
IBM WebSphere Business Connection

Web Services Advanced Topics
Version 1.1.1

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Notices” on
page 27.

Second Edition (December 2002)

This edition applies to Version 1, Release 1, Modification 1, of IBM® WebSphere® Business Connection (5724-D26) and
to all subsequent releases and modifications until otherwise indicated in new editions.

IBM welcomes your comments. You can send them to the following address:

IBM Canada Ltd. Laboratory
Information Development
8200 Warden Avenue
Markham, Ontario, Canada L6G 1C7

Include the title and order number of this book, and the page number or topic related to your comment.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Advanced Topics 1
CrossWorlds-to-RPC sample 1

Calling general-purpose Java Web services . . . 1
SOAP message styles 3
Web Services Gateway messages. 6
SOAP connector limitations 6

The RPC Sample Scenario 6
Installing the RPC service in WebSphere 7
Reviewing the Java code for the Web service . . 7
Installing the sample CrossWorlds code 7
Reviewing the business objects 8
Reviewing the deployment descriptor file. . . . 9
Running the RPC sample 9

Routing filters and audit logs 13
Using a routing filter 13
Deploying and configuring a filter. 16
Using the Business Connection Solution Manager
Audit Log 17

Source Code for the RPC Sample
Service 19

Notices 27
Programming interface information 28
Trademarks and service marks 29

© Copyright IBM Corp. 2002 iii

iv Web Services Advanced Topics

Advanced Topics

In the CrossWorlds(R) Sample document, you saw an example of how one IBM(R)

CrossWorlds collaboration, using the SOAP connector, called a Web service that
was enabled as another CrossWorlds collaboration. In this document, you will see
how to install and use a Business Connection sample in which the SOAP
Connector is used to invoke a Java(TM)-based, non-CrossWorlds Web service.

This document addresses run-time activities and pertains to both Windows(R) and
UNIX platforms.

Because Java-based, non-CrossWorlds services are typically based on the remote
procedure call (RPC) model of Web services, this sample is referred to as the
CrossWorlds-to-RPC sample.

CrossWorlds-to-RPC sample
Some Web service and SOAP messaging concepts will be discussed, in this section,
to give you an understanding of how the CrossWorlds-to-RPC sample works and
how it differs from the CrossWorlds-to-CrossWorlds proxy service sample.

Full discussion of Web service and related technologies is beyond the scope of this
document. For more depth, you should consult outside references that are available
on the Web and in reference books. A good starting point on the Web is the IBM
DeveloperWorks(TM) Web Services Zone found at http://www-
106.ibm.com/developerworks/webservices/.

Calling general-purpose Java Web services
The sample you have worked with so far has dealt with a symmetric situation
where a CrossWorlds-supplied service is called using the CrossWorlds SOAP
Connector, as shown in the following illustration:

© Copyright IBM Corp. 2002 1

Collaboration Collaboration

External Connector

Server Access Interface

Connector Connector

SOAP Connector

SOAP
message

Java proxy class

Application Server

Both enterprise systems have CrossWorlds artifacts

In general, it is not possible to use the CrossWorlds SOAP connector to send a
message to any Web service available on the Internet. There are limitations on the
ability of the SOAP connector to form messages from business objects. These
limitations are not apparent in the CrossWorlds-to-CrossWorlds case because
CrossWorlds code handles both ends of the conversion needed:
business-object-to-SOAP conversion at the sender, and SOAP-to-business-object
conversion at the receiver.

However, it is useful to be able to call services that you have developed with
tooling such as WebSphere(R) Application Developer. If you are the developer of
these services, you can control their interfaces and modify their deployment in a
way that will permit the SOAP connector to invoke them. Private Web services
such as these allow you to connect from your collaborations to code that might not
be reachable from the collaboration otherwise. For example, if you have an EJB
whose services you want to use from within a collaboration, an option is to wrap
the EJB services with a Web service and use the SOAP connector to call the
service.

2 Web Services Advanced Topics

SOAP message styles
One of the differences between the CrossWorlds-to-CrossWorlds Web-service model
and the general-purpose Web-service scenario is the style of SOAP messaging that
is employed. There are two styles of SOAP messages:
v CrossWorlds-to-CrossWorlds uses the document style form of SOAP messaging.

SOAP document-style messages are well suited to typical business-to-business
interactions. A request message is sent as a single document contained in the
SOAP message envelope. The receiver of the message is expected to know how
to process the document and provide an appropriate response, possibly
asynchronously.
A SOAP-enabled application server receives document-style requests via the
messagerouter URL.

v Most generally available Web services (including Web services created using
WebSphere Application Developer version 4.1) use the RPC-style of SOAP
messaging.
SOAP RPC-style messages mimic a method call in that message parts
corresponding to method parameters are present in the SOAP message body.
The receiver of the message expects a certain number, type, and ordering of
message parts, just as a method call requires a certain parameter list when it is
called. A synchronous response is provided by the service, and there may be
only one message part in the response envelope.
A SOAP-enabled application server receives RPC-style requests via the rpcrouter
URL.
The following illustration shows a document-style message arriving at the
messagerouter URL and an RPC-style message arriving at the rpcrouter URL.

