technical Achievement Award. Ory is 
also an officer of the Web Application Security Consortium
(WASC).

Omri Weisman, software development manager
Omri Weisman is a software development manager in IBM.
For the past nine years, Omri has been leading software
development projects in the field of application security and
vulnerability assessment. In his current position Omri man-
ages the Static Analysis Group in IBM Rational, responsible
for building technologies for detecting security vulnerabilities
through code scanning. Omri holds a B.Sc. in mathematics
and computer science from the Ben Gurion University.

Adi Sharabani, cross-Rational security strategy and
architecture
Adi Sharabani is in charge of the cross-Rational security
strategy. As part of his role, Adi is responsible for leading,
designing, and deploying overall security processes within the
Rational development groups. Adi was formerly head the
IBM Rational Application Security Research, responsible for
research activities on web application security. Adi holds a
B.A. in physics and in mathematics (both cum laude) from
the Tel Aviv University and was a researcher at the
University’s Astrophysics Lab

Yair Amit, security and research group manager,
Rational
Yair Amit is the manager of the Rational Application 
Security and Research group. Yair manages technological 
and security research and is responsible for the security 
content of IBM Rational’s application security product line.
Yair is recognized for his rich web and network security 
background; his research has found numerous security 
vulnerabilities and has been presented in various security
events over the years. Yair holds a double major B.A. degree
in computer science and life sciences with specialization in
Bioinformatics (both summa-cum laude) from the Tel-Aviv
University.

Lotem Guy
Lotem Guy is a senior security researcher at the Rational
Application Security and Research group. Lotem is responsi-
ble for researching new web application vulnerabilities, per-
forming application security audits and developing security
related features for the Rational AppScan products family.
Lotem holds a B.A. in computer science and computational
biology from the Hebrew University in Jerusalem.



Please Recycle

For more information
To learn more about IBM Rational AppScan products, 
contact your IBM representative or IBM Business 
Partner, or visit: 
ibm.com/software/rational/offerings/testing/
webapplicationsecurity

Additionally, financing solutions from IBM Global Financing
can enable effective cash management, protection from tech-
nology obsolescence, improved total cost of ownership and
return on investment. Also, our Global Asset Recovery
Services help address environmental concerns with new, 
more energy-efficient solutions. For more information on
IBM Global Financing, visit: ibm.com/financing

© Copyright IBM Corporation 2010

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

Produced in the United States of America
December, 2010
All Rights Reserved

IBM, the IBM logo, ibm.com, Rational, and AppScan are trademarks or
registered trademarks of International Business Machines Corporation 
in the United States, other countries, or both. If these and other
IBM trademarked terms are marked on their first occurrence in this
information with a trademark symbol (® or ™), these symbols indicate
U.S. registered or common law trademarks owned by IBM at the time
this information was published. Such trademarks may also be registered
or common law trademarks in other countries. A current list of
IBM trademarks is available on the web at “Copyright and trademark
information” at ibm.com/legal/copytrade.shtml

Adobe, Flash, and the Flash logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States and/or
other countries.

Java and all Java-based trademarks and logos are trademarks or
registered trademarks of Oracle and/or its affiliates.

Other company, product, or service names may be trademarks or service
marks of others.

References in this publication to IBM products or services do not imply
that IBM intends to make them available in all countries in which
IBM operates. The information contained in this documentation is
provided for informational purposes only. While efforts were made to
verify the completeness and accuracy of the information contained in
this documentation, it is provided “as is” without warranty of any kind,
express or implied. In addition, this information is based on IBM’s
current product plans and strategy, which are subject to change by
IBM without notice. IBM shall not be responsible for any damages
arising out of the use of, or otherwise related to, this documentation or
any other documentation. Nothing contained in this documentation is
intended to, nor shall have the effect of, creating any warranties or
representations from IBM (or its suppliers or licensors), or altering the
terms and conditions of the applicable license agreement governing 
the use of IBM software.

1 Web Application Security Consortium. Web Hacking Incidents 
Database (WHID). http://projects.webappsec.org/Web-Hacking-
Incident-Database

2 Web Application Security Consortium. WASC Statistics Project.
http://projects.webappsec.org/Web-Application-Security-Statistics

3 Klein, Amit. 2005. DOM Based Cross Site Scripting or XSS of the
Third Kind. http://www.webappsec.org/projects/articles/071105.shtml

4 Klein, Amit. 2005. DOM Based Cross Site Scripting or XSS of the
Third Kind. http://www.webappsec.org/projects/articles/071105.shtml

5 Open Web Application Security Project. OWASP Testing Guide:
Testing for DOM-based Cross site scripting (OWASP-DV-003).
http://www.owasp.org/index.php/Testing_for_DOM-based_
Cross_site_scripting_(OWASP-DV-003)

6 Rational AppScan Standard Edition. http://www-01.ibm.com/software/
awdtools/appscan/standard/

7 MITRE. CWE-601: URL Redirection to Untrusted Site (‘Open
Redirect’). http://cwe.mitre.org/data/definitions/601.html

RAW14252-USEN-00

http://www.ibm.com/legal/copytrade.shtml
http://projects.webappsec.org/Web-Hacking-Incident-Database
http://projects.webappsec.org/Web-Hacking-Incident-Database
http://projects.webappsec.org/Web-Application-Security-Statistics
http://www.webappsec.org/projects/articles/071105.shtml
http://www.webappsec.org/projects/articles/071105.shtml
http://www.owasp.org/index.php/Testing_for_DOM-based_Cross_site_scripting_(OWASP-DV-003)
http://www.owasp.org/index.php/Testing_for_DOM-based_Cross_site_scripting_(OWASP-DV-003)
http://www-01.ibm.com/software/awdtools/appscan/standard/
http://www-01.ibm.com/software/awdtools/appscan/standard/
http://cwe.mitre.org/data/definitions/601.html
http://www.ibm.com/software/rational/offerings/testing/webapplicationsecurity
http://www.ibm.com/software/rational/offerings/testing/webapplicationsecurity
http://www.ibm.com/financing
http://ibm.com/software/rational

	Untitled
	Close encounters of thethird kind
	A look at the prevalence of client-side 
	Contents
	Executive summary
	Technical details
	Summary
	Vulnerability disclosure
	About the authors
	For more information