Document-style RPC-style

Application
server

Service
• Includes code to
parse contents of
SOAP message

messagerouter

SOAP
message body

Application
server

Service
• Expects a certain
number and order
of message parts

rpcrouter

SOAP
message part

SOAP message going to messagerouter (document-style) or rpcrouter (RPC-style)

A SOAP connector example
For direct CrossWorlds-to-CrossWorlds connectivity, the SOAP connector creates a
document-style SOAP message. This message is sent to the messagerouter URL of
the application server that hosts the CrossWorlds proxy class. An example
document-style message sent from the SOAP connector is shown below:

Advanced Topics 3

<?xml version=’1.0’ encoding=’UTF-8’?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV=“http://schemas.xmlsoap.org/soap/envelope/”
xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance” SOAP-
ENV:encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
xmlns:xsd=“http://www.w3.org/2001/XMLSchema”>
<SOAP-ENV:Header>
<hns0:affiliate xmlns:hns0=“http://www.ibm.com/wbc”>
<DestIDIdentifier>stevesh</DestIDIdentifier>
<DestIDType>PartnerName</DestIDType>
</hns0:affiliate>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
<ns1:m_BCT_DocStyleTest xmlns:ns1=“urn:ibmwsgw#BCT_DocStyleTest_Retrieve”>
<child> <field1>true</field1>
<field2>1</field2>
<field3>1.1</field3>
<field4>1E2</field4>
<field5>string1</field5>
<field6>2002-05-14T19:26:00Z</field6>
<field7>long text 1</field7>
</child>
</ns1:m_BCT_DocStyleTest>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Notice the bold part of the message. This is where the CrossWorlds data handler
places the data fields from the generic business object in the SOAP message. If you
look at the data for the fields, you have some sense of their data type, but there is
nothing to tell the service that handles the message anything about the data types.

This message will be read by the messagerouter servlet, and the contents of the
SOAP-Env:Body will be passed to the service whose ID is named in the Body
namespace of the message (urn:ibmwsgw#BCT_DocStyleTest_Retrieve). The
method specified by the Body name of the message Body will be called for this
service ID (that is, method name m_BCT_DocStyleTest will be called).

For document-style services, the service methods all have the same parameter list.
One of the parameters is the SOAP Envelope. The messagerouter creates an
instance of org.apache.soap.Envelope using the message contents. It passes the
Envelope to the service method, which must include code to parse it appropriately
and process the contents.

RPC message semantics
Recall that the RPC model mimics a method call using a SOAP message. The
message encapsulates the parameters for the call in its Body. The order and type of
the parameters must match the parameter list of the service Java method to invoke.

RPC messages are sent to the rpcrouter URL of the SOAP application server rather
than the messagerouter URL. The rpcrouter takes the contents of the SOAP
Envelope and creates an instance of a Java type for each message part. These Java
objects are used as parameters to invoke a method on a Java class. Remember that
the method name is the SOAP message Body part name, and the class name is
found by the ID of the service, which is the SOAP message Body namespace.

For the rpcrouter to know the proper types of the parameters, the RPC-style
message has to include type information along with each part in the message.

4 Web Services Advanced Topics

Using the SOAP Connector to send RPC-style messages
The CrossWorlds SOAP connector can be configured via the meta-objects it uses to
send messages that use RPC-style semantics. This allows you to call Web services
that expect RPC-style SOAP messages.

To configure the use of RPC-style semantics, you set the value of the TypeInfo field
in the BOtoSOAP client meta-object for your SOAP request application-specific
business object to the value true. The following screen shows TypeInfo set to true.

Attributes tab with TypeInfo field set to true

The resulting SOAP message issued by the SOAP connector now has RPC
semantics, as you can see by the type information in each field in the following
example message:
<?xml version=’1.0’ encoding=’UTF-8’?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV=“http://schemas.xmlsoap.org/soap/envelope/”
xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance” SOAP-
ENV:encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
xmlns:xsd=“http://www.w3.org/2001/XMLSchema”>
<SOAP-ENV:Header>
<hns0:affiliate xmlns:hns0=“http://www.ibm.com/wbc”>
<DestIDIdentifier>stevesh</DestIDIdentifier>
<DestIDType>PartnerName</DestIDType>
</hns0:affiliate>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
<ns1:m_BCT_RPCStyleTest xmlns:ns1=“urn:ibmwsgw#BCT_RPCStyleTest_Retrieve”>
<child xsi:type=“ns1:BCT_RPCStyleTest” xmlns:xsi=“http://www.w3.org/2001/XMLSchema-
instance”>
<field1 xsi:type=“xsd:boolean”>true</field1>
<field2 xsi:type=“xsd:int”>1</field2>
<field3 xsi:type=“xsd:float”>1.1</field3>
<field4 xsi:type=“xsd:double”>1E2</field4>
<field5 xsi:type=“xsd:string”>string1</field5>
<field6 xsi:type=“xsd:dateTime”>2002-05-14T19:26:00Z</field6>
<field7 xsi:type=“xsd:string”>long text 1</field7>
</child>
</ns1:m_BCT_RPCStyleTest>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The bold part of the message text has type information that is used by the
rpcrouter when it builds the parameter list.

Advanced Topics 5

Web Services Gateway messages
SOAP messages that are processed by the Web Services Gateway must use RPC
semantics. The channels used by the Business Connection offering are based on the
SOAP rpcrouter servlet, so for the Web Services Gateway to correctly process
messages sent to a SOAP channel, the messages must include type information.

The CWGenUtility provided by the Business Connection offering to produce the
CrossWorlds artifacts for a Web service produces meta-object definitions with the
TypeInfo field set to true where it is appropriate. This means that the SOAP
connector will produce messages that can be processed by the Web Services
Gateway channels.

SOAP connector limitations
For an RPC-style Web service to be called by the SOAP Connector, these
limitations must be accommodated:
v Only a single namespace can be used by the body of the message and all of its

parts.
v Only some data types may be present in the Web-service interface. These include

string, integer, float, double, and the other simple types supported by the
CrossWorlds Business Object Designer. Commonly used Java classes such as
Vector and Hashtable, however, may not be used in the interface to a Web
service if it is to be called from the SOAP Connector.

v Complex types containing zero or more attributes of a simple type (as
mentioned above) and zero or more attributes of a complex type are allowed.

v Arrays must be composed of complex types, not simple types.

These limitations are mainly derived from the fact that business objects are used to
form the message that is sent by the SOAP connector. Any data in the message
must have a CrossWorlds data type. Because CrossWorlds arrays (N-cardinality
children) must be composed of business objects and not of simple types, any
arrays in the Web-service interface must be arrays of complex types.

The RPC Sample Scenario
An example of a Java Web service developed using WebSphere Application
Developer that is called from a collaboration via the SOAP connector is provided
with the Business Connection offering. The theme of this sample is an expanded
version of the common Stock Quote service.

The sample allows you to enter a list of one or more stock symbols as an array of
business objects. This list is sent as a SOAP message via the SOAP connector to the
rpcrouter URL of a SOAP-enabled application server deployed in WebSphere. The
Web service that processes the request, which was created with WebSphere
Application Developer, is deployed in the sample application server. The rpcrouter
servlet forms a method call from the message and calls the service class. If the
server has connectivity to http://www.xmltoday.com, a quote for each symbol in
the request list will be obtained. If there is no connectivity, a list is returned with
error values (-1.0) in the quote response fields. The response list is sent back
synchronously to the caller.

6 Web Services Advanced Topics

Installing the RPC service in WebSphere
The RPC Stockquote service is provided in a SOAP-enabled EAR file.

To install the RPC service:
1. Bring up your WebSphere Admin Console.
2. Install bctwssamplesrpc.ear into an application server of your choice (the

default server, for example). Do not install the EAR file into the Web Services
Gateway App Server.

3. Regenerate the Web server plug-in, stop the application server (if it is running),
and then restart (or start) the application server where you installed the EAR
file.

Reviewing the Java code for the Web service
The source code for the classes used by the sample service is included at the end
of this document. Look at the following classes that are used by the service:
v com.ibm.bct.ws.samples.rpc.QuoteRequest:

Encapsulates a String field named symbol to carry a request for a single quote.
v com.ibm.bct.ws.samples.rpc.QuoteResponse:

Encapsulates two String fields named symbol and quote to carry a single
quotation back to the caller.

v com.ibm.bct.ws.samples.rpc.RequestList:
Encapsulates a String field named date and an array of QuoteRequest objects.
This is the request type for the StockQuote getCompanyQuotes(RequestList)
method.

v com.ibm.bct.ws.samples.rpc.ResponseList:
Encapsulates a String field named date and an array of QuoteResponse objects.
This the return type for the getCompanyQuotes(RequestList) method.

v com.ibm.bct.ws.samples.rpc.Stockquote:
This is the class which provides the getCompanyQuotes(RequestList) method.
This is the Web service implementation.

Installing the sample CrossWorlds code
To install the code:
1. Refer to the CrossWorlds Samples section of the Web Services Overview and

Samples and import the Business Connection sample CrossWorlds data if you
have not already done so.

2. Before running the sample, you will need to compile the collaboration template
named StockQuoteServiceOutbound.

3. After you have done this, stop and restart the ICS.
4. Check the system view to be sure that the collaboration object named

BCT_SampleConnector1_to_BCT_SampleSOAPConnector
_StockQuoteServiceOutbound has started.

5. Also make sure the BCT_SampleSOAPConnector has started. You can check
that the connector controller is started by viewing the System View window.
You also need to start the connector agent for this connector. Refer to the Web
Services Overview and Samples document to review how this is done.

6. Look at the collaboration template and the collaboration object. They are similar
to the previous
BCT_TestAllTypesOutbound sample.

Advanced Topics 7

Because this sample calls out from CrossWorlds to a Java RPC Web service, there is
no inbound collaboration.

Reviewing the business objects
To review the business object:
1. Open the StockquoteService folder in the CrossWorlds BCT_WS_Samples

project.
2. Look at the business object definitions for this service.

In addition to the SOAP meta-objects for sending a message via the SOAP
connector, there are also some business objects that have names resembling the
four interface classes used by the StockQuote RPC Web service. The business
objects are shown in the screen below.
If you open these business objects, you can see that they have attributes that
correspond to the fields of the Java classes. In particular, notice that the arrays
of the Java classes have corresponding arrays (cardinality N) fields in the
CrossWorlds business objects.

Expansion of the business objects for Stockquote Service

Recall that one of the limitations of the SOAP Connector is that it cannot send
messages with arrays of simple types. Because of that limitation, the symbol
within the QuoteRequest was wrapped so that it could be passed as an array
of symbols in the message. An array of Strings cannot be represented as a
business-object attribute, but an array of
com.ibm.bct.ws.samples.QuoteRequest can.

3. Open the BO definition for
MO_Client_BOtoSOAP_BCT_SOAP_StockQuoteService_getCompanyQuotes

_Request_Retrieve.
Notice the BodyNS value. This is the single namespace that will be used in the
SOAP message. This is important to note, because when WebSphere
Application Developer is used to produce a Web service, it uses multiple
namespaces in the service deployment descriptor and WSDL that it generates.
For this sample, it used two namespaces, and only one can be used.
In the sample shown in the following screen, the namespace used is
(http://tempuri.org/com.ibm.bct.ws.samples.rpc.Stockquote). The namespace is
placed into the meta-object definition and has to be changed on the service side
as well. This is done by changing the deployment descriptor for the service.

8 Web Services Advanced Topics

The BodyNS entry in the Attributes tab window

Reviewing the deployment descriptor file
Look at dds.xml under the Web application directory for the deployed Web service.
Look under:

Windows: <was_root>\installedapps\...
UNIX: <was_root>/installedapps/...

You see that there is a comment at the top of this file describing what was done to
the deployment descriptor that WebSphere Application Developer originally
generated. Below are excerpts from the dds.xml file showing what was done.
<isd:service xmlns:isd=“http://xml.apache.org/xml-soap/deployment”

id=“http://tempuri.org/com.ibm.bct.ws.samples.rpc.Stockquote”
checkMustUnderstands=“false”>

.

.

.
<!-- Changed the namespace xmlns:x=“http://www.stockquote.com

/schemas/StockquoteRemoteInterface” -->
<!-- to be the same as the above “id” value in the following 4 lines
--> . .

See the actual dds.xml file for all of the changed lines.

This provides the service with only a single namespace, which is what is required
if it is to be invoked from the SOAP connector.

Running the RPC sample
Be sure that the WebSphere application server that hosts the RPC service is started.
Also the BCTSampleSOAPConnector and its agent process, BCTSampleConnector1,
and the RPC collaboration object must all be running.

To run the sample service:
1. Bring up one Test Connector window.
2. Open the BCTSampleConnector1 profile.
3. Connect to the agent process.
4. Load the saved business object named

BCT_SOAP_StockquoteService_getCompanyQuotes1.

5. Examine the business object, as shown on the following screen:

Advanced Topics 9

Business object with two requests entered

It is preloaded with two requests, one for symbol IBM and one for GE. The
date is pre-filled, but this will be overwritten by the collaboration just before
sending the request to the SOAP connector. The URL is pre-filled with the
URL of the RPC service of the SOAP server that you deployed for this sample.

6. If you want, you can change the symbols or add more symbols by
right-clicking the requestQuoteList.

7. Click OK.
8. Highlight the preloaded business object definition and send it.

You will see activity in the agent window, followed by a short pause, followed
by activity as the response comes back.

9. Accept the response in the Test Connector window.
The response will appear in the right-hand pane of the Test Connector
window.

10. Double-click the response to examine it.
11. Expand the Response to see the details, as shown in the following screen.

10 Web Services Advanced Topics

The results of the two requests (the stock prices)

Compare the values to the earlier ones (shown in step 5). Notice that:
v The date has been updated. This was done by the calling collaboration before

the SOAP message was sent to the Web service.
v The quote values have been updated by the Web service.

This document described how you can use the SOAP connector to send RPC
messages to a non-CrossWorlds Web service. To learn more about
CrossWorlds-to-RPC flows, including how to develop them, see the Web Services
Technical Reference.

Advanced Topics 11

12 Web Services Advanced Topics

Routing filters and audit logs

This section explains concepts that you can apply to enhance the Business
Connection offering. After reading the document, you can update the samples
shipped with Business Connection to apply the concepts.

Using a routing filter
Recall that a Web Services Gateway service can have more than one target service
associated with it. To uniquely identify each target service, the Gateway
Administrator assigns a string value, which can be a trading partner ID, to each
target service when more than one is associated with a gateway service.

The following screen (from a sample Windows system) shows how a target service
with an identifier of TradingPartner-1068 has been added to a gateway service.
You get to this screen by listing the gateway services and clicking the link for one
of them.

Target Services screen with fields filled out for a new target

After two more target services have been added to the gateway service, the
gateway service details screen shows the three target services:

© Copyright IBM Corp. 2002 13

Target Services screen after new target has been added

To use routing in the Web Services Gateway, the message coming to the outbound
channel intended for a particular trading partner must carry the destination
trading partner ID in it to specify the correct target service to invoke. The Business
Connection offering uses the SOAP message header to carry the target trading
partner ID.

The CrossWorlds collaboration or a mapping can be used to fill in a SOAP header
business object with the destination trading partner ID before the message is sent
out through the SOAP connector. Business object application-specific data is used
to specify that data carried by the generic business object in a child business object
will be placed in the header of the SOAP message. The development procedures
describe how you do this.

The sample outbound collaboration object uses the SOAP header. Look at the
BCT_SOAP_BCT_TestAllTypes_Wrapper business object definition. This is the type
that is actually used for the request by the SOAP connector. It includes a child
business object named child that is of the type used by the generic business object
BCT_TestAllTypes. The map from the collaboration To port to the
BCTSampleSOAPConnector fills in this child business object. The other child of the
business object is named requestHeader. It has a child also, named affiliate. These
names are arbitrary, but the application-specific data for these two attributes
determines that the SOAP data handler will place the affiliate fields into the header
of the SOAP message rather than the body.

For your information, the requestHeader attribute has application-specific data of:
soap_location=SOAPHeader;type=BCT_SOAP_BCT_TestAllTypes_HDR

The affiliate attribute has application-specific data of:
elem_ns=SOAPHeader;type=BCT_SOAP_BCT_TestAllTypes_HDR

Refer to the CrossWorlds Guide to using Web Services for detailed discussion of the
header usage. For the purposes of this document, it is enough to understand that
the affiliate fields are placed into the header for use by the Web Services Gateway,
as shown in the following screen:

14 Web Services Advanced Topics

Attributes tab for requestHeader

The figure below shows the flow of a SOAP message that is routed by the Web
Services Gateway based on the SOAP header Destination ID:

Web Services Gateway
TradingPartner-1069

Web Services Gateway
TradingPartner-1070

Routing Filter:

Gateway service:
BCT_TestAllTypes_Retrieve

Request filter is called

1. Obtain DestinationID
from SOAP header

2. Select target service

SOAP Message
with header
(from CrossWorlds
SOAP connector)

Web Services Gateway
TradingPartner-1068

Target service:
TradingPartner-1069

Target service:
TradingPartner-1068

Target service:
TradingPartner-1070

Flow of a SOAP message with header through the routing filter

The Web Services Gateway allows Request and Response Filters to be deployed for
each gateway service. For the specific purpose of routing in this sample, the
Routing Filter used by WebSphere Business Connection has been written to extract
the destination trading partner ID value from the SOAP message header and is
deployed in the Request Filter.

This filter uses a Gateway API to select the correct target service to receive the call.

Note that the Routing Filter is provided in bctwswsgwroutingfiltersoap.ear. If you
deploy it and then configure a gateway service to use it as a Request Filter, it will
read the SOAP header, look for the affiliate element, and then read the name in the
DestIDIdentifier field. It will use this value to select the target service that has that
identifier value.

Routing filters and audit logs 15

Deploying and configuring a filter
Here are the steps to manually deploy and configure this filter. Note that when
you install WebSphere Business Connection using the instructions in the Installation
and Configuration Guide, this filter is automatically deployed and configured for
your use.
1. Display the Web Services Gateway Admin screen and select Filters.
2. Click Deploy.
3. In the Filter name field, type:

RoutingFilter

4. In the Home location field, type:
BCTWSRoutingFilterSOAP

5. Click OK.

After deployment, the filter will be available as a choice on the gateway service
screen for either a Request Filter or a Response Filter. If you want to use routing of
gateway service requests to one of many target requests, you must add the
Routing Filter as a Request Filter for the gateway service.

For the sample, you would highlight the Routing Filter selection and then press the
add button, as shown in the following screen:

Flow of a SOAP message (with header) routed to three targets

After adding it, you can remove it by using the same screen and pressing the
remove button.

16 Web Services Advanced Topics

Using the Business Connection Solution Manager Audit Log
This section discusses how you can log incoming requests and responses for a Web
service.

If you check the Audit Policy check box labeled Log requests for this service for a
gateway service (as shown in the following screen), the Business Connection
offering can use its Solution Manager component to save a copy of the incoming
requests and responses for the service. The Solution Manager Audit Log is used for
this purpose. A message queue is used to send messages from the Web Services
Gateway machine to the Solution Manager Audit Log.

Gateway Service Properties screen with Log requests to this service checked

Note that there are two other logs (the Business Log and the Exception Log)
maintained by the Solution Manager component. They are not used by the Web
Services Gateway component, so they are not discussed in this document.

For more information on using the Logging Client of the Solution Manager, refer to
Using Business Connection APIs.

Routing filters and audit logs 17

18 Web Services Advanced Topics

Source Code for the RPC Sample Service

The source code for the classes that comprise the RPC sample service is listed
below for your reference.

QuoteRequest.java
package com.ibm.bct.ws.samples.rpc;
public class QuoteRequest
{

private String symbol;
/**
* Gets the symbol
* @return Returns a String
*/
public String getSymbol() {

return symbol;
}
/**
* Sets the symbol
* @param symbol The symbol to set
*/
public void setSymbol(String symbol)
{

this.symbol = symbol;
}

}

QuoteResponse.java
package com.ibm.bct.ws.samples.rpc;
public class QuoteResponse
{

private float quote;
private String symbol;

/**
* Gets the quote
* @return Returns a float
*/
public float getQuote() {

return quote;
}
/**
* Sets the quote
* @param quote The quote to set
*/
public void setQuote(float quote)
{

this.quote = quote;
}

/**
* Gets the symbol
* @return Returns a String
*/
public String getSymbol() {

return symbol;
}
/**

© Copyright IBM Corp. 2002 19

* Sets the symbol
* @param symbol The symbol to set
*/
public void setSymbol(String symbol)
{

this.symbol = symbol;
}

}

RequestList.java
package com.ibm.bct.ws.samples.rpc;
public class RequestList
{

private String date;
private QuoteRequest[] requestQuoteList =

new QuoteRequest[0];

/**
* Gets the date
* @return Returns a String
*/
public String getDate() {

return date;
}
/**
* Sets the date
* @param date The date to set
*/
public void setDate(String date)
{

this.date = date;
}

/**
* Gets the requestQuoteList
* @return Returns a QuoteRequest[]
*/
public QuoteRequest[] getRequestQuoteList() {

return requestQuoteList;
}
/**
* Sets the requestQuoteList
* @param requestQuoteList The requestQuoteList to set
*/
public void setRequestQuoteList(QuoteRequest[]

requestQuoteList)
{

this.requestQuoteList = requestQuoteList;
}

}

ResponseList.java
package com.ibm.bct.ws.samples.rpc;
public class ResponseList
{

private String date;
private QuoteResponse[] responseQuoteList = new

QuoteResponse[0];
/**
* Gets the date

20 Web Services Advanced Topics

* @return Returns a String
*/
public String getDate() {

return date;
}
/**
* Sets the date
* @param date The date to set
*/
public void setDate(String date)
{

this.date = date;
}

/**
* Gets the responseQuoteList
* @return Returns a QuoteResponse[]
*/
public QuoteResponse[] getResponseQuoteList() {

return responseQuoteList;
}
/**
* Sets the responseQuoteList
* @param responseQuoteList The responseQuoteList to set
*/
public void setResponseQuoteList(QuoteResponse[]

responseQuoteList)
{

this.responseQuoteList = responseQuoteList;
}

}

Stockquote.java
package com.ibm.bct.ws.samples.rpc;

import java.net.URL;
import java.io.*;
import org.w3c.dom.*;
import org.xml.sax.*;
import javax.xml.parsers.*;
//import org.apache.soap.util.xml.*;

import com.ibm.ras.*;
import com.ibm.bct.ws.trace.*;

/**
* This class is used to test the ability to use complex
* types and arrays of complex types for an rpc-style web
* service that is to be called using the CrossWorlds
* SOAPConnector. Method getCompanyQuotes(RequestList)
* exercises this capability by involving complex types
* in the interface, which include arrays of other complex
* types.
*
*/
public class Stockquote
{

public static final float CANNOT_OBTAIN_QUOTE = -1.0f;
public static final float SYMBOL_LOOKUP_FAILED = -2.0f;

final static private String CLASSNAME =

Source Code for the RPC Sample Service 21

Stockquote.class.getName();

private static final RASTraceLogger m_traceLogger =
BCTWSTrace.createRASTraceLogger(

BCTWSTraceConstants.BCT_ORG,
BCTWSTraceConstants.BCT_PROD,
BCTWSTraceConstants.BCT_COMP,
Stockquote.class,
BCTWSTraceConstants.BCT_GROUPNAME);
//TraceConstants.m_strGroupName);

private static final RASMessageLogger m_msgLogger =
BCTWSTrace.createRASMessageLogger(

BCTWSTraceConstants.BCT_ORG,
BCTWSTraceConstants.BCT_PROD,
BCTWSTraceConstants.BCT_COMP,
Stockquote.class,
BCTWSTraceConstants.BCTMESSAGEFILE);

private boolean islogging = m_traceLogger.isLogging;

//------
// Obtain quotations for a list of symbols passed

// in a RequestList. Respond with a list of quotations
// encapsulated in a ResponseList.

// Demonstrate some WAS tracing while we are at it.
//------
public ResponseList getCompanyQuotes(RequestList reqList)
{

if (m_traceLogger.isLogging)
m_traceLogger.entry(

RASITraceEvent.TYPE_ENTRY_EXIT,
CLASSNAME,
“getCompanyQuotes”,
new Object[]{});

ResponseList respList = new ResponseList();
respList.setDate(new java.util.Date().toString());

QuoteRequest[] qreqlist =
reqList.getRequestQuoteList();

QuoteResponse [] qresplist = new
QuoteResponse[qreqlist.length];

for (int i=0; i<qreqlist.length; i++)
{

// Prepare the response array
qresplist[i] = new QuoteResponse();
qresplist[i].setSymbol(qreqlist[i].getSymbol());

float quotation = SYMBOL_LOOKUP_FAILED;
try
{

quotation = getQuote(qreqlist[i].getSymbol());
m_traceLogger.trace(

RASITraceEvent.TYPE_API,
CLASSNAME,
“getCompanyQuotes”,
“Obtained quote for symbol

<” +qreqlist[i].getSymbol()+ “> :
quotation = ”+quotation);

}
catch (Throwable t)
{

quotation = CANNOT_OBTAIN_QUOTE;
m_traceLogger.trace(

22 Web Services Advanced Topics

RASITraceEvent.TYPE_API,
CLASSNAME,
“getCompanyQuotes”,
“Caught exception looking up symbol

<” +qreqlist[i].getSymbol()+ “> :
setting quotation = ”+quotation);

}
qresplist[i].setQuote(quotation);

}

// Put the response array into the returning ResponseList
respList.setResponseQuoteList(qresplist);

if (m_traceLogger.isLogging)
m_traceLogger.exit(

RASITraceEvent.TYPE_ENTRY_EXIT,
CLASSNAME,
“getCompanyQuotes”,
new Object[]{});

return respList;
}

//------
// Obtain a single quotation for a symbol passed within a
// wrapper class. Demonstrate some WAS tracing while we are at it.
//------
public QuoteResponse getCompanyQuote(QuoteRequest qr)
{

if (m_traceLogger.isLogging)
m_traceLogger.entry(

RASITraceEvent.TYPE_ENTRY_EXIT,
CLASSNAME,
“getCompanyQuote”,
new Object[]{});

QuoteResponse qresp = new QuoteResponse();

qresp.setSymbol(qr.getSymbol());
float quotation = SYMBOL_LOOKUP_FAILED;
try
{

quotation = getQuote(qr.getSymbol());
m_traceLogger.trace(

RASITraceEvent.TYPE_API,
CLASSNAME,
“getCompanyQuote”,
“Obtained quote for symbol

<” +qr.getSymbol()+ “> :
quotation = ”+quotation);

}
catch (Throwable t)
{

quotation = CANNOT_OBTAIN_QUOTE;
m_traceLogger.trace(

RASITraceEvent.TYPE_API,
CLASSNAME,
“getCompanyQuotes”,
“Caught exception looking up symbol

<” +qr.getSymbol()+ “> :
setting quotation = ”+quotation);

}

qresp.setQuote(quotation);

if (m_traceLogger.isLogging)

Source Code for the RPC Sample Service 23

m_traceLogger.exit(
RASITraceEvent.TYPE_ENTRY_EXIT,
CLASSNAME,
“getCompanyQuote”,
new Object[]{});

return qresp;
}

//------
// Obtain quotations for an array of symbols, returning an

// array of floats.
//------
public float[] getQuotes (String [] symbols)
{

System.out.println (“Stockquote:getQuotes(String[])
entry point called”);

float[] retArray = new float[symbols.length];

System.out.println (“Stockquote:getQuotes(String[])
response: ”);

for (int i=0; i<symbols.length; i++)
{

float quotation = SYMBOL_LOOKUP_FAILED;
try
{

quotation = getQuote(symbols[i]);
}
catch (Throwable t)
{

quotation = CANNOT_OBTAIN_QUOTE;
}

retArray[i] = quotation;

System.out.println(“\t”+symbols[i]+“: ”+quotation);
}

System.out.println (“Stockquote:getQuotes(String[])
normal exit”);

return retArray;
}

//------
// Obtain a quotation from a public url service for a given

// symbol. If anything bad happens, just throw it back to
// the caller.

//------
public float getQuote(String symbol) throws Exception
{

System.out.println(“Stockquote:getQuote(String)
entry point called”);

DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();

DocumentBuilder xdb = factory.newDocumentBuilder();

// get a real (delayed by 20min) stockquote
URL url =

new URL(
“http://www.xmltoday.com/examples/stockquote/

24 Web Services Advanced Topics

getxmlquote.vep?s=” + symbol);

System.out.println(
“Stockquote:getQuote(String) opening input stream

with URL: ” + url);

InputStream is = url.openStream();

System.out.println(
“Stockquote:getQuote(String) input stream has been

obtained, parsing for price beginning”);

Document d = xdb.parse(is);
Element e = d.getDocumentElement();
NodeList nl = e.getElementsByTagName(“price”);
e = (Element) nl.item(0);
String quoteStr = e.getAttribute(“value”);
try
{
System.out.println(“Stockquote:getQuote(String) normal

exit 1”);
return Float.valueOf(quoteStr).floatValue();

}
catch (NumberFormatException e1)
{

// Could it be an int?
try
{

System.out.println(“Stockquote:getQuote(String)
normal exit 2”);

return Integer.valueOf(quoteStr).intValue()
* 1.0F;

}
catch (NumberFormatException e2)
{

System.out.println(“Stockquote:getQuote(String)
error exit 3”);

return -1.0F;
}

}

} // end of method getQuote

}

Source Code for the RPC Sample Service 25

26 Web Services Advanced Topics

Notices

IBM may not offer the products, services, or features discussed in this document in
all countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or program(s) described in this publication
at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

WebSphere Business Connection Lab Director
IBM RTP Laboratory
3039 Cornwallis Road
P.O. BOX 12195

© Copyright IBM Corp. 2002 27

Raleigh, NC 27709-2195
U.S.A

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may include
the names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Programming interface information
Programming interface information is intended to help you create application
software using this program.

General-use programming interfaces allow you to write application software that
obtain the services of this program’s tools.

28 Web Services Advanced Topics

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification and tuning information is provided to help
you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

Trademarks and service marks
The following terms are trademarks of International Business Machines
Corporation in the United States, other countries, or both:

IBM
alphaWorks
AIX
CrossWorlds
DB2
DB2 OLAP Server
DB2 Universal Database
DeveloperWorks
MQSeries
SecureWay
WebSphere

Lotus is a trademark of International Business Machines Corporation and Lotus
Development Corporation in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

MMX, Pentium and ProShare are trademarks of Intel Corporation in the United
States, other countries, or both.

Other company, product or service names may be trademarks or service marks of
others.

Notices 29

	Contents
	Advanced Topics
	CrossWorlds-to-RPC sample
	Calling general-purpose Java Web services
	SOAP message styles
	A SOAP connector example
	RPC message semantics
	Using the SOAP Connector to send RPC-style messages

	Web Services Gateway messages
	SOAP connector limitations

	The RPC Sample Scenario
	Installing the RPC service in WebSphere
	Reviewing the Java code for the Web service
	Installing the sample CrossWorlds code
	Reviewing the business objects
	Reviewing the deployment descriptor file
	Running the RPC sample

	Routing filters and audit logs
	Using a routing filter
	Deploying and configuring a filter
	Using the Business Connection Solution Manager Audit Log

	Source Code for the RPC Sample Service
	Notices
	Programming interface information
	Trademarks and service marks

